diff options
Diffstat (limited to 'text_recognizer/networks')
-rw-r--r-- | text_recognizer/networks/vqvae/pixelcnn.py | 161 |
1 files changed, 0 insertions, 161 deletions
diff --git a/text_recognizer/networks/vqvae/pixelcnn.py b/text_recognizer/networks/vqvae/pixelcnn.py deleted file mode 100644 index b9e6080..0000000 --- a/text_recognizer/networks/vqvae/pixelcnn.py +++ /dev/null @@ -1,161 +0,0 @@ -"""PixelCNN encoder and decoder. - -Same as in VQGAN among other. Hopefully, better reconstructions... - -TODO: Add num of residual layers. -""" -from typing import Sequence - -from torch import nn -from torch import Tensor - -from text_recognizer.networks.vqvae.attention import Attention -from text_recognizer.networks.vqvae.norm import Normalize -from text_recognizer.networks.vqvae.residual import Residual -from text_recognizer.networks.vqvae.resize import Downsample, Upsample - - -class Encoder(nn.Module): - """PixelCNN encoder.""" - - def __init__( - self, - in_channels: int, - hidden_dim: int, - channels_multipliers: Sequence[int], - dropout_rate: float, - ) -> None: - super().__init__() - self.in_channels = in_channels - self.dropout_rate = dropout_rate - self.hidden_dim = hidden_dim - self.channels_multipliers = tuple(channels_multipliers) - self.encoder = self._build_encoder() - - def _build_encoder(self) -> nn.Sequential: - """Builds encoder.""" - encoder = [ - nn.Conv2d( - in_channels=self.in_channels, - out_channels=self.hidden_dim, - kernel_size=3, - stride=1, - padding=1, - ), - ] - num_blocks = len(self.channels_multipliers) - in_channels_multipliers = (1,) + self.channels_multipliers - for i in range(num_blocks): - in_channels = self.hidden_dim * in_channels_multipliers[i] - out_channels = self.hidden_dim * self.channels_multipliers[i] - encoder += [ - Residual( - in_channels=in_channels, - out_channels=out_channels, - dropout_rate=self.dropout_rate, - use_norm=True, - ), - ] - if i == num_blocks - 1: - encoder.append(Attention(in_channels=out_channels)) - encoder.append(Downsample()) - - for _ in range(2): - encoder += [ - Residual( - in_channels=self.hidden_dim * self.channels_multipliers[-1], - out_channels=self.hidden_dim * self.channels_multipliers[-1], - dropout_rate=self.dropout_rate, - use_norm=True, - ), - Attention(in_channels=self.hidden_dim * self.channels_multipliers[-1]), - ] - - encoder += [ - Normalize(num_channels=self.hidden_dim * self.channels_multipliers[-1]), - nn.Mish(), - nn.Conv2d( - in_channels=self.hidden_dim * self.channels_multipliers[-1], - out_channels=self.hidden_dim * self.channels_multipliers[-1], - kernel_size=3, - stride=1, - padding=1, - ), - ] - return nn.Sequential(*encoder) - - def forward(self, x: Tensor) -> Tensor: - """Encodes input to a latent representation.""" - return self.encoder(x) - - -class Decoder(nn.Module): - """PixelCNN decoder.""" - - def __init__( - self, - hidden_dim: int, - channels_multipliers: Sequence[int], - out_channels: int, - dropout_rate: float, - ) -> None: - super().__init__() - self.hidden_dim = hidden_dim - self.out_channels = out_channels - self.channels_multipliers = tuple(channels_multipliers) - self.dropout_rate = dropout_rate - self.decoder = self._build_decoder() - - def _build_decoder(self) -> nn.Sequential: - """Builds decoder.""" - in_channels = self.hidden_dim * self.channels_multipliers[0] - decoder = [ - Residual( - in_channels=in_channels, - out_channels=in_channels, - dropout_rate=self.dropout_rate, - use_norm=True, - ), - Attention(in_channels=in_channels), - Residual( - in_channels=in_channels, - out_channels=in_channels, - dropout_rate=self.dropout_rate, - use_norm=True, - ), - ] - - out_channels_multipliers = self.channels_multipliers + (1,) - num_blocks = len(self.channels_multipliers) - - for i in range(num_blocks): - in_channels = self.hidden_dim * self.channels_multipliers[i] - out_channels = self.hidden_dim * out_channels_multipliers[i + 1] - decoder.append( - Residual( - in_channels=in_channels, - out_channels=out_channels, - dropout_rate=self.dropout_rate, - use_norm=True, - ) - ) - if i == 0: - decoder.append(Attention(in_channels=out_channels)) - decoder.append(Upsample()) - - decoder += [ - Normalize(num_channels=self.hidden_dim * out_channels_multipliers[-1]), - nn.Mish(), - nn.Conv2d( - in_channels=self.hidden_dim * out_channels_multipliers[-1], - out_channels=self.out_channels, - kernel_size=3, - stride=1, - padding=1, - ), - ] - return nn.Sequential(*decoder) - - def forward(self, x: Tensor) -> Tensor: - """Decodes latent vector.""" - return self.decoder(x) |