diff options
Diffstat (limited to 'text_recognizer/network')
-rw-r--r-- | text_recognizer/network/convformer.py | 16 | ||||
-rw-r--r-- | text_recognizer/network/cvit.py | 44 |
2 files changed, 50 insertions, 10 deletions
diff --git a/text_recognizer/network/convformer.py b/text_recognizer/network/convformer.py index 0ee5487..e2b0204 100644 --- a/text_recognizer/network/convformer.py +++ b/text_recognizer/network/convformer.py @@ -1,12 +1,10 @@ -from typing import Optional from einops.layers.torch import Rearrange from torch import Tensor, nn -from text_recognizer.network.convnext.convnext import ConvNext -from .transformer.embedding.token import TokenEmbedding -from .transformer.embedding.sincos import sincos_2d from .transformer.decoder import Decoder +from .transformer.embedding.sincos import sincos_2d +from .transformer.embedding.token import TokenEmbedding from .transformer.encoder import Encoder @@ -24,12 +22,10 @@ class Convformer(nn.Module): token_embedding: TokenEmbedding, tie_embeddings: bool, pad_index: int, - stem: Optional[ConvNext] = None, channels: int = 1, ) -> None: super().__init__() patch_dim = patch_height * patch_width * channels - self.stem = stem if stem is not None else nn.Identity() self.to_patch_embedding = nn.Sequential( Rearrange( "b c (h ph) (w pw) -> b (h w) (ph pw c)", @@ -53,11 +49,11 @@ class Convformer(nn.Module): self.decoder = decoder self.pad_index = pad_index - def encode(self, img: Tensor) -> Tensor: - x = self.stem(img) + def encode(self, images: Tensor) -> Tensor: + x = self.encoder(images) x = self.to_patch_embedding(x) - x += self.patch_embedding.to(img.device, dtype=img.dtype) - return self.encoder(x) + x = x + self.patch_embedding.to(images.device, dtype=images.dtype) + return x def decode(self, text: Tensor, img_features: Tensor) -> Tensor: text = text.long() diff --git a/text_recognizer/network/cvit.py b/text_recognizer/network/cvit.py new file mode 100644 index 0000000..f9abb8c --- /dev/null +++ b/text_recognizer/network/cvit.py @@ -0,0 +1,44 @@ +from einops.layers.torch import Rearrange +from torch import Tensor, nn + +from text_recognizer.network.convnext.convnext import ConvNext + +from .transformer.embedding.sincos import sincos_2d +from .transformer.encoder import Encoder + + +class CVit(nn.Module): + def __init__( + self, + image_height: int, + image_width: int, + patch_height: int, + patch_width: int, + dim: int, + encoder: Encoder, + stem: ConvNext, + channels: int = 1, + ) -> None: + super().__init__() + patch_dim = patch_height * patch_width * channels + self.stem = stem + self.to_patch_embedding = nn.Sequential( + Rearrange( + "b c (h ph) (w pw) -> b (h w) (ph pw c)", + ph=patch_height, + pw=patch_width, + ), + nn.LayerNorm(patch_dim), + nn.Linear(patch_dim, dim), + nn.LayerNorm(dim), + ) + self.patch_embedding = sincos_2d( + h=image_height // patch_height, w=image_width // patch_width, dim=dim + ) + self.encoder = encoder + + def forward(self, img: Tensor) -> Tensor: + x = self.stem(img) + x = self.to_patch_embedding(x) + x += self.patch_embedding.to(img.device, dtype=img.dtype) + return self.encoder(x) |