diff options
Diffstat (limited to 'text_recognizer')
-rw-r--r-- | text_recognizer/models/base.py | 12 | ||||
-rw-r--r-- | text_recognizer/models/vqvae.py | 3 |
2 files changed, 11 insertions, 4 deletions
diff --git a/text_recognizer/models/base.py b/text_recognizer/models/base.py index 57c5964..ab3fa35 100644 --- a/text_recognizer/models/base.py +++ b/text_recognizer/models/base.py @@ -26,8 +26,6 @@ class BaseLitModel(LightningModule): loss_fn: Type[nn.Module] = attr.ib() optimizer_config: DictConfig = attr.ib() lr_scheduler_config: DictConfig = attr.ib() - interval: str = attr.ib() - monitor: str = attr.ib(default="val/loss") train_acc: torchmetrics.Accuracy = attr.ib( init=False, default=torchmetrics.Accuracy() ) @@ -58,12 +56,18 @@ class BaseLitModel(LightningModule): self, optimizer: Type[torch.optim.Optimizer] ) -> Dict[str, Any]: """Configures the lr scheduler.""" + # Extract non-class arguments. + monitor = self.lr_scheduler_config.monitor + interval = self.lr_scheduler_config.interval + del self.lr_scheduler_config.monitor + del self.lr_scheduler_config.interval + log.info( f"Instantiating learning rate scheduler <{self.lr_scheduler_config._target_}>" ) scheduler = { - "monitor": self.monitor, - "interval": self.interval, + "monitor": monitor, + "interval": interval, "scheduler": hydra.utils.instantiate( self.lr_scheduler_config, optimizer=optimizer ), diff --git a/text_recognizer/models/vqvae.py b/text_recognizer/models/vqvae.py index 7f79b78..76b7ba6 100644 --- a/text_recognizer/models/vqvae.py +++ b/text_recognizer/models/vqvae.py @@ -23,6 +23,7 @@ class VQVAELitModel(BaseLitModel): reconstructions, vq_loss = self(data) loss = self.loss_fn(reconstructions, data) loss = loss + self.latent_loss_weight * vq_loss + self.log("train/vq_loss", vq_loss) self.log("train/loss", loss) return loss @@ -32,6 +33,7 @@ class VQVAELitModel(BaseLitModel): reconstructions, vq_loss = self(data) loss = self.loss_fn(reconstructions, data) loss = loss + self.latent_loss_weight * vq_loss + self.log("val/vq_loss", vq_loss) self.log("val/loss", loss, prog_bar=True) def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None: @@ -40,4 +42,5 @@ class VQVAELitModel(BaseLitModel): reconstructions, vq_loss = self(data) loss = self.loss_fn(reconstructions, data) loss = loss + self.latent_loss_weight * vq_loss + self.log("test/vq_loss", vq_loss) self.log("test/loss", loss) |