summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/transformer/embeddings
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer/networks/transformer/embeddings')
-rw-r--r--text_recognizer/networks/transformer/embeddings/absolute.py34
-rw-r--r--text_recognizer/networks/transformer/embeddings/fourier.py36
2 files changed, 0 insertions, 70 deletions
diff --git a/text_recognizer/networks/transformer/embeddings/absolute.py b/text_recognizer/networks/transformer/embeddings/absolute.py
deleted file mode 100644
index 9274b55..0000000
--- a/text_recognizer/networks/transformer/embeddings/absolute.py
+++ /dev/null
@@ -1,34 +0,0 @@
-"""Absolute positional embedding."""
-
-import torch
-import torch.nn.functional as F
-from einops import rearrange
-from torch import nn
-
-
-def l2norm(t, groups=1):
- t = rearrange(t, "... (g d) -> ... g d", g=groups)
- t = F.normalize(t, p=2, dim=-1)
- return rearrange(t, "... g d -> ... (g d)")
-
-
-class AbsolutePositionalEmbedding(nn.Module):
- def __init__(self, dim, max_seq_len, l2norm_embed=False):
- super().__init__()
- self.scale = dim**-0.5 if not l2norm_embed else 1.0
- self.max_seq_len = max_seq_len
- self.l2norm_embed = l2norm_embed
- self.emb = nn.Embedding(max_seq_len, dim)
-
- def forward(self, x, pos=None):
- seq_len = x.shape[1]
- assert (
- seq_len <= self.max_seq_len
- ), f"you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}"
-
- if pos is None:
- pos = torch.arange(seq_len, device=x.device)
-
- pos_emb = self.emb(pos)
- pos_emb = pos_emb * self.scale
- return l2norm(pos_emb) if self.l2norm_embed else pos_emb
diff --git a/text_recognizer/networks/transformer/embeddings/fourier.py b/text_recognizer/networks/transformer/embeddings/fourier.py
deleted file mode 100644
index 28da7a1..0000000
--- a/text_recognizer/networks/transformer/embeddings/fourier.py
+++ /dev/null
@@ -1,36 +0,0 @@
-"""Fourier positional embedding."""
-import numpy as np
-import torch
-from torch import Tensor, nn
-
-
-class PositionalEncoding(nn.Module):
- """Encodes a sense of distance or time for transformer networks."""
-
- def __init__(self, dim: int, dropout_rate: float, max_len: int = 1000) -> None:
- super().__init__()
- self.dropout = nn.Dropout(p=dropout_rate)
- pe = self.make_pe(dim, max_len)
- self.register_buffer("pe", pe)
-
- @staticmethod
- def make_pe(hidden_dim: int, max_len: int) -> Tensor:
- """Returns positional encoding."""
- pe = torch.zeros(max_len, hidden_dim)
- position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
- div_term = torch.exp(
- torch.arange(0, hidden_dim, 2).float() * (-np.log(10000.0) / hidden_dim)
- )
-
- pe[:, 0::2] = torch.sin(position * div_term)
- pe[:, 1::2] = torch.cos(position * div_term)
- pe = pe.unsqueeze(1)
- return pe
-
- def forward(self, x: Tensor) -> Tensor:
- """Encodes the tensor with a postional embedding."""
- # [T, B, D]
- if x.shape[2] != self.pe.shape[2]:
- raise ValueError("x shape does not match pe in the 3rd dim.")
- x = x + self.pe[: x.shape[0]]
- return self.dropout(x)