summaryrefslogtreecommitdiff
path: root/text_recognizer
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer')
-rw-r--r--text_recognizer/networks/transformer/axial_attention/__init__.py0
-rw-r--r--text_recognizer/networks/transformer/axial_attention/encoder.py90
-rw-r--r--text_recognizer/networks/transformer/axial_attention/self_attention.py40
-rw-r--r--text_recognizer/networks/transformer/axial_attention/utils.py79
4 files changed, 0 insertions, 209 deletions
diff --git a/text_recognizer/networks/transformer/axial_attention/__init__.py b/text_recognizer/networks/transformer/axial_attention/__init__.py
deleted file mode 100644
index e69de29..0000000
--- a/text_recognizer/networks/transformer/axial_attention/__init__.py
+++ /dev/null
diff --git a/text_recognizer/networks/transformer/axial_attention/encoder.py b/text_recognizer/networks/transformer/axial_attention/encoder.py
deleted file mode 100644
index 1cadac1..0000000
--- a/text_recognizer/networks/transformer/axial_attention/encoder.py
+++ /dev/null
@@ -1,90 +0,0 @@
-"""Axial transformer encoder."""
-
-from typing import List, Optional, Type
-from text_recognizer.networks.transformer.embeddings.axial import (
- AxialPositionalEmbeddingImage,
-)
-
-from torch import nn, Tensor
-
-from text_recognizer.networks.transformer.axial_attention.self_attention import (
- SelfAttention,
-)
-from text_recognizer.networks.transformer.axial_attention.utils import (
- calculate_permutations,
- PermuteToForm,
- Sequential,
-)
-from text_recognizer.networks.transformer.norm import PreNorm
-
-
-class AxialEncoder(nn.Module):
- """Axial transfomer encoder."""
-
- def __init__(
- self,
- shape: List[int],
- dim: int,
- depth: int,
- heads: int,
- dim_head: int,
- dim_index: int,
- axial_embedding: AxialPositionalEmbeddingImage,
- ) -> None:
- super().__init__()
-
- self.shape = shape
- self.dim = dim
- self.depth = depth
- self.heads = heads
- self.dim_head = dim_head
- self.dim_index = dim_index
- self.axial_embedding = axial_embedding
-
- self.fn = self._build()
-
- def _build(self) -> Sequential:
- permutations = calculate_permutations(2, self.dim_index)
- get_ff = lambda: nn.Sequential(
- nn.LayerNorm([self.dim, *self.shape]),
- nn.Conv2d(
- in_channels=self.dim,
- out_channels=4 * self.dim,
- kernel_size=3,
- padding=1,
- ),
- nn.Mish(inplace=True),
- nn.Conv2d(
- in_channels=4 * self.dim,
- out_channels=self.dim,
- kernel_size=3,
- padding=1,
- ),
- )
-
- layers = nn.ModuleList([])
- for _ in range(self.depth):
- attns = nn.ModuleList(
- [
- PermuteToForm(
- permutation=permutation,
- fn=PreNorm(
- self.dim,
- SelfAttention(
- dim=self.dim, heads=self.heads, dim_head=self.dim_head
- ),
- ),
- )
- for permutation in permutations
- ]
- )
- convs = nn.ModuleList([get_ff(), get_ff()])
- layers.append(attns)
- layers.append(convs)
-
- return Sequential(layers)
-
- def forward(self, x: Tensor) -> Tensor:
- """Applies fn to input."""
- x += self.axial_embedding(x)
- return self.fn(x)
diff --git a/text_recognizer/networks/transformer/axial_attention/self_attention.py b/text_recognizer/networks/transformer/axial_attention/self_attention.py
deleted file mode 100644
index b5e4142..0000000
--- a/text_recognizer/networks/transformer/axial_attention/self_attention.py
+++ /dev/null
@@ -1,40 +0,0 @@
-"""Axial self attention module."""
-
-import torch
-from torch import nn
-from torch import Tensor
-
-
-class SelfAttention(nn.Module):
- """Axial self attention module."""
-
- def __init__(
- self,
- dim: int,
- dim_head: int,
- heads: int,
- ) -> None:
- super().__init__()
- self.dim_hidden = heads * dim_head
- self.heads = heads
- self.dim_head = dim_head
- self.to_q = nn.Linear(dim, self.dim_hidden, bias=False)
- self.to_kv = nn.Linear(dim, 2 * self.dim_hidden, bias=False)
- self.to_out = nn.Linear(self.dim_hidden, dim)
-
- def forward(self, x: Tensor) -> Tensor:
- """Applies self attention."""
- q, k, v = (self.to_q(x), *self.to_kv(x).chunk(2, dim=-1))
- b, _, d, h, e = *q.shape, self.heads, self.dim_head
-
- merge_heads = (
- lambda x: x.reshape(b, -1, h, e).transpose(1, 2).reshape(b * h, -1, e)
- )
- q, k, v = map(merge_heads, (q, k, v))
-
- energy = torch.einsum("bie,bje->bij", q, k) * (e ** -0.5)
- energy = energy.softmax(dim=-1)
- attn = torch.einsum("bij,bje->bie", energy, v)
-
- out = attn.reshape(b, h, -1, e).transpose(1, 2).reshape(b, -1, d)
- return self.to_out(out)
diff --git a/text_recognizer/networks/transformer/axial_attention/utils.py b/text_recognizer/networks/transformer/axial_attention/utils.py
deleted file mode 100644
index 2f5bf7e..0000000
--- a/text_recognizer/networks/transformer/axial_attention/utils.py
+++ /dev/null
@@ -1,79 +0,0 @@
-"""Helper functions for axial attention."""
-from operator import itemgetter
-from typing import Callable, List, Tuple
-
-from torch import nn, Tensor
-
-
-def _map_el_ind(arr: Tensor, ind: int) -> List:
- return list(map(itemgetter(ind), arr))
-
-
-def _sort_indices(arr: Tensor) -> Tuple[List[int], List[int]]:
- indices = [i for i in range(len(arr))]
- arr = zip(arr, indices)
- arr = sorted(arr)
- return _map_el_ind(arr, 0), _map_el_ind(arr, 1)
-
-
-def calculate_permutations(num_dims: int, emb_dim: int) -> List[List[int]]:
- """Returns permutations of tensor."""
- total_dims = num_dims + 2
- axial_dims = [i for i in range(1, total_dims) if i != emb_dim]
-
- permutations = []
-
- for axial_dim in axial_dims:
- last_two_dims = [axial_dim, emb_dim]
- dims_rest = set(range(0, total_dims)) - set(last_two_dims)
- permutation = [*dims_rest, *last_two_dims]
- permutations.append(permutation)
-
- return permutations
-
-
-class PermuteToForm(nn.Module):
- """Helper class for applying axial attention."""
-
- def __init__(
- self,
- fn: Callable,
- permutation: List[List[int]],
- ) -> None:
- super().__init__()
-
- self.fn = fn
- self.permutation = permutation
- _, self.inv_permutation = _sort_indices(self.permutation)
-
- def forward(self, x: Tensor) -> Tensor:
- """Permutes tensor, applies axial attention, permutes tensor back."""
- x = x.permute(*self.permutation).contiguous()
- shape = x.shape
- *_, t, d = shape
-
- # Merge all but axial dimension
- x = x.reshape(-1, t, d)
-
- # Apply attention
- x = self.fn(x)
-
- # Restore original shape and permutation
- x = x.reshape(*shape)
- x = x.permute(*self.inv_permutation).contiguous()
- return x
-
-
-class Sequential(nn.Module):
- """Applies a list of paired functions to input."""
-
- def __init__(self, fns: nn.ModuleList) -> None:
- super().__init__()
- self.fns = fns
-
- def forward(self, x: Tensor) -> Tensor:
- """Applies blocks to input."""
- for f, g in self.fns:
- x = x + f(x)
- x = x + g(x)
- return x