summaryrefslogtreecommitdiff
path: root/text_recognizer
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer')
-rw-r--r--text_recognizer/models/base.py9
-rw-r--r--text_recognizer/models/metrics.py36
-rw-r--r--text_recognizer/models/metrics/__init__.py0
-rw-r--r--text_recognizer/models/metrics/cer.py23
-rw-r--r--text_recognizer/models/metrics/wer.py23
-rw-r--r--text_recognizer/models/transformer.py28
6 files changed, 71 insertions, 48 deletions
diff --git a/text_recognizer/models/base.py b/text_recognizer/models/base.py
index f917635..bb4e695 100644
--- a/text_recognizer/models/base.py
+++ b/text_recognizer/models/base.py
@@ -6,7 +6,7 @@ import torch
from loguru import logger as log
from omegaconf import DictConfig
from pytorch_lightning import LightningModule
-from torch import Tensor, nn
+from torch import nn, Tensor
from torchmetrics import Accuracy
from text_recognizer.data.mappings import EmnistMapping
@@ -22,6 +22,7 @@ class LitBase(LightningModule):
optimizer_config: DictConfig,
lr_scheduler_config: Optional[DictConfig],
mapping: EmnistMapping,
+ ignore_index: Optional[int] = None,
) -> None:
super().__init__()
@@ -32,9 +33,9 @@ class LitBase(LightningModule):
self.mapping = mapping
# Placeholders
- self.train_acc = Accuracy(mdmc_reduce="samplewise")
- self.val_acc = Accuracy(mdmc_reduce="samplewise")
- self.test_acc = Accuracy(mdmc_reduce="samplewise")
+ self.train_acc = Accuracy(mdmc_reduce="samplewise", ignore_index=ignore_index)
+ self.val_acc = Accuracy(mdmc_reduce="samplewise", ignore_index=ignore_index)
+ self.test_acc = Accuracy(mdmc_reduce="samplewise", ignore_index=ignore_index)
def optimizer_zero_grad(
self,
diff --git a/text_recognizer/models/metrics.py b/text_recognizer/models/metrics.py
deleted file mode 100644
index 3cb16b5..0000000
--- a/text_recognizer/models/metrics.py
+++ /dev/null
@@ -1,36 +0,0 @@
-"""Character Error Rate (CER)."""
-from typing import Sequence
-
-import editdistance
-import torch
-from torch import Tensor
-from torchmetrics import Metric
-
-
-class CharacterErrorRate(Metric):
- """Character error rate metric, computed using Levenshtein distance."""
-
- def __init__(self, ignore_indices: Sequence[Tensor]) -> None:
- super().__init__()
- self.ignore_indices = set(ignore_indices)
- self.add_state("error", default=torch.tensor(0.0), dist_reduce_fx="sum")
- self.add_state("total", default=torch.tensor(0), dist_reduce_fx="sum")
- self.error: Tensor
- self.total: Tensor
-
- def update(self, preds: Tensor, targets: Tensor) -> None:
- """Update CER."""
- bsz = preds.shape[0]
- for index in range(bsz):
- pred = [p for p in preds[index].tolist() if p not in self.ignore_indices]
- target = [
- t for t in targets[index].tolist() if t not in self.ignore_indices
- ]
- distance = editdistance.distance(pred, target)
- error = distance / max(len(pred), len(target))
- self.error += error
- self.total += bsz
-
- def compute(self) -> Tensor:
- """Compute CER."""
- return self.error / self.total
diff --git a/text_recognizer/models/metrics/__init__.py b/text_recognizer/models/metrics/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/text_recognizer/models/metrics/__init__.py
diff --git a/text_recognizer/models/metrics/cer.py b/text_recognizer/models/metrics/cer.py
new file mode 100644
index 0000000..238ecc3
--- /dev/null
+++ b/text_recognizer/models/metrics/cer.py
@@ -0,0 +1,23 @@
+"""Character Error Rate (CER)."""
+from typing import Sequence
+
+import torch
+import torchmetrics
+
+
+class CharacterErrorRate(torchmetrics.CharErrorRate):
+ """Character error rate metric, allowing for tokens to be ignored."""
+
+ def __init__(self, ignore_tokens: Sequence[int], *args):
+ super().__init__(*args)
+ self.ignore_tokens = set(ignore_tokens)
+
+ def update(self, preds: torch.Tensor, targets: torch.Tensor) -> None:
+ preds_l = [
+ [t for t in pred if t not in self.ignore_tokens] for pred in preds.tolist()
+ ]
+ targets_l = [
+ [t for t in target if t not in self.ignore_tokens]
+ for target in targets.tolist()
+ ]
+ super().update(preds_l, targets_l)
diff --git a/text_recognizer/models/metrics/wer.py b/text_recognizer/models/metrics/wer.py
new file mode 100644
index 0000000..78f5854
--- /dev/null
+++ b/text_recognizer/models/metrics/wer.py
@@ -0,0 +1,23 @@
+"""Character Error Rate (CER)."""
+from typing import Sequence
+
+import torch
+import torchmetrics
+
+
+class WordErrorRate(torchmetrics.WordErrorRate):
+ """Character error rate metric, allowing for tokens to be ignored."""
+
+ def __init__(self, ignore_tokens: Sequence[int], *args):
+ super().__init__(*args)
+ self.ignore_tokens = set(ignore_tokens)
+
+ def update(self, preds: torch.Tensor, targets: torch.Tensor) -> None:
+ preds_l = [
+ [t for t in pred if t not in self.ignore_tokens] for pred in preds.tolist()
+ ]
+ targets_l = [
+ [t for t in target if t not in self.ignore_tokens]
+ for target in targets.tolist()
+ ]
+ super().update(preds_l, targets_l)
diff --git a/text_recognizer/models/transformer.py b/text_recognizer/models/transformer.py
index dcec756..2c74b7e 100644
--- a/text_recognizer/models/transformer.py
+++ b/text_recognizer/models/transformer.py
@@ -3,11 +3,12 @@ from typing import Optional, Tuple, Type
import torch
from omegaconf import DictConfig
-from torch import Tensor, nn
+from torch import nn, Tensor
from text_recognizer.data.mappings import EmnistMapping
from text_recognizer.models.base import LitBase
-from text_recognizer.models.metrics import CharacterErrorRate
+from text_recognizer.models.metrics.cer import CharacterErrorRate
+from text_recognizer.models.metrics.wer import WordErrorRate
class LitTransformer(LitBase):
@@ -18,16 +19,13 @@ class LitTransformer(LitBase):
network: Type[nn.Module],
loss_fn: Type[nn.Module],
optimizer_config: DictConfig,
- lr_scheduler_config: Optional[DictConfig],
mapping: EmnistMapping,
+ lr_scheduler_config: Optional[DictConfig] = None,
max_output_len: int = 682,
start_token: str = "<s>",
end_token: str = "<e>",
pad_token: str = "<p>",
) -> None:
- super().__init__(
- network, loss_fn, optimizer_config, lr_scheduler_config, mapping
- )
self.max_output_len = max_output_len
self.start_token = start_token
self.end_token = end_token
@@ -38,6 +36,16 @@ class LitTransformer(LitBase):
self.ignore_indices = set([self.start_index, self.end_index, self.pad_index])
self.val_cer = CharacterErrorRate(self.ignore_indices)
self.test_cer = CharacterErrorRate(self.ignore_indices)
+ self.val_wer = WordErrorRate(self.ignore_indices)
+ self.test_wer = WordErrorRate(self.ignore_indices)
+ super().__init__(
+ network,
+ loss_fn,
+ optimizer_config,
+ lr_scheduler_config,
+ mapping,
+ self.pad_index,
+ )
def forward(self, data: Tensor) -> Tensor:
"""Forward pass with the transformer network."""
@@ -59,6 +67,8 @@ class LitTransformer(LitBase):
self.log("val/acc", self.val_acc, on_step=False, on_epoch=True)
self.val_cer(preds, targets)
self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True)
+ self.val_wer(preds, targets)
+ self.log("val/wer", self.val_wer, on_step=False, on_epoch=True, prog_bar=True)
def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
"""Test step."""
@@ -66,10 +76,12 @@ class LitTransformer(LitBase):
# Compute the text prediction.
pred = self(data)
- self.test_cer(pred, targets)
- self.log("test/cer", self.test_cer, on_step=False, on_epoch=True, prog_bar=True)
self.test_acc(pred, targets)
self.log("test/acc", self.test_acc, on_step=False, on_epoch=True)
+ self.test_cer(pred, targets)
+ self.log("test/cer", self.test_cer, on_step=False, on_epoch=True, prog_bar=True)
+ self.test_wer(pred, targets)
+ self.log("test/wer", self.test_wer, on_step=False, on_epoch=True, prog_bar=True)
@torch.no_grad()
def predict(self, x: Tensor) -> Tensor: