diff options
Diffstat (limited to 'text_recognizer/training/run_experiment.py')
-rw-r--r-- | text_recognizer/training/run_experiment.py | 201 |
1 files changed, 201 insertions, 0 deletions
diff --git a/text_recognizer/training/run_experiment.py b/text_recognizer/training/run_experiment.py new file mode 100644 index 0000000..ed1a947 --- /dev/null +++ b/text_recognizer/training/run_experiment.py @@ -0,0 +1,201 @@ +"""Script to run experiments.""" +from datetime import datetime +import importlib +from pathlib import Path +from typing import Dict, List, Optional, Type + +import click +from loguru import logger +from omegaconf import DictConfig, OmegaConf +import pytorch_lightning as pl +import torch +from torch import nn +from torchsummary import summary +from tqdm import tqdm +import wandb + + +SEED = 4711 +EXPERIMENTS_DIRNAME = Path(__file__).parents[0].resolve() / "experiments" + + +def _configure_logging(log_dir: Optional[Path], verbose: int = 0) -> None: + """Configure the loguru logger for output to terminal and disk.""" + + def _get_level(verbose: int) -> str: + """Sets the logger level.""" + levels = {0: "WARNING", 1: "INFO", 2: "DEBUG"} + verbose = min(verbose, 2) + return levels[verbose] + + # Remove default logger to get tqdm to work properly. + logger.remove() + + # Fetch verbosity level. + level = _get_level(verbose) + + logger.add(lambda msg: tqdm.write(msg, end=""), colorize=True, level=level) + if log_dir is not None: + logger.add( + str(log_dir / "train.log"), + format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}", + ) + + +def _load_config(file_path: Path) -> DictConfig: + """Return experiment config.""" + logger.info(f"Loading config from: {file_path}") + if not file_path.exists(): + raise FileNotFoundError(f"Experiment config not found at: {file_path}") + return OmegaConf.load(file_path) + + +def _import_class(module_and_class_name: str) -> type: + """Import class from module.""" + module_name, class_name = module_and_class_name.rsplit(".", 1) + module = importlib.import_module(module_name) + return getattr(module, class_name) + + +def _configure_callbacks( + callbacks: List[DictConfig], +) -> List[Type[pl.callbacks.Callback]]: + """Configures lightning callbacks.""" + pl_callbacks = [ + getattr(pl.callbacks, callback.type)(**callback.args) for callback in callbacks + ] + return pl_callbacks + + +def _configure_logger( + network: Type[nn.Module], args: Dict, use_wandb: bool +) -> Type[pl.loggers.LightningLoggerBase]: + """Configures lightning logger.""" + if use_wandb: + pl_logger = pl.loggers.WandbLogger() + pl_logger.watch(network) + pl_logger.log_hyperparams(vars(args)) + return pl_logger + return pl.logger.TensorBoardLogger("training/logs") + + +def _save_best_weights( + callbacks: List[Type[pl.callbacks.Callback]], use_wandb: bool +) -> None: + """Saves the best model.""" + model_checkpoint_callback = next( + callback + for callback in callbacks + if isinstance(callback, pl.callbacks.ModelCheckpoint) + ) + best_model_path = model_checkpoint_callback.best_model_path + if best_model_path: + logger.info(f"Best model saved at: {best_model_path}") + if use_wandb: + logger.info("Uploading model to W&B...") + wandb.save(best_model_path) + + +def _load_lit_model( + lit_model_class: type, network: Type[nn.Module], config: DictConfig +) -> Type[pl.LightningModule]: + """Load lightning model.""" + if config.load_checkpoint is not None: + logger.info( + f"Loading network weights from checkpoint: {config.load_checkpoint}" + ) + return lit_model_class.load_from_checkpoint( + config.load_checkpoint, network=network, **config.model.args + ) + return lit_model_class(network=network, **config.model.args) + + +def run( + filename: str, + train: bool, + test: bool, + tune: bool, + use_wandb: bool, + verbose: int = 0, +) -> None: + """Runs experiment.""" + + _configure_logging(None, verbose=verbose) + logger.info("Starting experiment...") + + # Seed everything in the experiment. + logger.info(f"Seeding everthing with seed={SEED}") + pl.utilities.seed.seed_everything(SEED) + + # Load config. + file_path = EXPERIMENTS_DIRNAME / filename + config = _load_config(file_path) + + # Load classes. + data_module_class = _import_class(f"text_recognizer.data.{config.data.type}") + network_class = _import_class(f"text_recognizer.networks.{config.network.type}") + lit_model_class = _import_class(f"text_recognizer.models.{config.model.type}") + + # Initialize data object and network. + data_module = data_module_class(**config.data.args) + network = network_class(**data_module.config(), **config.network.args) + + # Load callback and logger. + callbacks = _configure_callbacks(config.callbacks) + pl_logger = _configure_logger(network, config, use_wandb) + + # Load ligtning model. + lit_model = _load_lit_model(lit_model_class, network, config) + + trainer = pl.Trainer( + **config.trainer.args, + callbacks=callbacks, + logger=pl_logger, + weigths_save_path="training/logs", + ) + + if tune: + logger.info(f"Tuning learning rate and batch size...") + trainer.tune(lit_model, datamodule=data_module) + + if train: + logger.info(f"Training network...") + trainer.fit(lit_model, datamodule=data_module) + + if test: + logger.info(f"Testing network...") + trainer.test(lit_model, datamodule=data_module) + + _save_best_weights(callbacks, use_wandb) + + +@click.command() +@click.option("-f", "--experiment_config", type=str, help="Path to experiment config.") +@click.option("--use_wandb", is_flag=True, help="If true, do use wandb for logging.") +@click.option( + "--tune", is_flag=True, help="If true, tune hyperparameters for training." +) +@click.option("--train", is_flag=True, help="If true, train the model.") +@click.option("--test", is_flag=True, help="If true, test the model.") +@click.option("-v", "--verbose", count=True) +def cli( + experiment_config: str, + use_wandb: bool, + tune: bool, + train: bool, + test: bool, + verbose: int, +) -> None: + """Run experiment.""" + run( + filename=experiment_config, + train=train, + test=test, + tune=tune, + use_wandb=use_wandb, + verbose=verbose, + ) + + +if __name__ == "__main__": + cli() |