summaryrefslogtreecommitdiff
path: root/text_recognizer/networks/vqvae/residual.py
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer/networks/vqvae/residual.py')
-rw-r--r--text_recognizer/networks/vqvae/residual.py53
1 files changed, 45 insertions, 8 deletions
diff --git a/text_recognizer/networks/vqvae/residual.py b/text_recognizer/networks/vqvae/residual.py
index 98109b8..4ed3781 100644
--- a/text_recognizer/networks/vqvae/residual.py
+++ b/text_recognizer/networks/vqvae/residual.py
@@ -1,18 +1,55 @@
"""Residual block."""
+import attr
from torch import nn
from torch import Tensor
+from text_recognizer.networks.vqvae.norm import Normalize
+
+@attr.s(eq=False)
class Residual(nn.Module):
- def __init__(self, in_channels: int, out_channels: int,) -> None:
+ in_channels: int = attr.ib()
+ out_channels: int = attr.ib()
+ dropout_rate: float = attr.ib(default=0.0)
+ use_norm: bool = attr.ib(default=False)
+
+ def __attrs_post_init__(self) -> None:
+ """Post init configuration."""
super().__init__()
- self.block = nn.Sequential(
- nn.Mish(inplace=True),
- nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False),
- nn.Mish(inplace=True),
- nn.Conv2d(out_channels, in_channels, kernel_size=1, bias=False),
- )
+ self.block = self._build_res_block()
+ if self.in_channels != self.out_channels:
+ self.conv_shortcut = nn.Conv2d(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=3, stride=1, padding=1)
+ else:
+ self.conv_shortcut = None
+
+ def _build_res_block(self) -> nn.Sequential:
+ """Build residual block."""
+ block = []
+ if self.use_norm:
+ block.append(Normalize(num_channels=self.in_channels))
+ block += [
+ nn.Mish(),
+ nn.Conv2d(
+ self.in_channels,
+ self.out_channels,
+ kernel_size=3,
+ padding=1,
+ bias=False,
+ ),
+ ]
+ if self.dropout_rate:
+ block += [nn.Dropout(p=self.dropout_rate)]
+
+ if self.use_norm:
+ block.append(Normalize(num_channels=self.out_channels))
+
+ block += [
+ nn.Mish(),
+ nn.Conv2d(self.out_channels, self.out_channels, kernel_size=1, bias=False),
+ ]
+ return nn.Sequential(*block)
def forward(self, x: Tensor) -> Tensor:
"""Apply the residual forward pass."""
- return x + self.block(x)
+ residual = self.conv_shortcut(x) if self.conv_shortcut is not None else x
+ return residual + self.block(x)