diff options
Diffstat (limited to 'text_recognizer/networks')
19 files changed, 0 insertions, 837 deletions
diff --git a/text_recognizer/networks/__init__.py b/text_recognizer/networks/__init__.py deleted file mode 100644 index f921882..0000000 --- a/text_recognizer/networks/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -"""Network modules""" -from text_recognizer.networks.conv_transformer import ConvTransformer diff --git a/text_recognizer/networks/conv_transformer.py b/text_recognizer/networks/conv_transformer.py deleted file mode 100644 index d36162a..0000000 --- a/text_recognizer/networks/conv_transformer.py +++ /dev/null @@ -1,49 +0,0 @@ -"""Base network module.""" -from typing import Type - -from torch import Tensor, nn - -from text_recognizer.networks.transformer.decoder import Decoder - - -class ConvTransformer(nn.Module): -    """Base transformer network.""" - -    def __init__( -        self, -        encoder: Type[nn.Module], -        decoder: Decoder, -    ) -> None: -        super().__init__() -        self.encoder = encoder -        self.decoder = decoder - -    def encode(self, img: Tensor) -> Tensor: -        """Encodes images to latent representation.""" -        return self.encoder(img) - -    def decode(self, tokens: Tensor, img_features: Tensor) -> Tensor: -        """Decodes latent images embedding into characters.""" -        return self.decoder(tokens, img_features) - -    def forward(self, img: Tensor, tokens: Tensor) -> Tensor: -        """Encodes images into token logtis. - -        Args: -            img (Tensor): Input image(s). -            tokens (Tensor): token embeddings. - -        Shapes: -            - img: :math: `(B, 1, H, W)` -            - tokens: :math: `(B, Sy)` -            - logits: :math: `(B, Sy, C)` - -            where B is the batch size, H is the image height, W is the image -            width, Sy the output length, and C is the number of classes. - -        Returns: -            Tensor: Sequence of logits. -        """ -        img_features = self.encode(img) -        logits = self.decode(tokens, img_features) -        return logits diff --git a/text_recognizer/networks/convnext/__init__.py b/text_recognizer/networks/convnext/__init__.py deleted file mode 100644 index faebe6f..0000000 --- a/text_recognizer/networks/convnext/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ -"""Convnext module.""" -from text_recognizer.networks.convnext.attention import ( -    Attention, -    FeedForward, -    TransformerBlock, -) -from text_recognizer.networks.convnext.convnext import ConvNext diff --git a/text_recognizer/networks/convnext/attention.py b/text_recognizer/networks/convnext/attention.py deleted file mode 100644 index 1334feb..0000000 --- a/text_recognizer/networks/convnext/attention.py +++ /dev/null @@ -1,79 +0,0 @@ -"""Convolution self attention block.""" - -import torch.nn.functional as F -from einops import rearrange -from torch import Tensor, einsum, nn - -from text_recognizer.networks.convnext.norm import LayerNorm -from text_recognizer.networks.convnext.residual import Residual - - -def l2norm(t: Tensor) -> Tensor: -    return F.normalize(t, dim=-1) - - -class FeedForward(nn.Module): -    def __init__(self, dim: int, mult: int = 4) -> None: -        super().__init__() -        inner_dim = int(dim * mult) -        self.fn = Residual( -            nn.Sequential( -                LayerNorm(dim), -                nn.Conv2d(dim, inner_dim, 1, bias=False), -                nn.GELU(), -                LayerNorm(inner_dim), -                nn.Conv2d(inner_dim, dim, 1, bias=False), -            ) -        ) - -    def forward(self, x: Tensor) -> Tensor: -        return self.fn(x) - - -class Attention(nn.Module): -    def __init__( -        self, dim: int, heads: int = 4, dim_head: int = 64, scale: int = 8 -    ) -> None: -        super().__init__() -        self.scale = scale -        self.heads = heads -        inner_dim = heads * dim_head -        self.norm = LayerNorm(dim) - -        self.to_qkv = nn.Conv2d(dim, inner_dim * 3, 1, bias=False) -        self.to_out = nn.Conv2d(inner_dim, dim, 1, bias=False) - -    def forward(self, x: Tensor) -> Tensor: -        h, w = x.shape[-2:] - -        residual = x.clone() - -        x = self.norm(x) - -        q, k, v = self.to_qkv(x).chunk(3, dim=1) -        q, k, v = map( -            lambda t: rearrange(t, "b (h c) ... -> b h (...) c", h=self.heads), -            (q, k, v), -        ) - -        q, k = map(l2norm, (q, k)) - -        sim = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale -        attn = sim.softmax(dim=-1) - -        out = einsum("b h i j, b h j d -> b h i d", attn, v) - -        out = rearrange(out, "b h (x y) d -> b (h d) x y", x=h, y=w) -        return self.to_out(out) + residual - - -class TransformerBlock(nn.Module): -    def __init__(self, attn: Attention, ff: FeedForward) -> None: -        super().__init__() -        self.attn = attn -        self.ff = ff - -    def forward(self, x: Tensor) -> Tensor: -        x = self.attn(x) -        x = self.ff(x) -        return x diff --git a/text_recognizer/networks/convnext/convnext.py b/text_recognizer/networks/convnext/convnext.py deleted file mode 100644 index 9419a15..0000000 --- a/text_recognizer/networks/convnext/convnext.py +++ /dev/null @@ -1,77 +0,0 @@ -"""ConvNext module.""" -from typing import Optional, Sequence - -from torch import Tensor, nn - -from text_recognizer.networks.convnext.attention import TransformerBlock -from text_recognizer.networks.convnext.downsample import Downsample -from text_recognizer.networks.convnext.norm import LayerNorm - - -class ConvNextBlock(nn.Module): -    """ConvNext block.""" - -    def __init__(self, dim: int, dim_out: int, mult: int) -> None: -        super().__init__() -        self.ds_conv = nn.Conv2d( -            dim, dim, kernel_size=(7, 7), padding="same", groups=dim -        ) -        self.net = nn.Sequential( -            LayerNorm(dim), -            nn.Conv2d(dim, dim_out * mult, kernel_size=(3, 3), padding="same"), -            nn.GELU(), -            nn.Conv2d(dim_out * mult, dim_out, kernel_size=(3, 3), padding="same"), -        ) -        self.res_conv = nn.Conv2d(dim, dim_out, 1) if dim != dim_out else nn.Identity() - -    def forward(self, x: Tensor) -> Tensor: -        h = self.ds_conv(x) -        h = self.net(h) -        return h + self.res_conv(x) - - -class ConvNext(nn.Module): -    def __init__( -        self, -        dim: int = 16, -        dim_mults: Sequence[int] = (2, 4, 8), -        depths: Sequence[int] = (3, 3, 6), -        downsampling_factors: Sequence[Sequence[int]] = ((2, 2), (2, 2), (2, 2)), -        attn: Optional[TransformerBlock] = None, -    ) -> None: -        super().__init__() -        dims = (dim, *map(lambda m: m * dim, dim_mults)) -        self.attn = attn if attn is not None else nn.Identity() -        self.out_channels = dims[-1] -        self.stem = nn.Conv2d(1, dims[0], kernel_size=7, padding="same") -        self.layers = nn.ModuleList([]) - -        for i in range(len(dims) - 1): -            dim_in, dim_out = dims[i], dims[i + 1] -            self.layers.append( -                nn.ModuleList( -                    [ -                        ConvNextBlock(dim_in, dim_in, 2), -                        nn.ModuleList( -                            [ConvNextBlock(dim_in, dim_in, 2) for _ in range(depths[i])] -                        ), -                        Downsample(dim_in, dim_out, downsampling_factors[i]), -                    ] -                ) -            ) -        self.norm = LayerNorm(dims[-1]) - -    def _init_weights(self, m): -        if isinstance(m, (nn.Conv2d, nn.Linear)): -            nn.init.trunc_normal_(m.weight, std=0.02) -            nn.init.constant_(m.bias, 0) - -    def forward(self, x: Tensor) -> Tensor: -        x = self.stem(x) -        for init_block, blocks, down in self.layers: -            x = init_block(x) -            for fn in blocks: -                x = fn(x) -            x = down(x) -        x = self.attn(x) -        return self.norm(x) diff --git a/text_recognizer/networks/convnext/downsample.py b/text_recognizer/networks/convnext/downsample.py deleted file mode 100644 index a8a0466..0000000 --- a/text_recognizer/networks/convnext/downsample.py +++ /dev/null @@ -1,21 +0,0 @@ -"""Convnext downsample module.""" -from typing import Tuple - -from einops.layers.torch import Rearrange -from torch import Tensor, nn - - -class Downsample(nn.Module): -    """Downsamples feature maps by patches.""" - -    def __init__(self, dim: int, dim_out: int, factors: Tuple[int, int]) -> None: -        super().__init__() -        s1, s2 = factors -        self.fn = nn.Sequential( -            Rearrange("b c (h s1) (w s2) -> b (c s1 s2) h w", s1=s1, s2=s2), -            nn.Conv2d(dim * s1 * s2, dim_out, 1), -        ) - -    def forward(self, x: Tensor) -> Tensor: -        """Applies patch function.""" -        return self.fn(x) diff --git a/text_recognizer/networks/convnext/norm.py b/text_recognizer/networks/convnext/norm.py deleted file mode 100644 index 3355de9..0000000 --- a/text_recognizer/networks/convnext/norm.py +++ /dev/null @@ -1,18 +0,0 @@ -"""Layer norm for conv layers.""" -import torch -from torch import Tensor, nn - - -class LayerNorm(nn.Module): -    """Layer norm for convolutions.""" - -    def __init__(self, dim: int) -> None: -        super().__init__() -        self.gamma = nn.Parameter(torch.ones(1, dim, 1, 1)) - -    def forward(self, x: Tensor) -> Tensor: -        """Applies layer norm.""" -        eps = 1e-5 if x.dtype == torch.float32 else 1e-3 -        var = torch.var(x, dim=1, unbiased=False, keepdim=True) -        mean = torch.mean(x, dim=1, keepdim=True) -        return (x - mean) / (var + eps).sqrt() * self.gamma diff --git a/text_recognizer/networks/convnext/residual.py b/text_recognizer/networks/convnext/residual.py deleted file mode 100644 index dfc2847..0000000 --- a/text_recognizer/networks/convnext/residual.py +++ /dev/null @@ -1,16 +0,0 @@ -"""Generic residual layer.""" -from typing import Callable - -from torch import Tensor, nn - - -class Residual(nn.Module): -    """Residual layer.""" - -    def __init__(self, fn: Callable) -> None: -        super().__init__() -        self.fn = fn - -    def forward(self, x: Tensor) -> Tensor: -        """Applies residual fn.""" -        return self.fn(x) + x diff --git a/text_recognizer/networks/image_encoder.py b/text_recognizer/networks/image_encoder.py deleted file mode 100644 index ab60560..0000000 --- a/text_recognizer/networks/image_encoder.py +++ /dev/null @@ -1,45 +0,0 @@ -"""Encodes images to latent embeddings.""" -from typing import Tuple, Type - -from torch import Tensor, nn - -from text_recognizer.networks.transformer.embeddings.axial import ( -    AxialPositionalEmbeddingImage, -) - - -class ImageEncoder(nn.Module): -    """Encodes images to latent embeddings.""" - -    def __init__( -        self, -        encoder: Type[nn.Module], -        pixel_embedding: AxialPositionalEmbeddingImage, -    ) -> None: -        super().__init__() -        self.encoder = encoder -        self.pixel_embedding = pixel_embedding - -    def forward(self, img: Tensor) -> Tensor: -        """Encodes an image into a latent feature vector. - -        Args: -            img (Tensor): Image tensor. - -        Shape: -            - x: :math: `(B, C, H, W)` -            - z: :math: `(B, Sx, D)` - -            where Sx is the length of the flattened feature maps projected from -            the encoder. D latent dimension for each pixel in the projected -            feature maps. - -        Returns: -            Tensor: A Latent embedding of the image. -        """ -        z = self.encoder(img) -        z = z + self.pixel_embedding(z) -        z = z.flatten(start_dim=2) -        # Permute tensor from [B, E, Ho * Wo] to [B, Sx, E] -        z = z.permute(0, 2, 1) -        return z diff --git a/text_recognizer/networks/text_decoder.py b/text_recognizer/networks/text_decoder.py deleted file mode 100644 index 500bcf9..0000000 --- a/text_recognizer/networks/text_decoder.py +++ /dev/null @@ -1,55 +0,0 @@ -"""Text decoder.""" -import torch -from torch import Tensor, nn - -from text_recognizer.networks.transformer.decoder import Decoder - - -class TextDecoder(nn.Module): -    """Decodes images to token logits.""" - -    def __init__( -        self, -        dim: int, -        num_classes: int, -        pad_index: Tensor, -        decoder: Decoder, -    ) -> None: -        super().__init__() -        self.dim = dim -        self.num_classes = num_classes -        self.pad_index = pad_index -        self.decoder = decoder -        self.token_embedding = nn.Embedding( -            num_embeddings=self.num_classes, embedding_dim=self.dim -        ) -        self.to_logits = nn.Linear(in_features=self.dim, out_features=self.num_classes) - -    def forward(self, tokens: Tensor, img_features: Tensor) -> Tensor: -        """Decodes latent images embedding into logit tokens. - -        Args: -            tokens (Tensor): Token indecies. -            img_features (Tensor): Latent images embedding. - -        Shapes: -            - tokens: :math: `(B, Sy)` -            - img_features: :math: `(B, Sx, D)` -            - logits: :math: `(B, Sy, C)` - -            where Sy is the length of the output, C is the number of classes -            and D is the hidden dimension. - -        Returns: -            Tensor: Sequence of logits. -        """ -        tokens = tokens.long() -        mask = tokens != self.pad_index -        tokens = self.token_embedding(tokens) -        tokens = self.decoder(x=tokens, context=img_features, mask=mask) -        logits = ( -            tokens @ torch.transpose(self.token_embedding.weight.to(tokens.dtype), 0, 1) -        ).float() -        logits = self.to_logits(tokens)  # [B, Sy, C] -        logits = logits.permute(0, 2, 1)  # [B, C, Sy] -        return logits diff --git a/text_recognizer/networks/transformer/__init__.py b/text_recognizer/networks/transformer/__init__.py deleted file mode 100644 index 0d17deb..0000000 --- a/text_recognizer/networks/transformer/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -"""Transformer modules.""" -from text_recognizer.networks.transformer.attention import Attention -from text_recognizer.networks.transformer.decoder import Decoder, DecoderBlock -from text_recognizer.networks.transformer.embeddings.rotary import RotaryEmbedding -from text_recognizer.networks.transformer.ff import FeedForward -from text_recognizer.networks.transformer.norm import RMSNorm diff --git a/text_recognizer/networks/transformer/attention.py b/text_recognizer/networks/transformer/attention.py deleted file mode 100644 index 85f513e..0000000 --- a/text_recognizer/networks/transformer/attention.py +++ /dev/null @@ -1,109 +0,0 @@ -"""Implementes the attention module for the transformer.""" -from typing import Optional - -import torch -import torch.nn.functional as F -from einops import rearrange -from torch import Tensor, einsum, nn - -from text_recognizer.networks.transformer.embeddings.rotary import ( -    RotaryEmbedding, -) - - -class Attention(nn.Module): -    """Standard attention.""" - -    def __init__( -        self, -        dim: int, -        num_heads: int, -        causal: bool = False, -        dim_head: int = 64, -        dropout_rate: float = 0.0, -    ) -> None: -        super().__init__() -        self.dim = dim -        self.scale = self.dim**-0.5 -        self.num_heads = num_heads -        self.dim_head = dim_head - -        self.causal = causal -        self.dropout_rate = dropout_rate - -        # Single key/value head -        k_dim = dim_head -        v_dim = dim_head - -        out_dim = self.num_heads * self.dim_head - -        self.to_q = nn.Linear(self.dim, out_dim, bias=False) -        self.to_k = nn.Linear(self.dim, k_dim, bias=False) -        self.to_v = nn.Linear(self.dim, v_dim, bias=False) - -        self.dropout = nn.Dropout(p=self.dropout_rate) - -        # Feedforward -        self.fc = nn.Linear(out_dim, self.dim) - -    def forward( -        self, -        x: Tensor, -        context: Optional[Tensor] = None, -        mask: Optional[Tensor] = None, -        rotary_embedding: Optional[RotaryEmbedding] = None, -    ) -> Tensor: -        """Computes the attention.""" -        b, device = x.shape[0], x.device - -        q = self.to_q(x) -        q = rearrange(q, "b n (h d) -> b h n d", h=self.num_heads) -        k = self.to_k(context) if context is not None else self.to_k(x) -        v = self.to_v(context) if context is not None else self.to_v(x) - -        if rotary_embedding is not None: -            q, k, v = map(lambda t: rotary_embedding.rotate(t), (q, k, v)) - -        energy = einsum("b h i d, b j d -> b h i j", q, k) * self.scale -        mask_value = -torch.finfo(energy.dtype).max -        energy = apply_input_mask(b, k, energy, mask, mask_value, device) -        if self.causal: -            energy = apply_causal_mask(energy, mask, mask_value, device) - -        attn = F.softmax(energy, dim=-1) -        attn = self.dropout(attn) -        out = einsum("b h i j, b j d -> b h i d", attn, v) -        out = rearrange(out, "b h n d -> b n (h d)") -        out = self.fc(out) -        return out - - -def apply_input_mask( -    b: int, -    k: Tensor, -    energy: Tensor, -    mask: Optional[Tensor], -    mask_value: Tensor, -    device: str, -) -> Tensor: -    """Applies an input mask.""" -    if mask is not None: -        k_mask = torch.ones((b, k.shape[-2]), device=device).bool() -        q_mask = rearrange(mask, "b i -> b () i ()") -        k_mask = rearrange(k_mask, "b j -> b () () j") -        input_mask = q_mask * k_mask - -        energy = energy.masked_fill_(~input_mask, mask_value) -    return energy - - -def apply_causal_mask( -    energy: Tensor, mask: Tensor, mask_value: Tensor, device: str -) -> Tensor: -    """Applies a causal mask to the energy tensor.""" -    i, j = energy.shape[-2:] -    r = torch.arange(i, device=device) -    mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j") -    mask = F.pad(mask, (j - i, 0), value=False) -    energy.masked_fill_(mask, mask_value) -    return energy diff --git a/text_recognizer/networks/transformer/decoder.py b/text_recognizer/networks/transformer/decoder.py deleted file mode 100644 index 826bc13..0000000 --- a/text_recognizer/networks/transformer/decoder.py +++ /dev/null @@ -1,41 +0,0 @@ -"""Transformer decoder module.""" -from copy import deepcopy -from typing import Optional - -from torch import Tensor, nn - -from text_recognizer.networks.transformer.decoder_block import DecoderBlock -from text_recognizer.networks.transformer.embeddings.rotary import RotaryEmbedding - - -class Decoder(nn.Module): -    """Decoder Network.""" - -    def __init__( -        self, -        depth: int, -        dim: int, -        block: DecoderBlock, -        rotary_embedding: RotaryEmbedding, -    ) -> None: -        super().__init__() -        self.depth = depth -        self.rotary_embedding = rotary_embedding -        self.blocks = nn.ModuleList([deepcopy(block) for _ in range(self.depth)]) -        self.ln = nn.LayerNorm(dim) - -    def forward( -        self, -        x: Tensor, -        context: Optional[Tensor] = None, -        mask: Optional[Tensor] = None, -    ) -> Tensor: -        """Applies attention blocks.""" -        for block in self.blocks: -            x = block( -                x=x, -                context=context, -                mask=mask, -                rotary_embedding=self.rotary_embedding, -            ) -        return self.ln(x) diff --git a/text_recognizer/networks/transformer/decoder_block.py b/text_recognizer/networks/transformer/decoder_block.py deleted file mode 100644 index b8eb5c4..0000000 --- a/text_recognizer/networks/transformer/decoder_block.py +++ /dev/null @@ -1,44 +0,0 @@ -"""Transformer decoder module.""" -from copy import deepcopy -from typing import Optional, Type - -from torch import Tensor, nn - -from text_recognizer.networks.transformer.attention import Attention -from text_recognizer.networks.transformer.embeddings.rotary import RotaryEmbedding -from text_recognizer.networks.transformer.ff import FeedForward - - -class DecoderBlock(nn.Module): -    """Residual decoder block.""" - -    def __init__( -        self, -        self_attn: Attention, -        norm: Type[nn.Module], -        ff: FeedForward, -        cross_attn: Optional[Attention] = None, -    ) -> None: -        super().__init__() -        self.ln_attn = norm -        self.attn = self_attn -        self.ln_cross_attn = deepcopy(norm) -        self.cross_attn = cross_attn -        self.ln_ff = deepcopy(norm) -        self.ff = ff - -    def forward( -        self, -        x: Tensor, -        rotary_embedding: RotaryEmbedding, -        context: Optional[Tensor] = None, -        mask: Optional[Tensor] = None, -    ) -> Tensor: -        """Applies decoder block on input signals.""" -        x = x + self.attn(self.ln_attn(x), mask=mask, rotary_embedding=rotary_embedding) -        x = x + self.cross_attn( -            x=self.ln_cross_attn(x), -            context=context, -        ) -        x = x + self.ff(self.ln_ff(x)) -        return x diff --git a/text_recognizer/networks/transformer/embeddings/__init__.py b/text_recognizer/networks/transformer/embeddings/__init__.py deleted file mode 100644 index bb3f904..0000000 --- a/text_recognizer/networks/transformer/embeddings/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Positional encodings for transformers.""" diff --git a/text_recognizer/networks/transformer/embeddings/axial.py b/text_recognizer/networks/transformer/embeddings/axial.py deleted file mode 100644 index 9b872a9..0000000 --- a/text_recognizer/networks/transformer/embeddings/axial.py +++ /dev/null @@ -1,104 +0,0 @@ -"""Axial attention for multi-dimensional data. - -Stolen from: -    https://github.com/lucidrains/axial-attention/blob/ -    eff2c10c2e76c735a70a6b995b571213adffbbb7/axial_attention/axial_attention.py#L100 -""" -from functools import reduce -from operator import mul -from typing import Optional, Sequence - -import torch -from torch import Tensor, nn - - -class AxialPositionalEmbedding(nn.Module): -    def __init__( -        self, -        dim: int, -        axial_shape: Sequence[int], -        axial_dims: Optional[Sequence[int]] = None, -    ) -> None: -        super().__init__() - -        self.dim = dim -        self.shape = axial_shape -        self.max_seq_len = reduce(mul, axial_shape, 1) - -        self.summed = axial_dims is None -        axial_dims = ((dim,) * len(axial_shape)) if self.summed else axial_dims - -        assert len(self.shape) == len( -            axial_dims -        ), "number of axial dimensions must equal the number of dimensions in the shape" -        assert ( -            self.summed or not self.summed and sum(axial_dims) == dim -        ), f"axial dimensions must sum up to the target dimension {dim}" - -        self.weights = ParameterList(self, "weights", len(axial_shape)) - -        for ind, (shape, axial_dim) in enumerate(zip(self.shape, axial_dims)): -            ax_shape = [1] * len(self.shape) -            ax_shape[ind] = shape -            ax_shape = (1, *ax_shape, axial_dim) -            ax_emb = nn.Parameter(torch.zeros(ax_shape).normal_(0, 1)) -            self.weights.append(ax_emb) - -    def forward(self, x: Tensor) -> Tensor: -        """Returns axial positional embedding.""" -        b, t, _ = x.shape -        assert ( -            t <= self.max_seq_len -        ), f"Sequence length ({t}) must be less than the maximum sequence length allowed ({self.max_seq_len})" -        embs = [] - -        for ax_emb in self.weights.to_list(): -            axial_dim = ax_emb.shape[-1] -            expand_shape = (b, *self.shape, axial_dim) -            emb = ax_emb.expand(expand_shape).reshape(b, self.max_seq_len, axial_dim) -            embs.append(emb) - -        pos_emb = sum(embs) if self.summed else torch.cat(embs, dim=-1) -        return pos_emb[:, :t].to(x) - - -# a mock parameter list object until below issue is resolved -# https://github.com/pytorch/pytorch/issues/36035 -class ParameterList(object): -    def __init__(self, kls, prefix, length): -        self.ind = 0 -        self.kls = kls -        self.prefix = prefix -        self.length = length - -    def _keyname(self, prefix, ind): -        return f"{prefix}_{ind}" - -    def append(self, x): -        setattr(self.kls, self._keyname(self.prefix, self.ind), x) -        self.ind += 1 - -    def to_list(self): -        return [ -            getattr(self.kls, self._keyname(self.prefix, i)) for i in range(self.length) -        ] - - -class AxialPositionalEmbeddingImage(nn.Module): -    def __init__( -        self, -        dim: int, -        axial_shape: Sequence[int], -        axial_dims: Optional[Sequence[int]] = None, -    ) -> None: -        super().__init__() -        axial_dims = (dim // 2, dim // 2) if axial_dims is None else axial_dims -        assert len(axial_shape) == 2, "Axial shape must have 2 dimensions for images" -        self.dim = dim -        self.pos_emb = AxialPositionalEmbedding(dim, axial_shape, axial_dims) - -    def forward(self, img): -        b, c, h, w = img.shape -        img = img.permute(0, 2, 3, 1).reshape(b, h * w, c) -        pos_emb = self.pos_emb(img) -        return pos_emb.reshape(b, h, w, self.dim).permute(0, 3, 1, 2) diff --git a/text_recognizer/networks/transformer/embeddings/rotary.py b/text_recognizer/networks/transformer/embeddings/rotary.py deleted file mode 100644 index ca0a260..0000000 --- a/text_recognizer/networks/transformer/embeddings/rotary.py +++ /dev/null @@ -1,67 +0,0 @@ -"""Roatary embedding. - -Stolen from lucidrains: -    https://github.com/lucidrains/rotary-embedding-torch - -Explanation of roatary: -    https://blog.eleuther.ai/rotary-embeddings/ -""" -from inspect import isfunction - -from einops import rearrange, repeat -import torch -from torch import Tensor, nn - - -class RotaryEmbedding(nn.Module): -    """Rotary positional embedding.""" - -    def __init__(self, dim: int) -> None: -        super().__init__() -        inv_freqs = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) -        self.register_buffer("inv_freqs", inv_freqs) -        self.cache = {} - -    def rotate(self, t: Tensor, dim: int = -2) -> Tensor: -        """Rotate vector.""" -        device, n = t.device, t.shape[dim] -        freqs = self.forward(lambda: torch.arange(n, device=device), cache_key=n) -        return apply_rotary_emb(t, freqs) - -    def forward(self, t: Tensor, cache_key: int) -> Tensor: -        """Encodes tensor x with rotary embeddings.""" -        if cache_key in self.cache: -            return self.cache[cache_key] - -        if isfunction(t): -            t = t() - -        freqs = self.inv_freqs -        freqs = torch.einsum("..., f -> ... f", t.type(freqs.dtype), freqs) -        freqs = repeat(freqs, "... n -> ... (n r)", r=2) -        self.cache[cache_key] = freqs -        return freqs - - -def rotate_half(x: Tensor) -> Tensor: -    x = rearrange(x, "... (d r) -> ... d r", r=2) -    x1, x2 = x.unbind(dim=-1) -    x = torch.stack((-x2, x1), dim=-1) -    return rearrange(x, "... d r -> ... (d r)") - - -def apply_rotary_emb(t: Tensor, freqs: Tensor, start_index: int = 0) -> Tensor: -    freqs = freqs.to(t) -    rot_dim = freqs.shape[-1] -    end_index = start_index + rot_dim -    assert rot_dim <= t.shape[-1], ( -        f"feature dimension {t.shape[-1]} is not of sufficient size to rotate" -        f"in all the positions {rot_dim}" -    ) -    t_left, t, t_right = ( -        t[..., :start_index], -        t[..., start_index:end_index], -        t[..., end_index:], -    ) -    t = (t * freqs.cos()) + (rotate_half(t) * freqs.sin()) -    return torch.cat((t_left, t, t_right), dim=-1) diff --git a/text_recognizer/networks/transformer/ff.py b/text_recognizer/networks/transformer/ff.py deleted file mode 100644 index 3ccf5b5..0000000 --- a/text_recognizer/networks/transformer/ff.py +++ /dev/null @@ -1,45 +0,0 @@ -"""Feedforward layer in transformer. - -Stolen from lucidrains: -    https://github.com/lucidrains/x-transformers/blob/main/x_transformers/x_transformers.py -""" -from typing import Optional - -import torch.nn.functional as F -from torch import Tensor, nn - - -class GEGLU(nn.Module): -    def __init__(self, dim_in: int, dim_out: int) -> None: -        super().__init__() -        self.fc = nn.Linear(dim_in, dim_out * 2) - -    def forward(self, x: Tensor) -> Tensor: -        x, gate = self.fc(x).chunk(2, dim=-1) -        return x * F.gelu(gate) - - -class FeedForward(nn.Module): -    def __init__( -        self, -        dim: int, -        dim_out: Optional[int] = None, -        expansion_factor: int = 4, -        glu: bool = True, -        dropout_rate: float = 0.0, -    ) -> None: -        super().__init__() -        inner_dim = dim * expansion_factor -        dim_out = dim_out if dim_out is not None else dim -        in_projection = ( -            nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) -            if not glu -            else GEGLU(dim, inner_dim) -        ) - -        self.mlp = nn.Sequential( -            in_projection, nn.Dropout(dropout_rate), nn.Linear(inner_dim, dim_out) -        ) - -    def forward(self, x: Tensor) -> Tensor: -        return self.mlp(x) diff --git a/text_recognizer/networks/transformer/norm.py b/text_recognizer/networks/transformer/norm.py deleted file mode 100644 index 1431327..0000000 --- a/text_recognizer/networks/transformer/norm.py +++ /dev/null @@ -1,51 +0,0 @@ -"""Normalization layers for transfromers. - -Copied from lucidrains: -    https://github.com/lucidrains/x-transformers/blob/main/x_transformers/x_transformers.py - -""" -from typing import Optional, Type - -import torch -from torch import Tensor, nn - - -class RMSNorm(nn.Module): -    """Root mean square layer normalization.""" - -    def __init__(self, dim: int, eps: float = 1e-8) -> None: -        super().__init__() -        self.scale = dim**-0.5 -        self.eps = eps -        self.g = nn.Parameter(torch.ones(dim)) - -    def forward(self, x: Tensor) -> Tensor: -        """Applies normalization.""" -        norm = torch.norm(x, dim=-1, keepdim=True) * self.scale -        return x / norm.clamp(min=self.eps) * self.g - - -class PreNorm(nn.Module): -    """Applies layer normalization then function.""" - -    def __init__( -        self, -        normalized_shape: int, -        fn: Type[nn.Module], -        context_dim: Optional[int] = None, -    ) -> None: -        super().__init__() -        self.norm = nn.LayerNorm(normalized_shape) -        self.fn = fn -        self.norm_context = ( -            nn.LayerNorm(context_dim) if context_dim is not None else None -        ) - -    def forward(self, x: Tensor, **kwargs) -> Tensor: -        """Applies pre norm.""" -        x = self.norm(x) -        if self.norm_context is not None: -            context = kwargs["context"] -            normed_context = self.norm_context(context) -            kwargs.update(context=normed_context) -        return self.fn(x, **kwargs)  |