diff options
Diffstat (limited to 'training/conf/experiment/conv_transformer_lines.yaml')
-rw-r--r-- | training/conf/experiment/conv_transformer_lines.yaml | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/training/conf/experiment/conv_transformer_lines.yaml b/training/conf/experiment/conv_transformer_lines.yaml index 11646ca..20e369e 100644 --- a/training/conf/experiment/conv_transformer_lines.yaml +++ b/training/conf/experiment/conv_transformer_lines.yaml @@ -10,7 +10,7 @@ defaults: - override /lr_schedulers: null - override /optimizers: null -epochs: &epochs 620 +epochs: &epochs 300 ignore_index: &ignore_index 3 num_classes: &num_classes 57 max_output_len: &max_output_len 89 @@ -27,7 +27,7 @@ callbacks: stochastic_weight_averaging: _target_: pytorch_lightning.callbacks.StochasticWeightAveraging swa_epoch_start: 0.75 - swa_lrs: 1.0e-5 + swa_lrs: 1.0e-4 annealing_epochs: 10 annealing_strategy: cos device: null @@ -43,15 +43,15 @@ optimizers: lr_schedulers: network: - _target_: torch.optim.lr_scheduler.CosineAnnealingLR - T_max: *epochs - eta_min: 1.0e-5 - last_epoch: -1 - interval: epoch - monitor: val/loss + _target_: torch.optim.lr_scheduler.CosineAnnealingLR + T_max: *epochs + eta_min: 1.0e-4 + last_epoch: -1 + interval: epoch + monitor: val/loss datamodule: - batch_size: 32 + batch_size: 16 num_workers: 12 train_fraction: 0.9 pin_memory: true @@ -64,7 +64,7 @@ rotary_embedding: &rotary_embedding attn: &attn dim: &hidden_dim 256 - num_heads: 4 + num_heads: 6 dim_head: 64 dropout_rate: &dropout_rate 0.5 @@ -76,12 +76,12 @@ network: pad_index: *ignore_index encoder: _target_: text_recognizer.networks.encoders.efficientnet.EfficientNet - arch: b3 + arch: b0 stochastic_dropout_rate: 0.2 bn_momentum: 0.99 bn_eps: 1.0e-3 decoder: - depth: 6 + depth: 3 _target_: text_recognizer.networks.transformer.layers.Decoder self_attn: _target_: text_recognizer.networks.transformer.attention.Attention @@ -106,7 +106,7 @@ network: pixel_pos_embedding: _target_: text_recognizer.networks.transformer.embeddings.axial.AxialPositionalEmbedding dim: *hidden_dim - shape: [1, 32] + shape: [3, 64] model: _target_: text_recognizer.models.transformer.TransformerLitModel |