diff options
Diffstat (limited to 'training')
-rw-r--r-- | training/conf/callbacks/checkpoint.yaml | 15 | ||||
-rw-r--r-- | training/conf/callbacks/default.yaml | 3 | ||||
-rw-r--r-- | training/conf/callbacks/early_stopping.yaml | 10 | ||||
-rw-r--r-- | training/conf/callbacks/learning_rate_monitor.yaml | 6 | ||||
-rw-r--r-- | training/conf/callbacks/swa.yaml | 13 | ||||
-rw-r--r-- | training/conf/callbacks/wandb.yaml | 20 |
6 files changed, 46 insertions, 21 deletions
diff --git a/training/conf/callbacks/checkpoint.yaml b/training/conf/callbacks/checkpoint.yaml index f3beb1b..9216715 100644 --- a/training/conf/callbacks/checkpoint.yaml +++ b/training/conf/callbacks/checkpoint.yaml @@ -1,6 +1,9 @@ -checkpoint: - type: ModelCheckpoint - args: - monitor: val_loss - mode: min - save_last: true +model_checkpoint: + _target_: pytorch_lightning.callbacks.ModelCheckpoint + monitor: "val/loss" # name of the logged metric which determines when model is improving + save_top_k: 1 # save k best models (determined by above metric) + save_last: True # additionaly always save model from last epoch + mode: "min" # can be "max" or "min" + verbose: False + dirpath: "checkpoints/" + filename: "{epoch:02d}" diff --git a/training/conf/callbacks/default.yaml b/training/conf/callbacks/default.yaml new file mode 100644 index 0000000..658fc03 --- /dev/null +++ b/training/conf/callbacks/default.yaml @@ -0,0 +1,3 @@ +defaults: + - checkpoint + - learning_rate_monitor diff --git a/training/conf/callbacks/early_stopping.yaml b/training/conf/callbacks/early_stopping.yaml index ec671fd..4cd5aa1 100644 --- a/training/conf/callbacks/early_stopping.yaml +++ b/training/conf/callbacks/early_stopping.yaml @@ -1,6 +1,6 @@ early_stopping: - type: EarlyStopping - args: - monitor: val_loss - mode: min - patience: 10 + _target_: pytorch_lightning.callbacks.EarlyStopping + monitor: "val/loss" # name of the logged metric which determines when model is improving + patience: 16 # how many epochs of not improving until training stops + mode: "min" # can be "max" or "min" + min_delta: 0 # minimum change in the monitored metric needed to qualify as an improvement diff --git a/training/conf/callbacks/learning_rate_monitor.yaml b/training/conf/callbacks/learning_rate_monitor.yaml index 11a5ecf..4a14e1f 100644 --- a/training/conf/callbacks/learning_rate_monitor.yaml +++ b/training/conf/callbacks/learning_rate_monitor.yaml @@ -1,4 +1,4 @@ learning_rate_monitor: - type: LearningRateMonitor - args: - logging_interval: step + _target_: pytorch_lightning.callbacks.LearningRateMonitor + logging_interval: step + log_momentum: false diff --git a/training/conf/callbacks/swa.yaml b/training/conf/callbacks/swa.yaml index 92d9e6b..73f8c66 100644 --- a/training/conf/callbacks/swa.yaml +++ b/training/conf/callbacks/swa.yaml @@ -1,8 +1,7 @@ stochastic_weight_averaging: - type: StochasticWeightAveraging - args: - swa_epoch_start: 0.8 - swa_lrs: 0.05 - annealing_epochs: 10 - annealing_strategy: cos - device: null + _target_: pytorch_lightning.callbacks.StochasticWeightAveraging + swa_epoch_start: 0.8 + swa_lrs: 0.05 + annealing_epochs: 10 + annealing_strategy: cos + device: null diff --git a/training/conf/callbacks/wandb.yaml b/training/conf/callbacks/wandb.yaml new file mode 100644 index 0000000..2d56bfa --- /dev/null +++ b/training/conf/callbacks/wandb.yaml @@ -0,0 +1,20 @@ +defaults: + - default.yaml + +watch_model: + _target_: text_recognizer.callbacks.wandb_callbacks.WatchModel + log: "all" + log_freq: 100 + +upload_code_as_artifact: + _target_: text_recognizer.callbacks.wandb_callbacks.UploadCodeAsArtifact + project_dir: ${work_dir}/text_recognizer + +upload_ckpts_as_artifact: + _target_: text_recognizer.callbacks.wandb_callbacks.UploadCheckpointsAsArtifact + ckpt_dir: "checkpoints/" + upload_best_only: True + +log_text_predictions: + _target_: text_recognizer.callbacks.wandb_callbacks.LogTextPredictions + num_samples: 8 |