diff options
Diffstat (limited to 'text_recognizer/networks/perceiver')
| -rw-r--r-- | text_recognizer/networks/perceiver/attention.py | 10 | 
1 files changed, 1 insertions, 9 deletions
diff --git a/text_recognizer/networks/perceiver/attention.py b/text_recognizer/networks/perceiver/attention.py index 0ee51b1..19e3e17 100644 --- a/text_recognizer/networks/perceiver/attention.py +++ b/text_recognizer/networks/perceiver/attention.py @@ -25,9 +25,7 @@ class Attention(nn.Module):          self.to_kv = nn.Linear(context_dim, 2 * inner_dim, bias=False)          self.to_out = nn.Linear(inner_dim, query_dim, bias=False) -    def forward( -        self, x: Tensor, context: Optional[Tensor] = None, mask=Optional[Tensor] -    ) -> Tensor: +    def forward(self, x: Tensor, context: Optional[Tensor] = None) -> Tensor:          h = self.heads          q = self.to_q(x)          context = context if context is not None else x @@ -36,12 +34,6 @@ class Attention(nn.Module):          q, v, k = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))          sim = einsum("b i d, b j d -> b i j", q, k) * self.scale -        # if mask is not None: -        #     mask = rearrange(mask, "b ... -> b (...)") -        #     max_neg_val = -torch.finfo(sim.dtype).max -        #     mask = repeat(mask, "b j -> (b h) () j", h=h) -        #     sim.masked_fill_(~mask, max_neg_val) -          attn = sim.softmax(dim=-1)          out = einsum("b i j, b j d -> b i d", attn, v)          out = rearrange(out, "(b h) n d -> b n (h d)", h=h)  |