diff options
Diffstat (limited to 'training/run_experiment.py')
-rw-r--r-- | training/run_experiment.py | 136 |
1 files changed, 38 insertions, 98 deletions
diff --git a/training/run_experiment.py b/training/run_experiment.py index bdefbf0..2b3ecab 100644 --- a/training/run_experiment.py +++ b/training/run_experiment.py @@ -4,17 +4,15 @@ import importlib from pathlib import Path from typing import Dict, List, Optional, Type -import click +import hydra from loguru import logger -from omegaconf import DictConfig, OmegaConf +from omegaconf import DictConfig import pytorch_lightning as pl from torch import nn from tqdm import tqdm import wandb -SEED = 4711 -CONFIGS_DIRNAME = Path(__file__).parent.resolve() / "configs" LOGS_DIRNAME = Path(__file__).parent.resolve() / "logs" @@ -29,21 +27,10 @@ def _create_experiment_dir(config: DictConfig) -> Path: return log_dir -def _configure_logging(log_dir: Optional[Path], verbose: int = 0) -> None: +def _configure_logging(log_dir: Optional[Path], level: str) -> None: """Configure the loguru logger for output to terminal and disk.""" - - def _get_level(verbose: int) -> str: - """Sets the logger level.""" - levels = {0: "WARNING", 1: "INFO", 2: "DEBUG"} - verbose = min(verbose, 2) - return levels[verbose] - # Remove default logger to get tqdm to work properly. logger.remove() - - # Fetch verbosity level. - level = _get_level(verbose) - logger.add(lambda msg: tqdm.write(msg, end=""), colorize=True, level=level) if log_dir is not None: logger.add( @@ -52,14 +39,6 @@ def _configure_logging(log_dir: Optional[Path], verbose: int = 0) -> None: ) -def _load_config(file_path: Path) -> DictConfig: - """Return experiment config.""" - logger.info(f"Loading config from: {file_path}") - if not file_path.exists(): - raise FileNotFoundError(f"Experiment config not found at: {file_path}") - return OmegaConf.load(file_path) - - def _import_class(module_and_class_name: str) -> type: """Import class from module.""" module_name, class_name = module_and_class_name.rsplit(".", 1) @@ -78,14 +57,16 @@ def _configure_callbacks( def _configure_logger( - network: Type[nn.Module], args: Dict, log_dir: Path, use_wandb: bool + network: Type[nn.Module], config: DictConfig, log_dir: Path ) -> Type[pl.loggers.LightningLoggerBase]: """Configures lightning logger.""" - if use_wandb: + if config.trainer.wandb: + logger.info("Logging model with W&B") pl_logger = pl.loggers.WandbLogger(save_dir=str(log_dir)) pl_logger.watch(network) - pl_logger.log_hyperparams(vars(args)) + pl_logger.log_hyperparams(vars(config)) return pl_logger + logger.info("Logging model with Tensorboard") return pl.loggers.TensorBoardLogger(save_dir=str(log_dir)) @@ -110,50 +91,36 @@ def _load_lit_model( lit_model_class: type, network: Type[nn.Module], config: DictConfig ) -> Type[pl.LightningModule]: """Load lightning model.""" - if config.load_checkpoint is not None: + if config.trainer.load_checkpoint is not None: logger.info( - f"Loading network weights from checkpoint: {config.load_checkpoint}" + f"Loading network weights from checkpoint: {config.trainer.load_checkpoint}" ) return lit_model_class.load_from_checkpoint( - config.load_checkpoint, network=network, **config.model.args + config.trainer.load_checkpoint, network=network, **config.model.args ) return lit_model_class(network=network, **config.model.args) -def run( - filename: str, - fast_dev_run: bool, - train: bool, - test: bool, - tune: bool, - use_wandb: bool, - verbose: int = 0, -) -> None: +def run(config: DictConfig) -> None: """Runs experiment.""" - # Load config. - file_path = CONFIGS_DIRNAME / filename - config = _load_config(file_path) - log_dir = _create_experiment_dir(config) - _configure_logging(log_dir, verbose=verbose) + _configure_logging(log_dir, level=config.trainer.logging) logger.info("Starting experiment...") - # Seed everything in the experiment. - logger.info(f"Seeding everthing with seed={SEED}") - pl.utilities.seed.seed_everything(SEED) + pl.utilities.seed.seed_everything(config.trainer.seed) # Load classes. - data_module_class = _import_class(f"text_recognizer.data.{config.data.type}") + data_module_class = _import_class(f"text_recognizer.data.{config.dataset.type}") network_class = _import_class(f"text_recognizer.networks.{config.network.type}") lit_model_class = _import_class(f"text_recognizer.models.{config.model.type}") # Initialize data object and network. - data_module = data_module_class(**config.data.args) + data_module = data_module_class(**config.dataset.args) network = network_class(**data_module.config(), **config.network.args) # Load callback and logger. callbacks = _configure_callbacks(config.callbacks) - pl_logger = _configure_logger(network, config, log_dir, use_wandb) + pl_logger = _configure_logger(network, config, log_dir) # Load ligtning model. lit_model = _load_lit_model(lit_model_class, network, config) @@ -164,55 +131,28 @@ def run( logger=pl_logger, weights_save_path=str(log_dir), ) - if fast_dev_run: - logger.info("Fast dev run...") + + if config.trainer.tune and not config.trainer.args.fast_dev_run: + logger.info("Tuning learning rate and batch size...") + trainer.tune(lit_model, datamodule=data_module) + + if config.trainer.train: + logger.info("Training network...") trainer.fit(lit_model, datamodule=data_module) - else: - if tune: - logger.info("Tuning learning rate and batch size...") - trainer.tune(lit_model, datamodule=data_module) - - if train: - logger.info("Training network...") - trainer.fit(lit_model, datamodule=data_module) - - if test: - logger.info("Testing network...") - trainer.test(lit_model, datamodule=data_module) - - _save_best_weights(callbacks, use_wandb) - - -@click.command() -@click.option("-f", "--experiment_config", type=str, help="Path to experiment config.") -@click.option("--use_wandb", is_flag=True, help="If true, do use wandb for logging.") -@click.option("--dev", is_flag=True, help="If true, run a fast dev run.") -@click.option( - "--tune", is_flag=True, help="If true, tune hyperparameters for training." -) -@click.option("-t", "--train", is_flag=True, help="If true, train the model.") -@click.option("-e", "--test", is_flag=True, help="If true, test the model.") -@click.option("-v", "--verbose", count=True) -def cli( - experiment_config: str, - use_wandb: bool, - dev: bool, - tune: bool, - train: bool, - test: bool, - verbose: int, -) -> None: - """Run experiment.""" - run( - filename=experiment_config, - fast_dev_run=dev, - train=train, - test=test, - tune=tune, - use_wandb=use_wandb, - verbose=verbose, - ) + + if config.trainer.test and not config.trainer.args.fast_dev_run: + logger.info("Testing network...") + trainer.test(lit_model, datamodule=data_module) + + if not config.trainer.args.fast_dev_run: + _save_best_weights(callbacks, config.trainer.wandb) + + +@hydra.main(config_path="conf", config_name="config") +def main(cfg: DictConfig) -> None: + """Loads config with hydra.""" + run(cfg) if __name__ == "__main__": - cli() + main() |