summaryrefslogtreecommitdiff
path: root/training
diff options
context:
space:
mode:
Diffstat (limited to 'training')
-rw-r--r--training/run_experiment.py185
1 files changed, 0 insertions, 185 deletions
diff --git a/training/run_experiment.py b/training/run_experiment.py
deleted file mode 100644
index b3c9552..0000000
--- a/training/run_experiment.py
+++ /dev/null
@@ -1,185 +0,0 @@
-"""Script to run experiments."""
-from datetime import datetime
-import importlib
-from pathlib import Path
-from typing import List, Optional, Type
-import warnings
-
-warnings.filterwarnings("ignore")
-
-import hydra
-from loguru import logger
-from omegaconf import DictConfig, OmegaConf
-import pytorch_lightning as pl
-from torch import nn
-from tqdm import tqdm
-import wandb
-
-
-LOGS_DIRNAME = Path(__file__).parent.resolve() / "logs"
-
-
-def _create_experiment_dir(config: DictConfig) -> Path:
- """Creates log directory for experiment."""
- log_dir = (
- LOGS_DIRNAME
- / f"{config.model.type}_{config.network.type}".lower()
- / datetime.now().strftime("%m%d_%H%M%S")
- )
- log_dir.mkdir(parents=True, exist_ok=True)
- return log_dir
-
-
-def _save_config(config: DictConfig, log_dir: Path) -> None:
- """Saves config to log directory."""
- with (log_dir / "config.yaml").open("w") as f:
- OmegaConf.save(config=config, f=f)
-
-
-def _configure_logging(log_dir: Optional[Path], level: str) -> None:
- """Configure the loguru logger for output to terminal and disk."""
- # Remove default logger to get tqdm to work properly.
- logger.remove()
- logger.add(lambda msg: tqdm.write(msg, end=""), colorize=True, level=level)
- if log_dir is not None:
- logger.add(
- str(log_dir / "train.log"),
- format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}",
- )
-
-
-def _import_class(module_and_class_name: str) -> type:
- """Import class from module."""
- module_name, class_name = module_and_class_name.rsplit(".", 1)
- module = importlib.import_module(module_name)
- return getattr(module, class_name)
-
-
-def _configure_callbacks(callbacks: DictConfig,) -> List[Type[pl.callbacks.Callback]]:
- """Configures lightning callbacks."""
- pl_callbacks = [
- getattr(pl.callbacks, callback.type)(**callback.args)
- for callback in callbacks.values()
- ]
- return pl_callbacks
-
-
-def _configure_logger(
- network: Type[nn.Module], config: DictConfig, log_dir: Path
-) -> Type[pl.loggers.LightningLoggerBase]:
- """Configures lightning logger."""
- if config.trainer.wandb:
- logger.info("Logging model with W&B")
- pl_logger = pl.loggers.WandbLogger(save_dir=str(log_dir))
- pl_logger.watch(network)
- pl_logger.log_hyperparams(vars(config))
- return pl_logger
- logger.info("Logging model with Tensorboard")
- return pl.loggers.TensorBoardLogger(save_dir=str(log_dir))
-
-
-def _save_best_weights(
- pl_callbacks: List[Type[pl.callbacks.Callback]], use_wandb: bool
-) -> None:
- """Saves the best model."""
- model_checkpoint_callback = next(
- callback
- for callback in pl_callbacks
- if isinstance(callback, pl.callbacks.ModelCheckpoint)
- )
- best_model_path = model_checkpoint_callback.best_model_path
- if best_model_path:
- logger.info(f"Best model saved at: {best_model_path}")
- if use_wandb:
- logger.info("Uploading model to W&B...")
- wandb.save(best_model_path)
-
-
-def _load_lit_model(
- lit_model_class: type, network: Type[nn.Module], config: DictConfig
-) -> Type[pl.LightningModule]:
- """Load lightning model."""
- if config.load_checkpoint is not None:
- logger.info(
- f"Loading network weights from checkpoint: {config.load_checkpoint}"
- )
- return lit_model_class.load_from_checkpoint(
- config.load_checkpoint,
- network=network,
- optimizer=config.optimizer,
- criterion=config.criterion,
- lr_scheduler=config.lr_scheduler,
- **config.model.args,
- )
- return lit_model_class(
- network=network,
- optimizer=config.optimizer,
- criterion=config.criterion,
- lr_scheduler=config.lr_scheduler,
- **config.model.args,
- )
-
-
-def run(config: DictConfig) -> None:
- """Runs experiment."""
- log_dir = _create_experiment_dir(config)
- _configure_logging(log_dir, level=config.logging)
- logger.info("Starting experiment...")
-
- pl.utilities.seed.seed_everything(config.trainer.seed)
-
- # Load classes.
- data_module_class = _import_class(f"text_recognizer.data.{config.dataset.type}")
- network_class = _import_class(f"text_recognizer.networks.{config.network.type}")
- lit_model_class = _import_class(f"text_recognizer.models.{config.model.type}")
-
- # Initialize data object and network.
- data_module = data_module_class(**config.dataset.args)
- network = network_class(**data_module.config(), **config.network.args)
-
- # Load callback and logger.
- pl_callbacks = _configure_callbacks(config.callbacks)
- pl_logger = _configure_logger(network, config, log_dir)
-
- # Load ligtning model.
- lit_model = _load_lit_model(lit_model_class, network, config)
-
- # Save config to experiment dir.
- _save_config(config, log_dir)
-
- trainer = pl.Trainer(
- **config.trainer.args,
- callbacks=pl_callbacks,
- logger=pl_logger,
- weights_save_path=str(log_dir),
- )
-
- if config.trainer.args.fast_dev_run:
- logger.info("Fast development run...")
- trainer.fit(lit_model, datamodule=data_module)
- return None
-
- if config.trainer.tune:
- logger.info("Tuning learning rate and batch size...")
- trainer.tune(lit_model, datamodule=data_module)
-
- if config.trainer.train:
- logger.info("Training network...")
- trainer.fit(lit_model, datamodule=data_module)
-
- if config.trainer.test:
- logger.info("Testing network...")
- trainer.test(lit_model, datamodule=data_module)
-
- _save_best_weights(pl_callbacks, config.trainer.wandb)
-
-
-@hydra.main(config_path="conf", config_name="config")
-def main(config: DictConfig) -> None:
- """Loads config with hydra."""
- print(OmegaConf.to_yaml(config))
- run(config)
-
-
-if __name__ == "__main__":
- main()