diff options
Diffstat (limited to 'text_recognizer/networks/encoders/efficientnet/mbconv.py')
-rw-r--r-- | text_recognizer/networks/encoders/efficientnet/mbconv.py | 240 |
1 files changed, 0 insertions, 240 deletions
diff --git a/text_recognizer/networks/encoders/efficientnet/mbconv.py b/text_recognizer/networks/encoders/efficientnet/mbconv.py deleted file mode 100644 index 4b051eb..0000000 --- a/text_recognizer/networks/encoders/efficientnet/mbconv.py +++ /dev/null @@ -1,240 +0,0 @@ -"""Mobile inverted residual block.""" -from typing import Optional, Tuple, Union - -import attr -import torch -from torch import nn, Tensor -import torch.nn.functional as F - -from text_recognizer.networks.encoders.efficientnet.utils import stochastic_depth - - -def _convert_stride(stride: Union[Tuple[int, int], int]) -> Tuple[int, int]: - """Converts int to tuple.""" - return (stride,) * 2 if isinstance(stride, int) else stride - - -@attr.s(eq=False) -class BaseModule(nn.Module): - """Base sub module class.""" - - bn_momentum: float = attr.ib() - bn_eps: float = attr.ib() - block: nn.Sequential = attr.ib(init=False) - - def __attrs_pre_init__(self) -> None: - super().__init__() - - def __attrs_post_init__(self) -> None: - self._build() - - def _build(self) -> None: - pass - - def forward(self, x: Tensor) -> Tensor: - """Forward pass.""" - return self.block(x) - - -@attr.s(auto_attribs=True, eq=False) -class InvertedBottleneck(BaseModule): - """Inverted bottleneck module.""" - - in_channels: int = attr.ib() - out_channels: int = attr.ib() - - def _build(self) -> None: - self.block = nn.Sequential( - nn.Conv2d( - in_channels=self.in_channels, - out_channels=self.out_channels, - kernel_size=1, - bias=False, - ), - nn.BatchNorm2d( - num_features=self.out_channels, - momentum=self.bn_momentum, - eps=self.bn_eps, - ), - nn.Mish(inplace=True), - ) - - -@attr.s(auto_attribs=True, eq=False) -class Depthwise(BaseModule): - """Depthwise convolution module.""" - - channels: int = attr.ib() - kernel_size: int = attr.ib() - stride: int = attr.ib() - - def _build(self) -> None: - self.block = nn.Sequential( - nn.Conv2d( - in_channels=self.channels, - out_channels=self.channels, - kernel_size=self.kernel_size, - stride=self.stride, - groups=self.channels, - bias=False, - ), - nn.BatchNorm2d( - num_features=self.channels, momentum=self.bn_momentum, eps=self.bn_eps - ), - nn.Mish(inplace=True), - ) - - -@attr.s(auto_attribs=True, eq=False) -class SqueezeAndExcite(BaseModule): - """Sequeeze and excite module.""" - - in_channels: int = attr.ib() - channels: int = attr.ib() - se_ratio: float = attr.ib() - - def _build(self) -> None: - num_squeezed_channels = max(1, int(self.in_channels * self.se_ratio)) - self.block = nn.Sequential( - nn.Conv2d( - in_channels=self.channels, - out_channels=num_squeezed_channels, - kernel_size=1, - ), - nn.Mish(inplace=True), - nn.Conv2d( - in_channels=num_squeezed_channels, - out_channels=self.channels, - kernel_size=1, - ), - ) - - -@attr.s(auto_attribs=True, eq=False) -class Pointwise(BaseModule): - """Pointwise module.""" - - in_channels: int = attr.ib() - out_channels: int = attr.ib() - - def _build(self) -> None: - self.block = nn.Sequential( - nn.Conv2d( - in_channels=self.in_channels, - out_channels=self.out_channels, - kernel_size=1, - bias=False, - ), - nn.BatchNorm2d( - num_features=self.out_channels, - momentum=self.bn_momentum, - eps=self.bn_eps, - ), - ) - - -@attr.s(eq=False) -class MBConvBlock(nn.Module): - """Mobile Inverted Residual Bottleneck block.""" - - def __attrs_pre_init__(self) -> None: - super().__init__() - - in_channels: int = attr.ib() - out_channels: int = attr.ib() - kernel_size: Tuple[int, int] = attr.ib() - stride: Tuple[int, int] = attr.ib(converter=_convert_stride) - bn_momentum: float = attr.ib() - bn_eps: float = attr.ib() - se_ratio: float = attr.ib() - expand_ratio: int = attr.ib() - pad: Tuple[int, int, int, int] = attr.ib(init=False) - _inverted_bottleneck: Optional[InvertedBottleneck] = attr.ib(init=False) - _depthwise: nn.Sequential = attr.ib(init=False) - _squeeze_excite: nn.Sequential = attr.ib(init=False) - _pointwise: nn.Sequential = attr.ib(init=False) - - @pad.default - def _configure_padding(self) -> Tuple[int, int, int, int]: - """Set padding for convolutional layers.""" - if self.stride == (2, 2): - return ((self.kernel_size - 1) // 2 - 1, (self.kernel_size - 1) // 2,) * 2 - return ((self.kernel_size - 1) // 2,) * 4 - - def __attrs_post_init__(self) -> None: - """Post init configuration.""" - self._build() - - def _build(self) -> None: - has_se = self.se_ratio is not None and 0.0 < self.se_ratio < 1.0 - inner_channels = self.in_channels * self.expand_ratio - self._inverted_bottleneck = ( - InvertedBottleneck( - in_channels=self.in_channels, - out_channels=inner_channels, - bn_momentum=self.bn_momentum, - bn_eps=self.bn_eps, - ) - if self.expand_ratio != 1 - else None - ) - - self._depthwise = Depthwise( - channels=inner_channels, - kernel_size=self.kernel_size, - stride=self.stride, - bn_momentum=self.bn_momentum, - bn_eps=self.bn_eps, - ) - - self._squeeze_excite = ( - SqueezeAndExcite( - in_channels=self.in_channels, - channels=inner_channels, - se_ratio=self.se_ratio, - bn_momentum=self.bn_momentum, - bn_eps=self.bn_eps, - ) - if has_se - else None - ) - - self._pointwise = Pointwise( - in_channels=inner_channels, - out_channels=self.out_channels, - bn_momentum=self.bn_momentum, - bn_eps=self.bn_eps, - ) - - def _stochastic_depth( - self, x: Tensor, residual: Tensor, stochastic_dropout_rate: Optional[float] - ) -> Tensor: - if self.stride == (1, 1) and self.in_channels == self.out_channels: - if stochastic_dropout_rate: - x = stochastic_depth( - x, p=stochastic_dropout_rate, training=self.training - ) - x += residual - return x - - def forward( - self, x: Tensor, stochastic_dropout_rate: Optional[float] = None - ) -> Tensor: - """Forward pass.""" - residual = x - if self._inverted_bottleneck is not None: - x = self._inverted_bottleneck(x) - - x = F.pad(x, self.pad) - x = self._depthwise(x) - - if self._squeeze_excite is not None: - x_squeezed = F.adaptive_avg_pool2d(x, 1) - x_squeezed = self._squeeze_excite(x) - x = torch.tanh(F.softplus(x_squeezed)) * x - - x = self._pointwise(x) - - # Stochastic depth - x = self._stochastic_depth(x, residual, stochastic_dropout_rate) - return x |