summaryrefslogtreecommitdiff
path: root/text_recognizer/models/vq_transformer.py
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer/models/vq_transformer.py')
-rw-r--r--text_recognizer/models/vq_transformer.py113
1 files changed, 0 insertions, 113 deletions
diff --git a/text_recognizer/models/vq_transformer.py b/text_recognizer/models/vq_transformer.py
deleted file mode 100644
index 99f69c0..0000000
--- a/text_recognizer/models/vq_transformer.py
+++ /dev/null
@@ -1,113 +0,0 @@
-"""Lightning model for Vector Quantized Transformers."""
-from typing import Optional, Tuple, Type
-
-from omegaconf import DictConfig
-import torch
-from torch import nn, Tensor
-
-from text_recognizer.data.mappings import EmnistMapping
-from text_recognizer.models.transformer import LitTransformer
-
-
-class LitVqTransformer(LitTransformer):
- """A PyTorch Lightning model for transformer networks."""
-
- def __init__(
- self,
- network: Type[nn.Module],
- loss_fn: Type[nn.Module],
- optimizer_config: DictConfig,
- lr_scheduler_config: Optional[DictConfig],
- mapping: EmnistMapping,
- max_output_len: int = 682,
- start_token: str = "<s>",
- end_token: str = "<e>",
- pad_token: str = "<p>",
- vq_loss_weight: float = 0.1,
- ) -> None:
- super().__init__(
- network,
- loss_fn,
- optimizer_config,
- lr_scheduler_config,
- mapping,
- max_output_len,
- start_token,
- end_token,
- pad_token,
- )
- self.vq_loss_weight = vq_loss_weight
-
- def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:
- """Training step."""
- data, targets = batch
- logits, vq_loss = self.network(data, targets[:, :-1])
- loss = self.loss_fn(logits, targets[:, 1:])
- total_loss = loss + self.vq_loss_weight * vq_loss
- self.log("train/vq_loss", vq_loss)
- self.log("train/loss", loss)
- self.log("train/total_loss", total_loss)
- return total_loss
-
- def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
- """Validation step."""
- data, targets = batch
- preds = self.predict(data)
- self.val_acc(preds, targets)
- self.log("val/acc", self.val_acc, on_step=False, on_epoch=True)
- self.val_cer(preds, targets)
- self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True)
-
- def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
- """Test step."""
- data, targets = batch
- pred = self(data)
- self.test_cer(pred, targets)
- self.log("test/cer", self.test_cer, on_step=False, on_epoch=True, prog_bar=True)
- self.test_acc(pred, targets)
- self.log("test/acc", self.test_acc, on_step=False, on_epoch=True)
-
- @torch.no_grad()
- def predict(self, x: Tensor) -> Tensor:
- """Predicts text in image.
-
- Args:
- x (Tensor): Image(s) to extract text from.
-
- Shapes:
- - x: :math: `(B, H, W)`
- - output: :math: `(B, S)`
-
- Returns:
- Tensor: A tensor of token indices of the predictions from the model.
- """
- bsz = x.shape[0]
-
- # Encode image(s) to latent vectors.
- z, _ = self.network.encode(x)
-
- # Create a placeholder matrix for storing outputs from the network
- output = torch.ones((bsz, self.max_output_len), dtype=torch.long).to(x.device)
- output[:, 0] = self.start_index
-
- for Sy in range(1, self.max_output_len):
- context = output[:, :Sy] # (B, Sy)
- logits = self.network.decode(z, context) # (B, C, Sy)
- tokens = torch.argmax(logits, dim=1) # (B, Sy)
- output[:, Sy : Sy + 1] = tokens[:, -1:]
-
- # Early stopping of prediction loop if token is end or padding token.
- if (
- (output[:, Sy - 1] == self.end_index)
- | (output[:, Sy - 1] == self.pad_index)
- ).all():
- break
-
- # Set all tokens after end token to pad token.
- for Sy in range(1, self.max_output_len):
- idx = (output[:, Sy - 1] == self.end_index) | (
- output[:, Sy - 1] == self.pad_index
- )
- output[idx, Sy] = self.pad_index
-
- return output