diff options
Diffstat (limited to 'training/conf/experiment')
-rw-r--r-- | training/conf/experiment/vq_transformer_lines.yaml | 149 | ||||
-rw-r--r-- | training/conf/experiment/vqgan.yaml | 98 | ||||
-rw-r--r-- | training/conf/experiment/vqgan_htr_char.yaml | 59 | ||||
-rw-r--r-- | training/conf/experiment/vqvae.yaml | 51 |
4 files changed, 0 insertions, 357 deletions
diff --git a/training/conf/experiment/vq_transformer_lines.yaml b/training/conf/experiment/vq_transformer_lines.yaml deleted file mode 100644 index bbe1178..0000000 --- a/training/conf/experiment/vq_transformer_lines.yaml +++ /dev/null @@ -1,149 +0,0 @@ -# @package _global_ - -defaults: - - override /mapping: null - - override /criterion: cross_entropy - - override /callbacks: htr - - override /datamodule: iam_lines - - override /network: null - - override /model: null - - override /lr_schedulers: null - - override /optimizers: null - -epochs: &epochs 512 -ignore_index: &ignore_index 3 -num_classes: &num_classes 57 -max_output_len: &max_output_len 89 -summary: [[1, 1, 56, 1024], [1, 89]] - -criterion: - ignore_index: *ignore_index - -mapping: &mapping - mapping: - _target_: text_recognizer.data.mappings.emnist.EmnistMapping - -callbacks: - stochastic_weight_averaging: - _target_: pytorch_lightning.callbacks.StochasticWeightAveraging - swa_epoch_start: 0.75 - swa_lrs: 1.0e-5 - annealing_epochs: 10 - annealing_strategy: cos - device: null - -optimizers: - madgrad: - _target_: madgrad.MADGRAD - lr: 3.0e-4 - momentum: 0.9 - weight_decay: 0 - eps: 1.0e-6 - parameters: network - -lr_schedulers: - network: - _target_: torch.optim.lr_scheduler.CosineAnnealingLR - T_max: *epochs - eta_min: 1.0e-5 - last_epoch: -1 - interval: epoch - monitor: val/loss - -datamodule: - batch_size: 16 - num_workers: 12 - train_fraction: 0.9 - pin_memory: true - << : *mapping - -rotary_embedding: &rotary_embedding - rotary_embedding: - _target_: text_recognizer.networks.transformer.embeddings.rotary.RotaryEmbedding - dim: 64 - -attn: &attn - dim: &hidden_dim 512 - num_heads: 4 - dim_head: 64 - dropout_rate: &dropout_rate 0.4 - -network: - _target_: text_recognizer.networks.vq_transformer.VqTransformer - input_dims: [1, 56, 1024] - hidden_dim: *hidden_dim - num_classes: *num_classes - pad_index: *ignore_index - encoder: - _target_: text_recognizer.networks.encoders.efficientnet.EfficientNet - arch: b1 - stochastic_dropout_rate: 0.2 - bn_momentum: 0.99 - bn_eps: 1.0e-3 - decoder: - depth: 6 - _target_: text_recognizer.networks.transformer.layers.Decoder - self_attn: - _target_: text_recognizer.networks.transformer.attention.Attention - << : *attn - causal: true - << : *rotary_embedding - cross_attn: - _target_: text_recognizer.networks.transformer.attention.Attention - << : *attn - causal: false - norm: - _target_: text_recognizer.networks.transformer.norm.ScaleNorm - normalized_shape: *hidden_dim - ff: - _target_: text_recognizer.networks.transformer.mlp.FeedForward - dim: *hidden_dim - dim_out: null - expansion_factor: 4 - glu: true - dropout_rate: *dropout_rate - pre_norm: true - pixel_pos_embedding: - _target_: text_recognizer.networks.transformer.embeddings.axial.AxialPositionalEmbedding - dim: *hidden_dim - shape: [1, 32] - quantizer: - _target_: text_recognizer.networks.quantizer.quantizer.VectorQuantizer - input_dim: 512 - codebook: - _target_: text_recognizer.networks.quantizer.codebook.CosineSimilarityCodebook - dim: 16 - codebook_size: 4096 - kmeans_init: true - kmeans_iters: 10 - decay: 0.8 - eps: 1.0e-5 - threshold_dead: 2 - commitment: 1.0 - -model: - _target_: text_recognizer.models.vq_transformer.VqTransformerLitModel - << : *mapping - max_output_len: *max_output_len - start_token: <s> - end_token: <e> - pad_token: <p> - -trainer: - _target_: pytorch_lightning.Trainer - stochastic_weight_avg: true - auto_scale_batch_size: binsearch - auto_lr_find: false - gradient_clip_val: 0.5 - fast_dev_run: false - gpus: 1 - precision: 16 - max_epochs: *epochs - terminate_on_nan: true - weights_summary: null - limit_train_batches: 1.0 - limit_val_batches: 1.0 - limit_test_batches: 1.0 - resume_from_checkpoint: null - accumulate_grad_batches: 1 - overfit_batches: 0 diff --git a/training/conf/experiment/vqgan.yaml b/training/conf/experiment/vqgan.yaml deleted file mode 100644 index 726757f..0000000 --- a/training/conf/experiment/vqgan.yaml +++ /dev/null @@ -1,98 +0,0 @@ -# @package _global_ - -defaults: - - override /network: vqvae - - override /criterion: null - - override /model: lit_vqgan - - override /callbacks: vae - - override /optimizers: null - - override /lr_schedulers: null - -epochs: &epochs 100 -ignore_index: &ignore_index 3 -num_classes: &num_classes 58 -max_output_len: &max_output_len 682 -summary: [[1, 1, 576, 640]] - -criterion: - _target_: text_recognizer.criterion.vqgan_loss.VQGANLoss - reconstruction_loss: - _target_: torch.nn.BCEWithLogitsLoss - reduction: mean - discriminator: - _target_: text_recognizer.criterion.n_layer_discriminator.NLayerDiscriminator - in_channels: 1 - num_channels: 64 - num_layers: 3 - commitment_weight: 0.25 - discriminator_weight: 0.8 - discriminator_factor: 1.0 - discriminator_iter_start: 8.0e4 - -mapping: &mapping - mapping: - _target_: text_recognizer.data.mappings.emnist.EmnistMapping - extra_symbols: [ "\n" ] - -datamodule: - _target_: text_recognizer.data.iam_extended_paragraphs.IAMExtendedParagraphs - batch_size: 4 - num_workers: 12 - train_fraction: 0.9 - pin_memory: true - << : *mapping - -lr_schedulers: - network: - _target_: torch.optim.lr_scheduler.CosineAnnealingLR - T_max: *epochs - eta_min: 1.0e-5 - last_epoch: -1 - interval: epoch - monitor: val/loss - - discriminator: - _target_: torch.optim.lr_scheduler.CosineAnnealingLR - T_max: *epochs - eta_min: 1.0e-5 - last_epoch: -1 - interval: epoch - monitor: val/loss - -optimizers: - generator: - _target_: madgrad.MADGRAD - lr: 1.0e-4 - momentum: 0.5 - weight_decay: 0 - eps: 1.0e-7 - - parameters: network - - discriminator: - _target_: madgrad.MADGRAD - lr: 4.5e-6 - momentum: 0.5 - weight_decay: 0 - eps: 1.0e-6 - - parameters: loss_fn.discriminator - -trainer: - _target_: pytorch_lightning.Trainer - stochastic_weight_avg: false - auto_scale_batch_size: binsearch - auto_lr_find: false - gradient_clip_val: 0 - fast_dev_run: false - gpus: 1 - precision: 16 - max_epochs: *epochs - terminate_on_nan: true - weights_summary: null - limit_train_batches: 1.0 - limit_val_batches: 1.0 - limit_test_batches: 1.0 - resume_from_checkpoint: null - accumulate_grad_batches: 2 - overfit_batches: 0 diff --git a/training/conf/experiment/vqgan_htr_char.yaml b/training/conf/experiment/vqgan_htr_char.yaml deleted file mode 100644 index af3fa40..0000000 --- a/training/conf/experiment/vqgan_htr_char.yaml +++ /dev/null @@ -1,59 +0,0 @@ -defaults: - - override /mapping: null - - override /network: null - - override /model: null - -mapping: - _target_: text_recognizer.data.emnist_mapping.EmnistMapping - extra_symbols: [ "\n" ] - -datamodule: - word_pieces: false - batch_size: 8 - augment: false - -criterion: - ignore_index: 3 - -network: - _target_: text_recognizer.networks.vq_transformer.VqTransformer - input_dims: [1, 576, 640] - encoder_dim: 32 - hidden_dim: 256 - dropout_rate: 0.1 - num_classes: 58 - pad_index: 3 - no_grad: true - decoder: - _target_: text_recognizer.networks.transformer.Decoder - dim: 256 - depth: 2 - num_heads: 8 - attn_fn: text_recognizer.networks.transformer.attention.Attention - attn_kwargs: - dim_head: 32 - dropout_rate: 0.2 - norm_fn: torch.nn.LayerNorm - ff_fn: text_recognizer.networks.transformer.mlp.FeedForward - ff_kwargs: - dim_out: null - expansion_factor: 4 - glu: true - dropout_rate: 0.2 - cross_attend: true - pre_norm: true - rotary_emb: null - pretrained_encoder_path: "training/logs/runs/2021-09-25/23-07-28" - -model: - _target_: text_recognizer.models.vq_transformer.VqTransformerLitModel - start_token: <s> - end_token: <e> - pad_token: <p> - max_output_len: 682 # 451 - alpha: 1.0 - -trainer: - max_epochs: 64 - limit_train_batches: 0.1 - limit_val_batches: 0.1 diff --git a/training/conf/experiment/vqvae.yaml b/training/conf/experiment/vqvae.yaml deleted file mode 100644 index d069aef..0000000 --- a/training/conf/experiment/vqvae.yaml +++ /dev/null @@ -1,51 +0,0 @@ -defaults: - - override /network: vqvae - - override /criterion: mse - - override /model: lit_vqvae - - override /callbacks: wandb_vae - - override /optimizers: null - # - override /lr_schedulers: - # - cosine_annealing - -# lr_schedulers: null -# network: -# _target_: torch.optim.lr_scheduler.OneCycleLR -# max_lr: 1.0e-2 -# total_steps: null -# epochs: 100 -# steps_per_epoch: 200 -# pct_start: 0.1 -# anneal_strategy: cos -# cycle_momentum: true -# base_momentum: 0.85 -# max_momentum: 0.95 -# div_factor: 25 -# final_div_factor: 1.0e4 -# three_phase: true -# last_epoch: -1 -# verbose: false - -# # Non-class arguments -# interval: step -# monitor: val/loss - -optimizers: - network: - _target_: madgrad.MADGRAD - lr: 1.0e-4 - momentum: 0.9 - weight_decay: 0 - eps: 1.0e-7 - - parameters: network - -trainer: - max_epochs: 128 - limit_train_batches: 0.1 - limit_val_batches: 0.1 - -datamodule: - batch_size: 8 - # resize: [288, 320] - -summary: null |