summaryrefslogtreecommitdiff
path: root/text_recognizer
diff options
context:
space:
mode:
Diffstat (limited to 'text_recognizer')
-rw-r--r--text_recognizer/models/vq_transformer.py113
1 files changed, 113 insertions, 0 deletions
diff --git a/text_recognizer/models/vq_transformer.py b/text_recognizer/models/vq_transformer.py
new file mode 100644
index 0000000..99f69c0
--- /dev/null
+++ b/text_recognizer/models/vq_transformer.py
@@ -0,0 +1,113 @@
+"""Lightning model for Vector Quantized Transformers."""
+from typing import Optional, Tuple, Type
+
+from omegaconf import DictConfig
+import torch
+from torch import nn, Tensor
+
+from text_recognizer.data.mappings import EmnistMapping
+from text_recognizer.models.transformer import LitTransformer
+
+
+class LitVqTransformer(LitTransformer):
+ """A PyTorch Lightning model for transformer networks."""
+
+ def __init__(
+ self,
+ network: Type[nn.Module],
+ loss_fn: Type[nn.Module],
+ optimizer_config: DictConfig,
+ lr_scheduler_config: Optional[DictConfig],
+ mapping: EmnistMapping,
+ max_output_len: int = 682,
+ start_token: str = "<s>",
+ end_token: str = "<e>",
+ pad_token: str = "<p>",
+ vq_loss_weight: float = 0.1,
+ ) -> None:
+ super().__init__(
+ network,
+ loss_fn,
+ optimizer_config,
+ lr_scheduler_config,
+ mapping,
+ max_output_len,
+ start_token,
+ end_token,
+ pad_token,
+ )
+ self.vq_loss_weight = vq_loss_weight
+
+ def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor:
+ """Training step."""
+ data, targets = batch
+ logits, vq_loss = self.network(data, targets[:, :-1])
+ loss = self.loss_fn(logits, targets[:, 1:])
+ total_loss = loss + self.vq_loss_weight * vq_loss
+ self.log("train/vq_loss", vq_loss)
+ self.log("train/loss", loss)
+ self.log("train/total_loss", total_loss)
+ return total_loss
+
+ def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
+ """Validation step."""
+ data, targets = batch
+ preds = self.predict(data)
+ self.val_acc(preds, targets)
+ self.log("val/acc", self.val_acc, on_step=False, on_epoch=True)
+ self.val_cer(preds, targets)
+ self.log("val/cer", self.val_cer, on_step=False, on_epoch=True, prog_bar=True)
+
+ def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None:
+ """Test step."""
+ data, targets = batch
+ pred = self(data)
+ self.test_cer(pred, targets)
+ self.log("test/cer", self.test_cer, on_step=False, on_epoch=True, prog_bar=True)
+ self.test_acc(pred, targets)
+ self.log("test/acc", self.test_acc, on_step=False, on_epoch=True)
+
+ @torch.no_grad()
+ def predict(self, x: Tensor) -> Tensor:
+ """Predicts text in image.
+
+ Args:
+ x (Tensor): Image(s) to extract text from.
+
+ Shapes:
+ - x: :math: `(B, H, W)`
+ - output: :math: `(B, S)`
+
+ Returns:
+ Tensor: A tensor of token indices of the predictions from the model.
+ """
+ bsz = x.shape[0]
+
+ # Encode image(s) to latent vectors.
+ z, _ = self.network.encode(x)
+
+ # Create a placeholder matrix for storing outputs from the network
+ output = torch.ones((bsz, self.max_output_len), dtype=torch.long).to(x.device)
+ output[:, 0] = self.start_index
+
+ for Sy in range(1, self.max_output_len):
+ context = output[:, :Sy] # (B, Sy)
+ logits = self.network.decode(z, context) # (B, C, Sy)
+ tokens = torch.argmax(logits, dim=1) # (B, Sy)
+ output[:, Sy : Sy + 1] = tokens[:, -1:]
+
+ # Early stopping of prediction loop if token is end or padding token.
+ if (
+ (output[:, Sy - 1] == self.end_index)
+ | (output[:, Sy - 1] == self.pad_index)
+ ).all():
+ break
+
+ # Set all tokens after end token to pad token.
+ for Sy in range(1, self.max_output_len):
+ idx = (output[:, Sy - 1] == self.end_index) | (
+ output[:, Sy - 1] == self.pad_index
+ )
+ output[idx, Sy] = self.pad_index
+
+ return output