From 53677be4ec14854ea4881b0d78730e0414c8dedd Mon Sep 17 00:00:00 2001 From: aktersnurra Date: Sun, 9 Aug 2020 23:24:02 +0200 Subject: Working bash scripts etc. --- src/notebooks/01-look-at-emnist.ipynb | 54 +- src/notebooks/02c-image-patches.ipynb | 551 +++++++++++++++++++++ src/tasks/prepare_sample_experiments.sh | 2 + src/tasks/test_functionality.sh | 2 + src/text_recognizer/datasets/__init__.py | 13 +- src/text_recognizer/datasets/emnist_dataset.py | 275 +++++----- .../datasets/emnist_lines_dataset.py | 129 +---- src/text_recognizer/datasets/util.py | 60 +++ src/text_recognizer/models/base.py | 139 ++++-- src/text_recognizer/models/character_model.py | 15 +- src/text_recognizer/networks/ctc.py | 10 + src/text_recognizer/networks/lenet.py | 19 +- src/text_recognizer/networks/line_lstm_ctc.py | 4 + src/text_recognizer/networks/misc.py | 28 ++ src/text_recognizer/networks/mlp.py | 9 +- src/text_recognizer/networks/residual_network.py | 1 + .../CharacterModel_EmnistDataset_LeNet_weights.pt | Bin 0 -> 14485310 bytes .../CharacterModel_EmnistDataset_MLP_weights.pt | Bin 0 -> 1704174 bytes .../weights/CharacterModel_Emnist_LeNet_weights.pt | Bin 14485305 -> 14485342 bytes src/training/callbacks/wandb_callbacks.py | 4 +- src/training/experiments/sample_experiment.yml | 96 +++- src/training/population_based_training/__init__.py | 1 + .../population_based_training.py | 1 + src/training/prepare_experiments.py | 13 +- src/training/run_experiment.py | 22 +- src/training/train.py | 4 +- 26 files changed, 1053 insertions(+), 399 deletions(-) create mode 100644 src/notebooks/02c-image-patches.ipynb create mode 100755 src/tasks/prepare_sample_experiments.sh create mode 100755 src/tasks/test_functionality.sh create mode 100644 src/text_recognizer/networks/ctc.py create mode 100644 src/text_recognizer/networks/line_lstm_ctc.py create mode 100644 src/text_recognizer/networks/misc.py create mode 100644 src/text_recognizer/networks/residual_network.py create mode 100644 src/text_recognizer/weights/CharacterModel_EmnistDataset_LeNet_weights.pt create mode 100644 src/text_recognizer/weights/CharacterModel_EmnistDataset_MLP_weights.pt create mode 100644 src/training/population_based_training/__init__.py create mode 100644 src/training/population_based_training/population_based_training.py diff --git a/src/notebooks/01-look-at-emnist.ipynb b/src/notebooks/01-look-at-emnist.ipynb index 71aa3ec..a68b418 100644 --- a/src/notebooks/01-look-at-emnist.ipynb +++ b/src/notebooks/01-look-at-emnist.ipynb @@ -22,7 +22,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -31,7 +31,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -41,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -62,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -75,12 +75,12 @@ " ax.imshow(x, cmap='gray')\n", " ax.set_xticks([])\n", " ax.set_yticks([])\n", - " ax.set_title(dataset.mapping[int(y)])" + " ax.set_title(dataset.translator(int(y)))" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -100,7 +100,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -118,6 +118,46 @@ "display_images(dataset, 9)" ] }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([1, 28, 28])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset[0][0].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.int64" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dataset[0][1].dtype" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/src/notebooks/02c-image-patches.ipynb b/src/notebooks/02c-image-patches.ipynb new file mode 100644 index 0000000..f8dcc4c --- /dev/null +++ b/src/notebooks/02c-image-patches.ipynb @@ -0,0 +1,551 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from PIL import Image\n", + "import torch\n", + "from importlib.util import find_spec\n", + "if find_spec(\"text_recognizer\") is None:\n", + " import sys\n", + " sys.path.append('..')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from text_recognizer.datasets import EmnistDataset, EmnistLinesDataset, Transpose, construct_image_from_string, get_samples_by_character" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2020-08-09 20:45:35.945 | DEBUG | text_recognizer.datasets.emnist_lines_dataset:_load_data:160 - EmnistLinesDataset loading data from HDF5...\n" + ] + } + ], + "source": [ + "emnist_lines = EmnistLinesDataset(train=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def convert_y_label_to_string(y, emnist_lines=emnist_lines):\n", + " return ''.join([emnist_lines.mapper(int(i)) for i in y])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "412 We____________________________\n", + "new_______________________________\n", + "decided___________________________\n", + "indictment the 10000 bond was_____\n", + "of possessions and living plays___\n", + "Lillys____________________________\n", + "life______________________________\n", + "in circles making_________________\n", + "enlist____________________________\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAj/klEQVR4nO3de3CU153m8e/pm7p1aQkkoTuSEBghxNXcEdjGxI6DwVnHiZN4ZlyTydizlUxuM7szk6qp3ezsbO1kpzKb1M6OJ+MkFSeuhMSOY9esB8eYBDCOxcUgQBJCSKAbAt1vjdRqdZ/9Q60ecMDG6NaG51NFofe8b7/v6ZbeesXDOb9jrLWIiIiIiIiIiMjtxzHbHRARERERERERkemh4EdERERERERE5Dal4EdERERERERE5Dal4EdERERERERE5Dal4EdERERERERE5Dal4EdERERERERE5Dal4EdERERERERE5Dal4EdERERERERE5Dal4EdERGSWGGMWGWNGjDE/vqotxxjzijHmojHGGmOK3vWavzfG1BtjBo0xZ4wxf/Ae568zxjx+1fbm6Dnf3TZojHFN8dsTERERkTig4EdERGT2/CNw5F1tEWAP8IkbvCYA7ARSgSeBbxtjNt3g2APA1qu2twJnrtP2W2vt2AfruoiIiIh8GCj4ERERmQXGmE8DfcAbV7dbay9ba/8vvxsITez/L9baM9baiLW2EjgIbLzBZd4d/GwB/u46bQeifdpgjHnLGNNnjKkyxtz7gd+YiIiIiMQVBT8iIiIzzBjjB/4b8LVJnscHrAWqb3DIAWCpMWauMcYBrAF2A2lXtW0GDhhj8oD/B/x3YC7w58CLxpjMyfRRRERERGaXgh8REZGZ9zfA96y1rZM8zzNAFfDa9XZaa5uAZsZH9awA6q21w8Chq9o8QCXwe8Cr1tpXo6OJXgeOAh+bZB9FREREZBapkKOIiMgMMsasBLYDqyZ5nv8FlAP3WWvtexw6Md2rmfFpYQBvXtV22FobNMYUAp80xuy86rVu4NeT6aeIiIiIzC4FPyIiIjPrXqAIaDbGACQDTmNMmbV29c2cwBjzDeAh4B5r7cD7HH4AeBpoAn4QbTvIeGHopuh+gBbgR9baP77pdyIiIiIicc+8938SioiIyFQyxiQC/qua/pzxIOg/Wms7o8d4AScwBJQCTdbakei+vwI+B2yx1l66ievdBdQAPcBd1tq+aG2fDsAAn7bWvm6MKWC8oPSTwF7GR/tsAM5NwZQ0EREREZklqvEjIiIyg6y1V6y1lyb+MB7ujEyEPlHD0XYYX359+Kp9/wOYD5wzxgxF/3z9Pa53FugELllr+6JtEeAw4wHUW9G2FuAR4OvR41uA/4R+VxARERH5UNOIHxERERERERGR25T+F09ERERERERE5DY1qeLOxpiPAt9mvA7Bs9ba/zklvRIREZG4YYwZusEuH9dOQ1O72mej/SFr7cHrtIuIiAiTmOpljHECZ4GPAK2MF4T8jLW2Zuq6JyIiIiIiIiIit2oyU73WMb7SR6O1dhT4KeNFIUVEREREREREJA5MZqpXHuMrfkxoBda/1wuMMaokLSIiIiIiIiIytbqstZnX2zGpGj83wxjzFPDUDFwHAK1SJiIiIiIiIiJ3mKYb7ZhM8NMGFFy1nR9tu4a19rvAd2H6RvwUFhayZcsWcnNzaWxs5Pjx4zQ0NEzHpQDwer34fD6MMQwMDDA2NjZt1wJwOBx4PB78fj8Avb29jI2NKeQSERERERERkfc0meDnCLDIGFPMeODzaeCzU9KrD8Dn87Ft2zY+/vGPk5ubS01NDZ2dndMS/DidTpKSkigvL6ekpASHw8GhQ4c4d+7clF8LxgOflJQU5syZQ35+PqtXr8ZayxtvvEFbWxtDQ0OEw+FpufZUiufRWBN9g/jsn4iIiIiIiMhk3HLwY60dM8Z8EXiN8eXcv2+trZ6ynt2krKwsHn74YdavHy8v1NPTg8/nm5ZrZWRkUFxczK5du1i/fj2hUIj+/n4aGxuJRCJTfj2fz0dxcTGLFy9m1apV7NixA4D+/n7GxsYIhUJcuXJlyq87lXw+H0lJSTidTjo6OuImXHE4HLhcLlyu8VsgEokQCoUwxhAOh+OmnyIiIiIiIiKTMakaP9baV4FXp6gvMS6XC6/Xi9vt5sqVKwSDwesel5yczMaNGykrK8MYw4kTJ3jppZdob2+f6i7hdrupqKhg+/bt3HfffRQUFNDa2kpWVtaUX8vpdOJ2u8nPz2fjxo3cfffdLF68mKKiIgDKy8u5ePEivb29DA8Px3VIUVJSwooVK0hMTOS555674ffyZhhjJvVejTGxwCcpKYnk5OTY9Lnh4WH6+vpwOp0MDw8TiUQIh8OMjY0pCBIREREREZEPrWkv7nwrVq9ezac+9Sk2btzIT37yE/75n/+ZUCh0zTEej4cvf/nLPP3000QiEXbv3s3u3bs5dOjQlPfH4XBQUFDA448/ztq1a8nKymJsbIzW1lYqKyunbLSPw+HA5/NRUlJCSUkJjz76KJs3byY3NxeXy4XD4SASifDYY49RVFTE97//fQ4dOsTg4OCUXH+qJScn85nPfIbPfvazdHR08Morr3D58uVbPp/f7ycUChEMBj/wFDdjDCkpKeTm5rJ48WIqKiooLCykuLiYSCRCQ0MDR44cwev10t3djc/no6Ojg7q6OhoaGggEAtNey0lERERERERkqsVd8OP3+1m7di2f+MQnSE9P5/Tp07jd7muCH5fLRXZ2Nr//+79PdnY2e/bs4de//jW1tbVT3p+JwODxxx/n/vvvx+/343Q66e/vZ2RkZEpCF4fDQWJiIiUlJezatYudO3eSlZVFRkYGDoeDYDBIZ2cn3d3dRCIRlixZwtatW6mvr6e9vZ2TJ0/G5YiUcDiMw+EgFApx+fJl+vv7b/lcCQkJfP7zn2dkZITKykqOHj1606/1eDz4fD6KiorYsGED69evZ/PmzaSkpJCcnMzo6Chut5vh4WGGhoZYtmwZ+fn5dHV1cfDgQQAaGhom1X8RERERERGR2RBXwU9KSgof//jH2blzJ7m5uTgcDtauXYvf72dkZIRIJIIxhpycHL7yla9QVFREOBxm3759nDp1alpGvjidTlJSUliyZAmJiYk4nU4AQqEQw8PDkx4F4na7Wbp0KYsXL+buu+9m586dFBYW4nK5uHLlCm+99RZVVVWcP3+eixcv8tBDD7FkyRJSU1OZP38+2dnZnDp1Ki6Dn6VLl7JgwQJcLhfd3d2/M2rrg0hISCAzM5P+/v5YXZ7343Q68fv9bN++ndLSUpYsWcKyZcvIyMggNTWVcDhMZ2cn7e3tnD59mgMHDtDZ2UlFRQVLly6lsLCQUChER0cHXV1dCn5ERERERETkQyeugp+SkhIqKiooKytjbGyM+vp6Xn75ZYaGhrDWYoxhzpw5rFixgu3btxOJRDh48CBvv/027e3t0zIVZyI8WLhwYSxwGBkZobGxkUOHDk06DPD5fCxbtoyNGzfGRpp4vV5gvO5MVVUV+/fvp7m5mStXrnDPPfdgrb2mDtLVK1PFC5fLxY4dO1i4cCG9vb2cO3duUlPiJuryZGZmUl9f/771fowxJCcnk5uby6ZNm1ixYgXz588nJycnVjuqr6+PEydOcPbsWWpqajh+/DgDAwN4PB7WrVtHamoqfr+fuXPnkpiYeMt9FxEREREREZktcRP8OBwO1qxZQ3l5OXPmzKGrq4vXXnuNF198kUAggLUWn8/HggUL2LRpE8XFxYyMjPDWW2/R3NxMIBCYln55PB6ysrLIycnB4XAA0N3dzcmTJ/ntb3/L0NDQLZ87KSmJsrIyNmzYwNq1a2Ohz8QKU62trdTV1XHmzBn6+/vx+/1kZ2fHpk8NDg7GPpt4Yoxh3rx5bNq0CY/Hw9GjRzly5Mik+hkOhwkGg5SXl7NgwQJ8Pt8NVzQzxpCUlMSGDRsoLS1lzZo1LFiwgOTkZCKRCH19fRw9epSmpiYOHz5Mc3MzbW1ttLW1EQqFqKmp4cKFC+Tm5pKUlER+fj45OTnU1dXF3WctIiIiIiIi8l7iJvhJTk5my5YtFBUVxZb+fvPNN+ns7CQ9PR2Hw0F+fj5btmxh27ZtJCUl0dvbO+kpRO/F4XDg9/spKysjJSUFYwyRSIQLFy5w/Phxamtrb3mUkTGG4uJiHn30UbZu3cqCBQvwer1Ya+nr66O9vZ0333yT2tpaOjo6cDgcZGdns3z5cowxDA4O0tbWRmdnZ9yFEV6vl7Vr11JUVMTZs2f51a9+xVtvvTWpcw4PD9Pa2sr27dspKCjA7/ffMPhxuVxkZGTwxBNPsHLlSoqLi/F6vVy5coX29nba2tr4wQ9+QG1tbWwk1dUrd3V3d9PX10cwGCQ9PZ3FixdTX1/P/v374+6zFhEREREREXkvcRH8OBwOli9fzrp162IFjefNm8e2bdtYt24dAImJiWzatOmaEMbv93PPPfewZ88eOjs7p7xfXq+XgoICHnzwQdLS0gAYHR3l/PnzNDQ0TGq0j9vt5qMf/ShPPPEE8+bNw+l0Yq1leHiY/fv38+qrr7J3714uX75MJBIhJyeHdevWkZuby+joKJcvX+bcuXO0t7fHVRhhjCErK4unn36ajIwMfvazn016ZBSM11Sqqqqiu7sbGP/8bsTj8ZCXl8fy5cspLCwkISGBcDjMpUuXOHz4MNXV1Rw5coTOzs7Y0u0OhwOn04nT6SQnJ4f58+eTlpZGOBwmEonE1WcsIiIiIiIicrNmPfgxxpCens7DDz9MZmZmrI5Ofn4+X/jCF6451ul0xurZRCKR2FSdyYYKN+pXbm4uFRUVbNiwIba6VlNTE5WVldTU1HzgJcUnuFwu5syZw7p162KrhEUiEQYGBqiuruaHP/whlZWVdHV1kZycTHFxMffccw9/+qd/ypw5c6ipqWHv3r1UV1fHXcFhYwwJCQkYY+jo6KClpYWurq5Jn9day/79+9m6dSuJiYkUFxfT2tp6TSDjcrlISUmhrKyML37xiyxevJiEhAT6+/upr6/n1Vdf5cc//jGdnZ2x0UKpqakkJSWRkZHBXXfdxfz586moqKCiogKPx8Obb77Ja6+9xqFDhyZVo0hERERERERkNsx68ON2u1m/fj2f+tSn8Pv9wPiomtHR0WuKHE98PbF97NgxnnrqKVpbW2845WcyXC4X+fn5lJeXk5qaCkBjYyP79u3j2LFjdHR03NJ5jTE4nU58Ph8FBQV4PB4ikQjDw8O0tLTwxhtvxAKdieldpaWllJWVkZWVhbWWxsZGzpw5Q09PT9yFET6fjyeffJL169fz/PPP884777xv/SWXy0VOTg55eXnU19fT39//nlPo7rrrLkZGRjh16hS9vb2xdq/XS1ZWFmVlZaxatQqPxwOM/zwNDAzEfo4yMzNjo3wKCwvJy8ujqKiIpUuXkp+fT0FBAaFQiM7OTs6ePcvZs2djI41EREREREREPkxmPfhxOBykpKSQkJBAa2trbBpObW1tLOwpLy/nk5/8JLm5uQwMDFBZWcm3vvUtGhsbGR0dnZZ+ZWRksGTJEsrLy3G5XITDYY4ePcqBAwdoaWmZdF0hh8OBMYZgMEh/fz/Nzc1UVlby0ksv0dbWxujoKPn5+TzyyCNs2bKFRYsW4XQ6qaqq4uWXX+bYsWN0dnbGVfDjcrnIyspix44d+Hw+Tp8+/b5T0bxeLyUlJXzta1/D5XLxzW9+k0AgcN3gZ6Jo87x588jJycHn89Hb2xsL0vLz81m2bBmrVq0iLy8vNjosJSWFxYsXk5yczLp1664ZqTV37lxSU1NJSUkhKSkJl8tFbW0tBw4coKmpidraWs6dOxd3I6tEREREREREbsasBz+RSIShoSEqKyupra2lqqqK6upqWlpaYtO+5s6dG1vpqqWlhf3791NZWTltoY/T6SQrK4vi4mKysrIwxjA2NkZzczMtLS2x5eVvhbWWcDjM4OAg+/fvp62tLVYz6OzZs5w7d45QKITP52PVqlVUVFSwZs0aEhMT6e7u5t/+7d84dOgQly5dmpaRTpPhdDpJSUmhqKiIYDBIa2srg4ODNzze4/FQVFTEzp07eeCBB+jr6yMnJ4eWlhZGRkau+5pwOExfXx8XL16MvX+v10t2djZLly5l+fLllJSU4PP5YsGPx+MhMzMTv99PSUnJNd87t9uNy+WKjbqa+Fncu3cvra2t9PT0MDQ0FFcBm4iIiIiIiMjNiovg5/z58+zevZuqqira29sZGhqKjcpwOBwUFRWRkpJCKBTi/PnzHDt2bNpCD2MMPp+P0tJSFi1ahN/vZ2xsjIsXL9LY2EhPT8+kA6exsTH6+vr4xS9+QXZ2NhcuXODy5csMDQ0RDAbJzs6msLCQ7du3U1pait/vp7+/nyNHjrBnzx4aGxtveTWx6eR2u8nOzsbtdnP27Fk6OztvGOAAzJs3j3Xr1rFjxw7y8vIYGBjA7XbjcDiue3xaWhpOp5OLFy9SXV0dC5VSU1NZtGgRGzduZMWKFcyfPz8W+sD4z5Db7cbpdOL1egmHw4RCIcbGxujt7WV4eDgWJvX29vKb3/yGuro6BgcHGR0dVegjIiIiIiIiH1qzHvyMjY1x+vRpTp8+/Tv7jDGkpKSwZcsW/H4/LS0t1NfXc/78+Wnrj9vtJisri61bt7JmzRqSkpIYHBzk9ddfZ//+/Vy6dIlgMDjp64RCIQ4fPowxBmst1lqMMSQnJ7Nx40Y+9rGPsX37dtLS0hgaGqK6uprnnnuOo0ePxmXoY4whNTWViooKRkZG2LdvH5cvX75hX5OSkli7di0PPvggCxcuJBwOc+zYMZqamq4bFjmdTlauXElOTg4dHR3U19fHApmJFc8eeOABSktLY0XAJ0b2TKzMNTY2xujoKENDQ3R3dxMIBDh69ChtbW00NTVRXV3NwMAAly5dmrbRZCIiIiIiIiIzadaDn/eSkJDARz7yEZYsWYLL5WLPnj288MILNDc3T9s1c3NzWbNmDXfddRdpaWmEQiFaW1t59tlnuXDhwpSO/pgIJhwOR2xUyrx581ixYgUrV64kIyOD0dFR2tvbqa6u5sSJE3EbSHg8HgoKCnj88ccJBoNUVlbS19d33c/LGMNjjz3G5z73OTZt2oQxhvb2dr7xjW9w4cKF666WNmfOHHbu3InX640FhdZaHA4H+fn5FBYWxlZIu3q0j7WWgYEBAoEAgUCA3t5eWltbOX36NIODgxw/fpxLly7R399Pb28voVDolldrExEREREREYk3cRv8TEwb+uQnP4nH4yEQCFBXV0djY+O0Tb1xuVzs2rWLXbt2sWLFCpKSkggEAvT09NDb24vL5YqtyhUOhyc98sfj8bBgwQLWrFlDTk4O6enplJaWsmHDBtLS0vB4PLHRKe3t7QwPD0/RO516GRkZlJeXM2/ePL73ve+xd+/eG9b3WbJkCZ///OdZtmwZIyMjRCIRXn311euGPhOjoH70ox9RVlbGc889x7Fjx2IjiYwxZGdn4/f7CQaDBAIBfD4fTqcTgMHBQZ577jnefvttzp8/HxvpMxFKjY2NxUZciYiIiIiIiNxu4jL4McZQWFjIX//1X7N9+3YCgQDPP/88R44cYWhoaNqumZaWxurVqykqKiIpKQlrLVeuXKGpqYnly5fzwAMP4HK5uHTpEjU1NdTW1t5SCGWMiY1mevLJJ1myZAl+v5+EhAS8Xu81wYXf72f58uWkpKSQnJzMT3/6Uy5evEggECAUCsVFYGGMwev1kpqaijGGo0eP3rAgcnp6Ok888QQ+n499+/YRDAa57777KC8vJz09nd7e3thS6xPLsz/88MPcfffdDA0N0dDQQHt7e+x81lrOnTtHYmJiLMjJy8vD7/dfM9VrYopXZ2cno6OjBIPBuPjsRERERERERKZTXAY/MD7NKy8vj9TUVOrq6mJTcqarvo3H46GsrCw2xcrtdmOMITExkeXLl5ORkUFXVxctLS00NTUxMDBwS6GPx+MhIyODRYsW8eSTT7Jp0ybmzJkTu95EbZqJc0+slLVw4cLYkuV79uyhqqqKlpYWAoHAVH8UH5jH4yEnJ4fS0lKGh4c5derU7yx3P7EU+9e+9jXuvfdefvnLX3L8+HEyMzPJzc1l6dKlfPOb34yNxHE4HPh8PjIyMsjPz+fnP/8577zzDm+++eY1S6tHIhFOnz5Na2srHR0dXLp0iTVr1rB69Wo8Hg8+n4+tW7cyf/586urqOHPmDH19fVRXV8fCn/cKgEZHRxkeHlaRZxEREREREflQisvgJzExkXnz5pGbm4vD4aCmpib2D/bpGKXhcrmYO3cumzdvpqCggKSkpFitGJ/Px4IFC5g7dy4vvvgidXV1NDQ00NPTc0vXSkpKYsGCBWzcuJGNGzeSmZkZW7YexoOMkZGRa4KGiUCooKCAtLQ0+vr6GBgYoKenJy6CH5fLxZw5c8jOziYYDNLV1XXN92ni873//vvZsmUL9fX17Nmzh3PnzpGdnU1GRgZ+v59t27YxMjISC2OCwSC9vb2cOnWK559/njNnzjAwMPA74V9HRwddXV0YY4hEIrjdboqLi2Of7ZIlSygoKKCkpIS77rqLrq4ukpOTCQQC71nPJxKJ0NnZycWLF6dkNTcRERERERGRmRaXwU9OTg5r165lwYIFjI6OcvDgQerr66dtmldCQgKFhYXce++9pKSkXFMg2OFwkJCQQHd3N3v37qWqqorOzs5bqu/jcrlIT09nxYoVrF+/nrlz58amdFlrCYfDXLly5Zpl4ycKGCckJJCSkkJSUhIZGRlkZWWRmJh4zepVs8UYc80S7ElJSbhcLqy1eL1e0tPTWb58OV/96ldpbGzkmWeeoba2NlZweffu3YTDYbZt2xb7PILBIJcuXaKyspLXX3+dixcv3vB9Tnx2ly9fprq6GrfbTX5+PnfffTcpKSm4XC7S0tJifRkcHCQlJSVWX+jd57XWMjY2xvDwMCdOnGBoaIiBgQEFPyIiIiIiIvKhE3fBjzGG8vJyHnnkEVwuFxcuXOCll16iq6trWqbaTExBWrRoEYsWLYqNvrm6PsyVK1d45513qKuri638dCvS0tJYtmwZu3btYtWqVSQkJADjS7sHg0EGBwepra3l2Wefpa6ujoGBAWA8MPL7/eTm5lJUVER6ejrANWHLbAqHwwwNDdHT04PH42HLli0cPHiQsbExFi5cyLp166ioqCAjI4MvfelLnDhxIhacTaya9swzz/DKK69cc86RkZEPNNKmt7eXgYEBLly4QHV1NX/yJ39CaWkpBQUF+P1+vF4vOTk55OXlsXjx4uuew1rL6OgoPT09tLa20t7ezujo6LRNMRQRERERERGZTu8b/BhjCoDngCzAAt+11n7bGPNfgT8GOqOHft1a++pkO+R0OvF4PHg8HkKhECdPnqSrq2valth2Op1kZmayceNG8vPzY+2RSITh4WG6u7uprq7mO9/5zqRWFHM6nZSVlfHQQw9RUVGB1+uNXePEiRNUV1dTVVXF/v37aWhoiI32udrEsu+JiYlYaxkeHp710T4Aw8PDHD58GLfbzYMPPsi//Mu/0Nvbi7UWj8dDZ2cnv/nNb/iLv/gLqqurrzvCZnh4mIaGhkn3ZSKEOnv2LK+88go1NTWsXLmS+fPnk5GRQUpKComJibFC1O/ux9jYGB0dHVRVVVFXV0dNTQ09PT23HPaJiIiIiIiIzKabGfEzBvyZtfYdY0wKcMwY83p03z9Ya/9+Kjvk8/liI1uMMbjdbtLS0hgdHZ2W8CcxMZGioiLWrl0bm2Y0ETgdPHiQgwcPUltby/nz5yc94sjj8eD1ejHGMDo6yuHDhzlw4AD79u2joaGB3t5eAoHADa8TiUSIRCKxkUDxZHBwkAMHDrBjxw4effRRjDGEw2Fqamo4efIkra2tDA4OzkhQFYlEGBoa4rXXXmPfvn2kpaWRlJREcnIyqamp5OfnU1paes2Iqaun2h08eDDW30AgwMjIyLT3WURERERERGQ6vG/wY61tB9qjXw8aY2qBvOnsVDgcZmxsDJfLxbJly3j44Yf55S9/SXd395RP9wqHw/T393P+/HkyMzOx1tLb28vPf/5z3njjDRobG2NLp0+GtZaRkRH6+vpob2/HWsvRo0fZu3cvdXV19PX1fehXjhoeHqa6upqurq5Y20R4cr0RTNNpYsrWxB+n04nb7SYhIYHm5mbq6+uv+5pgMEhzc3Pse/5h/n6IiIiIiIiIfKAaP8aYImAVUAlsBr5ojPkD4Cjjo4J6J9uhYDBIY2MjlZWVbNiwIVZvZbqmegWDQc6fP8/u3bs5fPgw1loCgQBvv/02DQ0NDA0NTUlgYa2lpaWFX/3qVzQ1NRGJRDh58iQ1NTX09/cTCoXiYtrWZEyEW83Nzde0zbZQKMTY2FhsafZAIEB3d/d1j41EIly5coVwOBwXfRcRERERERGZDHOz/7g1xiQD+4G/tdb+whiTBXQxXvfnb4Aca+3nrvO6p4Cnopt338y1ioqK2Lx5Mxs2bGBkZIRnnnmGtrY2gsHgtC3nnpiYSFJSEjA+CmhwcDC2tPhU8Xg8JCYm4vV6ARgaGiIQCChgEBEREREREZHJOGatXXO9HTcV/Bhj3MC/Aq9Za791nf1FwL9aa8vf5zwfKOGYqLkzXaN9RERERERERERuAzcMft53PXAzvvTR94Daq0MfY0zOVYf9B+D0ZHv5buFwWKGPiIiIiIiIiMgtet8RP8aYCuAgcAqYqHT7deAzwErGp3pdAJ6OFoJ+r3N1AgHGp4iJSPzKQPepSLzTfSry4aB7VST+6T6V20GhtTbzejtuusbPVDHGHL3R8CMRiQ+6T0Xin+5TkQ8H3asi8U/3qdzu3neql4iIiIiIiIiIfDgp+BERERERERERuU3NRvDz3Vm4poh8MLpPReKf7lORDwfdqyLxT/ep3NZmvMaPiIiIiIiIiIjMDE31EhERERERERG5Tc1Y8GOM+agxps4Yc84Y85czdV0RuZYxpsAY82tjTI0xptoY8+Vo+1xjzOvGmPro33Oi7cYY853ovXvSGLN6dt+ByJ3FGOM0xhw3xvxrdLvYGFMZvSd3G2M80faE6Pa56P6iWe24yB3CGJNmjHnBGHPGGFNrjNmoZ6pI/DHGfDX6u+9pY8xPjDFePVPlTjEjwY8xxgn8I/AQUAZ8xhhTNhPXFpHfMQb8mbW2DNgAfCF6P/4l8Ia1dhHwRnQbxu/bRdE/TwH/NPNdFrmjfRmovWr774B/sNYuBHqBP4q2/xHQG23/h+hxIjL9vg3ssdaWAisYv1/1TBWJI8aYPOBLwBprbTngBD6Nnqlyh5ipET/rgHPW2kZr7SjwU+CRGbq2iFzFWtturX0n+vUg47+g5jF+T/4wetgPgY9Hv34EeM6OextIM8bkzGyvRe5Mxph8YAfwbHTbANuAF6KHvPtenbiHXwDujx4vItPEGJMKbAW+B2CtHbXW9qFnqkg8cgE+Y4wLSATa0TNV7hAzFfzkAS1XbbdG20RkFkWHra4CKoEsa217dNclICv6te5fkdnzv4H/DESi2+lAn7V2LLp99f0Yu1ej+/ujx4vI9CkGOoEfRKdkPmuMSULPVJG4Yq1tA/4eaGY88OkHjqFnqtwhVNxZ5A5ljEkGXgS+Yq0duHqfHV/uT0v+icwiY8zDQIe19ths90VEbsgFrAb+yVq7Cgjw79O6AD1TReJBtM7WI4yHtblAEvDRWe2UyAyaqeCnDSi4ajs/2iYis8AY42Y89HneWvuLaPPlieHm0b87ou26f0Vmx2ZglzHmAuNTpLcxXkskLTpMHa69H2P3anR/KtA9kx0WuQO1Aq3W2sro9guMB0F6porEl+3AeWttp7U2BPyC8eesnqlyR5ip4OcIsChaNd3DeCGtV2bo2iJylej85O8Btdbab1216xXgyejXTwIvX9X+B9GVSDYA/VcNXxeRaWKt/Strbb61tojx5+Y+a+0TwK+Bx6KHvftenbiHH4ser1EGItPIWnsJaDHGLI423Q/UoGeqSLxpBjYYYxKjvwtP3Kt6psodwczUz68x5mOM1ypwAt+31v7tjFxYRK5hjKkADgKn+Pe6IV9nvM7Pz4D5QBPwKWttT/Th+H8YHw57BfhDa+3RGe+4yB3MGHMv8OfW2oeNMQsYHwE0FzgO/J61NmiM8QI/YrxuVw/waWtt4yx1WeSOYYxZyXgBdg/QCPwh4/+5qmeqSBwxxnwDeJzxFW6PA59nvJaPnqly25ux4EdERERERERERGaWijuLiIiIiIiIiNymFPyIiIiIiIiIiNymFPyIiIiIiIiIiNymFPyIiIiIiIiIiNymFPyIiIiIiIiIiNymFPyIiIiIiIiIiNymFPyIiIiIiIiIiNymFPyIiIiIiIiIiNym/j+BB4c0F6R7nQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAabklEQVR4nO3deWyc953f8fd3hsOHnOEpkaLEQ6R4WKcVWz4UWbETr+xYdgKnQRY52qLZdBNvgx5pu4tim79aFAFaYLFpNrsIchbZoNndNg3QbOzEluONzMiuJStUrIM2RcrikCLFEY8hh3NwODO//jHDCWVL1k0y5OcFCJ7neYbz/Dj2D4/w8ff3/ZlzDhERERERERERWX18yz0AERERERERERG5MxT8iIiIiIiIiIisUgp+RERERERERERWKQU/IiIiIiIiIiKrlIIfEREREREREZFVSsGPiIiIiIiIiMgqpeBHRERERERERGSVUvAjIiIiIiIiIrJKKfgREREREREREVmlFPyIiIiIiIiIiKxSCn5ERESWiZmdN7M/MbM3zGzazP7OzMoK1z5qZifMLGpmr5jZ7sL5z5nZ3y/6jLNm9r8XHQ+Z2T1L/suIiIiIyIqk4EdERGR5fRI4CGwBdgN/YGb3At8D/ghYD3wT+ImZecBh4GEz85lZI1AK7AMws3agAnhjyX8LEREREVmRFPyIiIgsr79wzo045yaBvwfuAZ4Bvumce805l3XOfR+YA97vnDsHxArvewR4Hhgxs23AB4Fu51xuGX4PEREREVmBSpZ7ACIiImvcxUWvE0AjsA74rJn960XXSgvXIF/18yGgs/A6Sj702Vc4FhEREREBVPEjIiKyEg0BX3HO1Sz6E3TO/U3h+kLw83Dh9WHywc8HUfAjIiIiIoso+BEREVl5vg38CzPba3khM/uImVUWrh8GHgXKnXPDQDf5PkHrgZ7lGbKIiIiIrERa6iUiIrLCOOdeN7MvAH8JdAFJ4FfAy4XrfWY2Sz7wwTk3Y2bngEvOuewyDVtEREREViBzzi33GERERERERERE5A7QUi8RERERERERkVXqlpZ6mdlB4GuAH/iOc+6/3pZRiYiIyE0zs4eBn13hUjn5ZWM6r/Or4TzOuYornRcREZHfuumlXmbmB/qAx4Fh4BjwGefcmds3PBERERERERERuVm3stTrQaDfOXfOOZcG/hb42O0ZloiIiIiIiIiI3KpbWerVBAwtOh4G9r7XD5iZOkmLiIiIiIiIiNxe4865+itduOPbuZvZM8Azd/o+IiIiIiIiIiJr1ODVLtxK8HMBaFl03Fw4dxnn3LeAb8Htr/gxs4V73M6PFRERERERERFZFW4l+DkGdJnZFvKBz6eBf3xbRnUFZkYgECj+8TyPyspKABKJBPF4nFQqRSaTIZvN3qlh3LKFsGqBQisRERERERERuVNuOvhxzmXM7F8Bz5Pfzv17zrnTt21kiyyEPuvWraOmpobq6mpqa2tpackXHF28eJELFy4QiUSIxWIkk0nS6fSdGMpNMzOCwSChUAjP8/D7/WSzWSYmJkilUuRyueUeooiIiIiIiIisMje9nftN3ewmlnr5fD4qKyupqqpi+/bttLe309DQQF1dHU1NTTjnGBsb4+zZswwMDHDhwgVGRkYYHR290bG9qxoH8hU5t+M78jyP7du3s3v3bpqamggGg8zOzvLss8/y9ttvE4/Hb/keIiIiIiIiIrImHXfO3X+lC3e8ufP1MDNKSkrwPI9MJsP8/DwAZWVlNDQ08KlPfYodO3YUQ5OSkhLi8TiJRIJsNsvdd9/NwYMHicfjvP322zz//PN885vfJJPJXNf9S0tLqa6uprq6+rLzuVyOVCrF+Pj4LVcQrVu3jvvvv5+DBw/S1tZGKBQiFosxNTXFzMwMqVRqRS9RExEREREREZHfPSsi+CktLWXDhg00NDQwPj7O1NQUPp+P1tZWdu3axdNPP82mTZuoqqrCzJiYmODEiROEw2ESiQSVlZXce++9tLS00NjYSFNTE57nkc1mr1mtU1JSQn19PQ888ADbt2/H7/cD+UqfdDrN6Ogohw8fZmho6D0/5714nseHP/xhPvnJT7Jv3z7Kysrw+Xzkcjm+8IUvcPHiRWKxGNPT01ryJSIiIiIiIiK3zbIHP57nsW/fPg4cOEBHRwcnT55kZGSEmpoaHnvsMZqbm2lubiaRSNDd3c3p06cZGBjg+PHjRKNRnHM0NDTgeR6tra20tLRw4MABDh06xMmTJ4lGo1es/PH5fASDQXbv3s1jjz3GwYMHiz2DFmSzWcbGxujo6ODrX/8609PTN1yVs9Dbp62tjY0bN1JeXo7P5yuOobq6mvLyckpKSq641Oxqn2lmt20ZmoiIiIiIiIisTsse/JSUlNDR0cGePXvo6OigurqaS5cuUV1dzX333UcoFGJiYoLz589z5MgRjh07xsjICENDQ8zNzRVDlHg8jplRUVFBS0sLHR0dDA4OEovF3hX8lJSU0NDQQEtLC48//jgf+chH6OjoIJFIEI1GqaiooLKyEs/zqKqqKgZJp0+fJhaL3VBVTmlpKevXr6e9vZ3169cDkEwmixVEZkZ1dTWVlZXEYrFrBkslJSVs27aNuro6otEoly5dKjaIFhERERERERFZbFmDHzPD7/dTV1fHxo0bqa+vx/M8kskknudRXV1NKpXil7/8Jb29vbz66qucPXuW2dlZkslksdolm82SyWTI5XLFZtCdnZ2cOXOGS5cuMTc3d9l9Kyoq2LlzJzt37mTv3r10dXUxPz/PyZMnuXDhQnHHsIXlZVu2bKGzs5NwOEw8Hr+h4KeiooLm5mYaGxsJBoOk02kmJyc5evQozjm2bt2K3++ntLS0uMzsvb6vqqoq9u/fT3t7OwMDA7zxxhskk0kFPyIiIiIiIiLyLste8WNmlJWVEQwGKS8vp6ampriMKZ1OMzExwQ9+8AP6+vquWtmSyWRIJBIkEglyuRylpaXs2LGDM2fOMDAwwOzsLM45zIzS0lLuuusuDhw4wLZt2+jq6sLv9zM8PMzhw4c5f/48FRUV7Nixg127dtHZ2UltbS0bNmygrKzsupdjQX4pV0tLC7t27aKuro5sNkskEqGvr49f/OIXOOdIJBJEIpFrbum+MPauri4effRRNm/ejN/vZ2hoiEAgcFPfvYiIiIiIiIisbsse/LzTQv+abDZLMplkcnKS0dFRpqamrriz1sLOW5cuXSISiVBfX09VVRVNTU00NTVRVlYG5EOY8vJympqa+NKXvsTBgwepqqrC7/cTjUYZGhriyJEjDA0NEY1G6erq4qGHHuLxxx/n4YcfJhQK3XAfnmAwyMc//nGefPJJ2tvbCYfDdHd389JLL/Hss8+Sy+V44YUXmJ2dJZ1O45wjEAiQy+XeteQrEAjQ0NDAF7/4RZ588knm5uZ4+eWXmZqaeldFk4iIiIiIiIgIrMDgxzlXrIw5dOgQhw4dIhwOX7a0653vn52dJRwO8/bbb9PS0kJVVVWxT8/C8qmysjLa2tp46qmnePrppwmFQmSzWVKpFIFAgA9+8IM0NTUxMDBAX18fTU1NdHZ2snnzZrLZLDMzM2QymetqpmxmeJ7Hxo0beeqpp9i6dSue5zEyMkJPTw+//vWvSSaTAFy8eJGqqio6Oztpb2+nsbGRvr4+uru7i+GPmREIBFi3bh179+6lrKyMqakpBgcHGRwcZHZ29jb+GxARERERERGR1WLZgx8zKzZohnyQk0qlituoHz9+nLm5ufcMXJxz5HK593xPIBCgpqaGDRs24Hke6XSa6elpotEoPp+PtrY22tvbqa+vZ9u2bQSDQaqqqggEAkxMTDA8PMzs7Ox19/dZWJq1UCkE+eqkhV5Ei9XU1NDV1cWDDz7Itm3bqKys5LXXXiOVSr3rd/L5fMVwLJvNXvP3FhEREREREZG1a1mDn5KSEqqqqmhra6OiogK/308ymeTChQv09PTwyiuvMDw8fMNbqF/pPvX19ezfv58HHngAn89HT08Px48fZ3R0lA0bNvCJT3yiGApVV1eTy+XI5XKMj4/z6quv0tPTQzQavaHGzpAPanw+H6lUikgkwujoKIlE4rLr27Zt4wMf+AB79+6lsbGRXC7HD3/4Q8bGxoq9iRYaYZsZ8Xic4eFhJiYmrhmKiYiIiIiIiMjatWzBj5lRUlJS3PUqFArh8/mYnZ1leHiY/v7+d4UkN8vzPFpaWti3bx9dXV0kk0mOHDnCyy+/zMjICOvXr8fzPPbt20coFCISiRSrgYaHh/nVr37F6OjoVUOWYDAIcMUGzQs9gebm5hgfHycSiRSXecFvt5ZvbW1l06ZNhEKhYhPphZ9d+K48z8Pn85FIJBgZGWFycpK5ubkbDqNEREREREREZG1YtuDH7/cTDAaLW7mXlZWRyWQYHBzk5MmTvPnmm1ft63OjysrKaGho4K677mLdunVEo1GOHTvGiRMnGB8fp6ysrLi8rLa2lv7+fiYmJpicnGRsbIz+/n7i8fi7PndhR7Ldu3cDcPbsWaanp8nlcsWwZnHwE4vFiEajlzVjrqurY/PmzcXvIJlMFregX/jdg8EgGzdupL29Hc/zGB8fJxwOMzU1xfz8/C1/PyIiIiIiIiKyOi1b8ON5HvX19WzdupUNGzZQUlLCzMwM3d3dPPfcc/T29t62UGNxxYzf7ycejxd370omk8zOztLd3c1vfvMbPM9jenqa+fl5stkszrkrhk8LPXw2bNjAM888g9/v59vf/jZnzpwhHo8TCAQIBoOX9fdJpVKkUqni0jWfz8fu3bvZv38/27dvJxAIMDg4SDgcLvYT8vl8NDY28sgjj3DgwAFqamp45ZVXOHXqFJOTk7e8DE5EREREREREVq9lC35CoRBNTU10dXURCoUASCQShMNhBgcHiUajt+1euVyOdDpNIpEgk8kUl5h5nkc8HiebzZLJZIr3vJ6lUwufsWnTJvbs2UMgEOCll15idHSUbDZLeXk5tbW1xeVZ79wGfiGM2rJlC42NjVRVVRW3dF/csNnv99PQ0MCuXbvYvn07AH19fZw7d46ZmRn19xERERERERGRq1qW4GdhF60DBw5w4MABSktLSSaTTE1NMT4+zszMzA1X+ywOVxaqdBaqYWKxGG+++SYvvPACZkZnZyef//zn6e7upru7m1OnTpFOp68Z+CxU+WzcuJG7776bhx56iJ07d7J161b6+/uZmppidna2uExrcnKy2PfH7/dTVVXFhg0bCAQC1NbW0tHRwRNPPEFjYyOBQIBsNktpaSlVVVV4nkcul2PdunW8733v49FHH6WtrY1IJMLPfvYzent7icViN/cvQERERERERETWhGVt7rwgmUwyPj5e7K1zow2L/X4/nufheV5xaVUikSguq8pkMly4cIEXX3yRUCjE1q1befTRR9m6dStbtmzhueeeo6+vj0wmQzqdxsyKW6l7nkcoFCpWKG3fvp09e/awY8cOmpubKSsrIxaLcejQId566y2mpqbIZDLF3bcymQwAtbW1PPHEE7S3t+Oco7m5mZqaGpqbmwkGgzjnCAQCNDY28thjj3H06FHOnTvHxo0b2bVrFw0NDQCcOnWK4eFh4vG4mjqLiIiIiIiIyHtaluAnl8sxMjLCkSNHiMfjtLe3MzQ0xKlTp3jrrbduqKmzz+ejsrKS1tZW2tvbqaysxDnH6dOnOX36dLFXztzcHJFIhJGRETKZDNXV1QQCAe677z6SySSNjY0kEgmmp6cpKSlhYmKCTCZDbW1tcSlWa2srO3fupKOjg/r6ekpLS0mlUvT29tLT08Pk5ORllUoLW8LncjkCgQCtra3U1tZiZtTW1lJaWlrcwt45R2lpKcFgkJaWFj70oQ/R2tpa7INUXl5OJpNhYGCAWCxGJpPRMi8REREREREReU/LVvEzMTHByZMnGR8fp6GhgYsXLzI8PFwMXK7Xws5adXV11NfXU15ejnOO4eFhhoeHSaVSAMzPzzM+Pk5vby8DAwN0dnbieR7t7e2UlJSwY8cOkskkMzMzxeAnm81SXV3Npk2bKC0tpbq6mvXr11NWVkYkEuHixYtcvHiRI0eO0NPTw+zsLM45zIxcLkcikeCtt94il8tRX1+P53nU1dVdttPX6OgoAwMD+Hw+mpub2b59OxUVFezfv59t27ZRUVFBQ0MDzjkmJiY4ceIEiURC1T4iIiIiIiIick3LFvykUikikQgzMzOEw2GSySTJZJJ0On3Dn+X3+wkEAgQCAcyMdDpNNBpldna22OcnnU4TiUR47bXXeO6553jqqaeorKws7pq10GfHOUcqlSpWCnmeR3l5Oel0ujjWRCLB4OAgJ06c4Pz585w4caK4jTvkewxlMhlmZmZ4/vnnuXDhAjt37mTz5s3Fip+JiQmmpqY4evQo3d3deJ7H/v37aWtrIxQKsWvXrmKvolQqxdTUFAMDAxw9evSmviMRERERERERWXuWLfhZvL357djBa6GKZmF3rr6+Pqanp4vBz0KAMjw8zDe+8Q36+/upra0thkWBQIC77rqL9evXc+bMGaLRaLHyyDlHLBZjaGiIs2fPMjs7SyKRKL7nStU32WyWWCzG4cOHCYfDhMNh7rnnHtra2vD5fPT19REOhzl27Bh9fX0Eg0Fqa2sZHR2lsbGRYDBINpslnU5z6dIlBgYGeOONN5iYmNASLxERERERERG5LtcMfsysBfhroAFwwLecc18zs/8EfAG4VHjrl51zz92pgV5LLpdjfn6eRCLB2NgYAwMDzMzMvGvZmHOOkZERfv7zn1NaWloMjDzPe1fws7iyJpPJEI/HmZmZIZvNFnv3vJf5+XnOnDlDb28vL774IlVVVYRCIXw+HzMzM8Tj8eIOYH6/n0gkQjQa5ZFHHuHBBx/k7NmzDAwM8Prrr9PT08P4+DgTExO3/8sTERERERERkVXpeip+MsAfO+d+bWaVwHEzO1S49lXn3J/dueFdm3OO6elpjhw5QjqdJhgMcv78efr7+6/aJDqdTjM8PHzZzmIA/f39+Hw+5ufnrxjqLCy9upkxzs3NMTk5WaxuyuVyxWokyAdLExMTvPrqq0SjUcLhMP39/YTDYQYHBxkbGyOdTqvaR0RERERERESu2zWDH+fcKDBaeB0zs16g6U4P7HrlcjmSySRnzpwhFosRCoWIRqPFSpqruVKIMzc3d0fHms1mLwt73imZTHL+/HkikQjHjx8nmUySSqWYm5tjfn5eoY+IiIiIiIiI3BC7kTDBzNqAl4FdwL8H/gCYAV4nXxU0dY2fvyPJhZkRCoUIBoMEAgEymQxjY2N34lZLZqEaSWGPiIiIiIiIiFzDcefc/Ve6cN3Bj5lVAIeBrzjnfmxmDcA4+b4//wXY5Jz751f4uWeAZwqH993E4EVERERERERE5OpuLfgxswDwU+B559yfX+F6G/BT59yua3yOyldERERERERERG6vqwY/vmv9pOXXHH0X6F0c+pjZpkVv+zhw6lZHKSIiIiIiIiIit881K37M7ANAN3ASWNjq6svAZ4B7yC/1Og/8UaER9Ht91iUgTn6JmIisXHVonoqsdJqnIr8bNFdFVj7NU1kNWp1z9Ve6cEPNnW8HM3v9auVHIrIyaJ6KrHyapyK/GzRXRVY+zVNZ7a651EtERERERERERH43KfgREREREREREVmlliP4+dYy3FNEbozmqcjKp3kq8rtBc1Vk5dM8lVVtyXv8iIiIiIiIiIjI0tBSLxERERERERGRVWrJgh8zO2hmb5lZv5n96VLdV0QuZ2YtZvYPZnbGzE6b2ZcK59eZ2SEzO1v4Z23hvJnZXxTm7htmtmd5fwORtcXM/GbWY2Y/LRxvMbPXCnPy78ystHDeKxz3F663LevARdYIM6sxsx+Z2Ztm1mtm+/RMFVl5zOzfFf7ue8rM/sbMyvRMlbViSYIfM/MDfwU8CewAPmNmO5bi3iLyLhngj51zO4D3A/+yMB//FPiFc64L+EXhGPLztqvw5xngG0s/ZJE17UtA76Lj/wZ81TnXCUwBf1g4/4fAVOH8VwvvE5E772vAz51z24D3kZ+veqaKrCBm1gT8G+B+59wuwA98Gj1TZY1YqoqfB4F+59w551wa+FvgY0t0bxFZxDk36pz7deF1jPxfUJvIz8nvF972feAfFV5/DPhrl/f/gBoz27S0oxZZm8ysGfgI8J3CsQG/B/yo8JZ3ztWFOfwj4EDh/SJyh5hZNfAI8F0A51zaORdFz1SRlagEKDezEiAIjKJnqqwRSxX8NAFDi46HC+dEZBkVylbvBV4DGpxzo4VLF4GGwmvNX5Hl89+B/wDkCsfrgahzLlM4Xjwfi3O1cH268H4RuXO2AJeA/1FYkvkdMwuhZ6rIiuKcuwD8GRAmH/hMA8fRM1XWCDV3FlmjzKwC+D/Av3XOzSy+5vLb/WnLP5FlZGYfBSLOuePLPRYRuaoSYA/wDefcvUCc3y7rAvRMFVkJCn22PkY+rG0EQsDBZR2UyBJaquDnAtCy6Li5cE5EloGZBciHPv/TOffjwumxhXLzwj8jhfOavyLLYz/wtJmdJ79E+vfI9xKpKZSpw+XzsThXC9ergYmlHLDIGjQMDDvnXisc/4h8EKRnqsjK8hjwtnPuknNuHvgx+eesnqmyJixV8HMM6Cp0TS8l30jrJ0t0bxFZpLA++btAr3Puzxdd+gnw2cLrzwL/d9H5f1bYieT9wPSi8nURuUOcc//ROdfsnGsj/9x8yTn3T4B/AH6/8LZ3ztWFOfz7hferykDkDnLOXQSGzGxr4dQB4Ax6poqsNGHg/WYWLPxdeGGu6pkqa4It1X+/ZvYU+V4FfuB7zrmvLMmNReQyZvYBoBs4yW/7hnyZfJ+f/wVsBgaBTzrnJgsPx78kXw6bAD7nnHt9yQcusoaZ2YeAP3HOfdTM2slXAK0DeoB/6pybM7My4Afk+3ZNAp92zp1bpiGLrBlmdg/5BuylwDngc+T/56qeqSIriJn9Z+BT5He47QE+T76Xj56psuotWfAjIiIiIiIiIiJLS82dRURERERERERWKQU/IiIiIiIiIiKrlIIfEREREREREZFVSsGPiIiIiIiIiMgqpeBHRERERERERGSVUvAjIiIiIiIiIrJKKfgREREREREREVmlFPyIiIiIiIiIiKxS/x/9NWqTonpQoAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAApa0lEQVR4nO3deXDb533n8fcDECBI8L4P8RBJSaRuyros29HhS4edNLbTxNk6SbtrZ9tmmqTHJulkpruTdjeZSZ1m4zbdNNG6SdM4XjexbFeOnFiqrVi2rsgSqYsS70MUb4IAeAF49g+CCG3LOkjq9Oc1wxHx+wHP7wcCv4Hx8ff5PsZai4iIiIiIiIiI3Hoc1/sERERERERERETk6lDwIyIiIiIiIiJyi1LwIyIiIiIiIiJyi1LwIyIiIiIiIiJyi1LwIyIiIiIiIiJyi1LwIyIiIiIiIiJyi1LwIyIiIiIiIiJyi1LwIyIicgMxxjxtjPnrGTz+PxljXrnI/v8wxvyXaY497ceKiIiIyPWh4EdEROQWYq39sbX2vut9HiIiIiJyY1DwIyIiIiIiIiJyi1LwIyIich0ZY6qNMb8xxgwZY34KeKbse8AY87YxZsAYs88Ys3TKviJjzM+MMd3GmF5jzFPR7Z8xxvx6yv3uNcacMsYMRu9j3nX8PzDGnDTG9BtjdhljSi73sSIiIiJy41PwIyIicp0YY9zA88CPgAzg/wEPR/dVA9uBzwKZwP8BXjDGxBtjnMBLQDNQChQCz1xg/CzgZ8BXgSygHrhjyv6PAH8JPARkA3uBn1zOY0VERETk5qDgR0RE5PpZC7iAv7PWjltrnwMORvc9Afwfa+1+a23YWvvPwGj0MauBAuAvrLUBa+2ItfbXFxh/K3DcWvuctXYc+Dugc8r+/wr8L2vtSWttCPifwPJo1c+lHisiIiIiNwEFPyIiItdPAdBurbVTtjVH/y0B/iw6zWvAGDMAFEUfUwQ0R8OaS43fOnkjepzWKftLgG9PGb+PielchZfxWBERERG5CSj4ERERuX7OAYXGmKm9c4qj/7YCf2OtTZvyk2it/Ul0X7ExJu4yxi+avBE9TtGU/a3AZ991jARr7b7LeKyIiIiI3AQU/IiIiFw/bwIh4E+MMS5jzENMTOMC+Cfgvxpj1pgJXmPMNmNMMnCAiWDm69HtHmPMhfrv/DuwyBjzUDQk+hMgb8r+fwS+YoxZBGCMSTXGfOwyHysiIiIiNwEFPyIiIteJtXaMicbKn2FimtXHmWiojLX2EPA48BTQD5yN3g9rbRh4EKgAWoC26GPfPX4P8DHg60AvMA94Y8r+nwPfAJ4xxviAWmDL5TxWRERERG4O5p1tBURERERERERE5Fahih8RERERERERkVvUjIIfY8xmY8xpY8xZY8yXZ+ukRERE5MZljPlHY4z/Aj/aru3XdPv1vhZERERuBtOe6mWMcQJ1wL1M9BY4CDxqrT0xe6cnIiIiIiIiIiLTNZOKn9XAWWttQ7Q55TPAR2bntEREREREREREZKbiZvDYQqB1yu02YM3FHmCMUSdpEREREREREZHZ1WOtzb7Qjqve3NkY84Qx5pAx5tBsjOdyufB6vRhjZmM4uQ6SkpKIi5tJ5nhj83g8eDwevUdFRERERETkWml+vx0z+fbdDhRNuT0nuu0drLXfA74HM6/4mTNnDnfccQcrV67k1Vdf5Re/+MVMhpsWh+PCWVkkEpm1YxhjYqGBMQaXy4XH48HlcjE4OEgoFJrV4wF4vV48Hg9Op5Px8XGGhoYIhUKzegxjDIsWLeLxxx/n8OHD/PrXv6ahoWFWj3E5LvQaWmuZbr+rqebPn8+DDz6I2+1m7969/PrXv57xmCIiIiIiIiLTNZPg5yAwzxgzl4nA5xPAJ2flrN5HcXExd955Jxs2bKC9vf2aBT9Op5OkpCTi4+MpKCiIBSTGGKy1jI+PU1dXRyAQIBQKTStAcLlcuN1uPB4PWVlZZGf/tkIrNTWVrKwskpKSqK2tpbOzk5aWFkZGRmYlrDDGUFVVxbx580hLS2NgYIADBw5QX18/47GncjgcVFdX8+EPfxhrLSdOnLgmwY8xBo/HQ0JCAomJiRQUFOByuWKvXzgcZmBggPb2doLBIOFweNrHqqqq4t577wWgra1NwY+IiIiIiIhcV9MOfqy1IWPM54BdgBPYbq09PmtndgHZ2dkUFxeTlZVFQkLC1TxUjMPhwOPxUFFRQUZGBmvWrCEjIwOXywVMVPr4/X6effZZWlparrhSxuFwkJycTG5uLnl5eeTk5FBeXk5FRQUOhwNjDKmpqeTk5JCSksKBAwc4ceIEO3fupKWlheHh4Rk/x7i4OFauXMk999xDSUkJ586dIxgM0tjYOOuVTGVlZeTk5JCcnHzNpnu53W7y8/PJy8sjNzeX1atXx6YLWmsZHR2lvr6e3bt309bWRjAYnPaxioqKKCgoYHh4GI/HM4vPQkREREREROTKzeibt7V2J7Bzls7lkuLi4q5pb5i4uDgSExPJzs7mnnvuoaCggBUrVpCZmRmrGAmHw/j9fk6cOMHw8DCjo6OXHfy43W7i4+NZsWIFmzZtYt26dcydO5e0tDRSUlIACIfD7/iZP38+nZ2dDA8Ps3PnTlpbW2dc9eP1eikqKqK4uJiysjKSkpIoKyub9R41xhji4+Ovae8bj8dDeno61dXVLF26lMLCQm677Ta8Xi8OhwNrLSMjI9TU1NDW1sbQ0NCMgh+Xy4XT6ZzFZyAiIiIiIiIyfTdNh12n08mSJUtYuHDhVT+Ww+HA5XIxd+5cbrvtNpYtW8anPvUp0tLSYoHPVOFwmEceeQSPx8OePXtobGy8aBgzOfUoPz+ftLQ0Nm7cyKZNm1i4cGEs8JmcgtTf38/g4CDDw8M4HA4WLVpEbm4uJSUlJCcnz/i5ejwetmzZwrZt2ygtLSUhIYHu7u4Zj3shbrebe++9N1YtdTU5nU7i4+PZtGkTS5Ys4f7772fp0qV4vd73HN9aS0pKCiMjIzidTl588cVpVTo5nU7uuOMO8vLyOHv27Gw9FREREREREZFpu2mCH/jtaklXW1paGhkZGaxevZotW7ZQWVlJWloaTqczFghMTsOCiS/8xcXFlJaWkpKSEptC9G7GGLxeL6WlpfzO7/wOW7duJTU1lezsbFwuF6Ojo5w5c4bTp09z4sQJ/H4/tbW1tLe3k5yczEMPPURVVRWBQICOjg78fv+MnqfL5WLBggV84QtfYMGCBcTHxxMKhRgbG5tR1cvFJCcnX/WKH5fLRXp6Ojk5OWzdupUlS5ZQXl4eq/IJh8MYY2JNno0xJCUlUVpaSklJCQ6HY9pT3G71FctERERERETk5nLTfUN9v1BltrjdbhYuXMi8efNYt24dy5cvJycnh0gkQiAQiAUiXq+XlJSUWHgw2Tj4/b70G2MoKipizZo1bN26lY0bN+JyufD5fLzxxhucPn2a+vp6mpub6erqoqenh3A4TCAQYHx8nMLCQvx+P729vRw7dozf/OY39Pb2zuhv4Xa7KSkpIT8/P1YFMz4+zuDgIJ2dnVfl73y1Qx+n00lKSgrV1dVUVVWxevVqCgsL8Xq9jI2NMTIyQjAYJC4ujuzs7Njr5XQ6Y6/hTGkZdxEREREREblR3DTBj7WW/v5++vv7SUxM5Ny5c7M29uSS6ZNTqB599FHmzZtHUVERmZmZBAIBXn/9dVpaWggEAmRmZrJ48WKqq6uJj4/HWsv58+djTZHfHZi4XC6Sk5O57bbbeOCBB/jQhz6E2+3mhRdeoL6+npMnT9La2kpfXx+Dg4OMjY0xNjYWW2LcGIPP5+PEiRO8+OKL1NTU0NjYOKPGzsYY3G43ZWVlpKWlxcKKYDBIZ2cnTU1Ns75kfCQSob29ndLSUrq7u2dcsTSV0+mMVfksWLCARx55hLlz51JcXEw4HKampoaGhga6u7sZHh5m7ty5bN68meTkZBwOB8PDw3R2ds4o8Jp8HwQCAfx+/1WbMiciIiIiIiJyuW6q4Kerq4vu7m6KiooYHx+flXEnA5DU1FSWLVvGsmXL2LhxI4WFhRhjGBwcpLGxkZdeeommpiaSkpKoqqqiqKgo1nB5dHSUxsZGmpub8fl87wkOkpKSKCoqorq6mhUrVpCTk8OxY8d46aWXqKuriwVG77eMuLWWYDBITU0NQ0NDtLS00N/fP6Nlxx0OB16vl7Kystj0ufHxcVpaWjh27BgdHR3THvv9hMNh6uvrWbt2LePj47NWUeR0OvF6vZSXl1NVVUV1dTUbNmwgIyODQCBAe3s7b775JgcOHKCvr4+0tDQSExNjr18oFKK/v5+Ghgaam5unHXhZa2lpacHv9xOJRGbtPSoiIiIiIiIyXTdV8NPX10dfX1+sl85sSEhIIDMzk7lz53LfffdRWVlJXl4e8fHxdHd3c/r0aY4cOcLhw4cZGxvjrrvuoqKigtzcXCKRCH19fXR1dXH06FEaGxvfUcUyuYpVeXk5y5YtY8mSJeTk5ODz+di/fz81NTV0d3czMjJyybBheHiYpqYmurq6CAaDjI6Ozuh5x8fHk5uby/z582OrW/n9fo4dO8bevXsZGBiY0fgXEolEaGtrIxwOk5SUNCtNno0xpKenM2fOHNatW8eKFSuoqKggIyMDh8NBY2MjR48e5eDBg5w6dQqPxxO7T1xcHH6/n4GBAerq6qipqZnRKmnWWjo7OwkGg7jdbpKSkmb8/ERERERERERm4qYJfqYaHx+flaleLpeL+fPns379eu666y62bNmC2+0GwO/3c+DAAZ599llOnjyJy+Vi9erVfOYzn6GiogJrLQ0NDbz99tvs3r2bV155hYGBgXdUebjdbhYtWsQf/dEfsXLlSubMmYO1lsOHD7N9+3ZaWlouO2QIh8MMDAzMSiBjjCEzM5NVq1ZRXV2Nw+EgFArh9/tpbGzkzJkzV71apaenZ1YaSE+uFLZhwwbWr19PaWkpcXFxRCIR+vv72b59O0eOHGFkZITc3FxWrFjBE088QU5ODufPn6empobDhw+zf/9+Dh06xNDQ0Cw8OwgEAvT09MzKWCIiIiIiIiLTdVMGP3FxcaSlpc1ojMmpTpWVlaxfv55ly5bh8XgwxjA2NharBAkGg2RmZrJ+/XqWLFnC3Llz8Xg8NDU18eabb7J3714OHjxIb28voVAoNr7L5aKkpIRvfvObrFy5EpfLRV1dHa+99hovvvgip0+fvqpNqi8mMTGR+fPns23bNjIzMwEYHBzkzJkzsalKV1tycnIsZJuuuLg4UlNT2bRpE6tXryY/Px+32421NjZ9q7+/n4SEBJYsWcLixYtZuHAhOTk5ABw+fJi9e/fy9ttvU19fz+Dg4Kz1NYqPjyc5OXlWxhIRERERERGZrhs6+JlccntqLxtrLT6fj4MHD0573MlpTosWLeKee+5h3bp1pKenxxocT/afWbVqFUuWLCE+Pp6CggLi4+Pp6+vj+PHj/OpXv+LnP/85586dIxAIvCP0gYkpZMuWLaOyspL+/n5OnTrFz3/+c375y1/S1tY246laM+HxeMjPz2fBggU4HA7GxsbYu3cve/bs4dChQ7MW/BhjYn/TqYGKtZbjx4/T2dk5rXGdTieJiYnk5uayatUq7r77bnJzc4mPj4+NPz4+jjGGL37xi7hcLjIyMmLTAzs7Ozly5AhPPvkkTU1N+Hw+RkdHpxX6OBwOjDHveY92dHRQW1s7recnIiIiIiIiMltu2OAnOzubBx54gFWrVrF9+3aOHz8O/LZvTl5eXmzblcrMzKSqqoqVK1cyb948UlJS3tFvxu12k5KSQmJiIg6HA5fLhdPpZHh4mLq6Og4dOsSRI0dob28nEAi8JzBwuVzk5ORw9913k5qayr//+7/zq1/9ijfeeIPW1tbrGvoYY8jOzqaoqCgWhPT29rJjxw4OHTpEa2vrjJpGT7V161ZWrlyJz+fj5Zdfpr6+PnYOmZmZeL3eaU2HSkhIID8/n0WLFrF27VoyMjKIj4/H4XDExo+PjyczM5OsrKzY6zc5/evo0aPs3buXxsbG2PS86VRfLVq0iA0bNlBeXs4Pf/hDjh07FtuXlJREZmYmZ8+eveJxRURERERERGbLDRn8ZGdnc8cdd/DpT3+a8vJykpOT+f73vx+b3uV2uyksLJzW2C6Xi1WrVsWmd5WVleF2u2OVKTAxhSgxMZFIJEI4HGZsbIyTJ09y+vRp9u7dy+nTp2lsbCQYDF6wSmRyKtqCBQtwuVycO3eO+vp6zp8/f11Dn8lzy8rKoqCggMTEROC3jaMnq5dmw9KlS/n4xz/ObbfdRjAYpLCwkKeffjq2PycnZ1pToRwOBwUFBdxxxx3cfvvtrFixIhbQvfs1TE5Ojq2u1d7eTktLC3V1dbz++uucOnWKwcHBaYc+paWl3Hffffzu7/4ueXl5pKen861vfSv2XkpOTiY3N/eKxxURERERERGZTTdc8ON2u1m8eDHbtm2juLiYvr4+Pvaxj9HT04Pf78ftduN0OmO9aa6Ew+HA4/Gwbt06NmzYQElJCcnJybFKkUnGGOLi4hgZGWFoaIiuri727NnDm2++ycGDB+nr62NsbOx9K2OcTicej4esrKzYVKqRkZFZq6SZrskpTxUVFVRUVMSmRk2e32wtsZ6QkMDDDz/M4sWLcTgcZGdn8+ijj9Lb20tCQgIOh4O0tLTYMvJXwu12U1JSwp133smdd95JUVERcXHvfRtPBkEDAwP09/dz5MgRDhw4wNGjRzl06BCBQGDaDaw9Hg8bN25k/fr1ZGVlEQwG+eQnP0lDQwMJCQnExcWRkJAw4z5UIiIiIiIiIjN1wwU/GRkZrF+/no0bN/LjH/+Y2tpavvOd7/DII49w9uxZkpKSYsHKlTDG4HK5SE9PZ/78+WRnZ8cqRSKRyHsCj/HxcTo7Ozl79iz19fXs2bOHU6dO0dPTw9jY2EUDksljTSfYuJpSU1NZvHgxH/rQh1ixYgUulwtrLf39/QwPDxMOh2cc/BhjKCws5A//8A954YUXOHLkCBUVFXz605/miSee4ODBgzgcDtxu9wUDm4uJi4sjKSmJwsJCysrKyMzMjDVznvyZZK1ldHSUU6dO0dDQwL59+zhy5AgtLS34fL4ZNXHOy8vjoYceIjU1laeffprOzk7+9m//lscff5yjR4/i9XoZGhqKBWsiIiIiIiIi18sNF/wUFxczZ84cfD4fzzzzDKdOnWLbtm08+OCDrF+/HoDz589f8biTfXfWrFkT6wsTFxdHMBjE7/cTDAZjDZpDoRADAwPs3r2b559/ntbWVnp6ei47LIhEIrGVwWCi30tqaup1DwJSU1OZP38+FRUVZGRkYK0lEAiwa9cuOjo6GBkZmXHw43Q6WbJkCQkJCbzyyivs3r2bxYsXU1lZyf33309JSQnAO6ZlXcn5L168mDVr1rB06VJSU1MxxtDX1xer4JkM8cbHx+nu7uZrX/sa9fX19Pb2EgwGZ6WiqbKykqysLI4fP84zzzxDb28v9913Hw8//DBz5swBpvceFREREREREZltN2Twk5ycTFNTEydPniQSifDnf/7nBAIBtm3bFvtifaU8Hg8FBQUsWrSIpKQk4uLiCIVCtLa2UlNTQ3t7O0NDQ8BEtYjf76e2tpbGxsYrrhAZGRmhubmZl19+maqqKjZv3kx+fj7PPfccu3btoqura1rPYarJ6WnvrnS52P2rqqpYunQpOTk5GGMIBoPs3r2bf/3Xf6W/v39WljJ3OBwsXbqUc+fOceLECXp6enjrrbf4yle+QiQSYcuWLdMeOysri4qKCubMmUNiYiLGGMbGxjhw4ABNTU2xnj0A4XCYwcFB6urq6O3tZXR0dFZCH4AFCxYwNjZGfX09DQ0NAHz+85/H5XJx77334vV6Z+U4IiIiIiIiIjN1wwU/GRkZpKenMzw8HAsienp6+O53v0taWhoPPPAAHo+Hqqqqyx7TGENaWhrLly9n9erVJCQkEIlEGBgY4PXXX+enP/0pLS0tDA8PAxMVO5FIhNHRUYaHhzHGkJ6ejsvlYnBw8JJTvcLhMH19fezatYuPfvSjzJ07l9TUVEZHR/H7/ezcuXPaTZ7j4+PJzs7m9ttvZ2RkhDNnznD27Nn3LCf/bunp6dx///3cfvvt5OXlYYxhZGSEmpoaOjo6Zq3/kNPppLCwELfbHds2OjrKmTNn+MY3vsHq1avJyMigtLSU7Ozsyx53MrhatWoVZWVluFwuQqEQ3d3d/NM//RN1dXX4/X5CoRDW2thrODQ0RDgcxuv1xiquBgcHL/n3upj8/HySkpIAYu+D7u5uvv71r1NWVkZlZSUZGRmUlZVN+xgiIiIiIiIis8Fx6btcW8FgkNHR0Xes0hSJRDh79ixvvfUWp0+fJjExkbVr11JcXHzZU4Ymp19NBgNTt032tzHGEIlE8Pv9jIyM4HK5yMrKIi8vj6qqKpYtW0ZaWtpl9aYZGxujra2NM2fOEIlESE5OZu7cucybN2/aTX/j4uLIzMxk4cKF3HvvvWzcuJGqqqpL9hJyOp2x5euLiorwer2Ew2F8Ph/19fWzutLYZKDmdDpxOp3ARDgSDAapqanhtddeY3x8nMWLF7Nw4UKysrIue+xQKMTY2FgsELTWEg6HGR4ejr2u1lpCoRB+v5/x8XHS09PJzs6mtLSURYsWUVVVRUJCwrSmmk0aHBwkEokQFxcXGyccDnP8+HH27t1LV1cXeXl53HbbbdOuUBMRERERERGZDTdcxc/kF/bs7GyKi4tpbm4GJgKhN998k4qKChYsWEBxcTGPPfYYTz31FD6f76IVOJPBQ1NTEydOnGDDhg14PB48Hg8LFixg8+bNDA4OEg6HGR0dpa2tjbi4OFJTU0lJScEYQ1JSEiMjIzQ0NMQqRi52zEgkQm9vL3v27GHp0qXk5ubGwoC6ujreeOMNhoaGCIVCF2yqPBkouFwu4uPjSUlJIT8/n4ULF1JdXc2SJUtoaGggMTExFrC8H5fLxZIlS2LT6JxOJyMjIwwMDNDY2DgrU7wmTTaLTkhIoKCggIaGBoaGhrDW4vP5ePbZZ1m3bh3Z2dmsX7+exsZGduzYccnwyVpLW1sbdXV1zJs3L1b14/V62bhxI0uXLo0Fe4FAgHPnzpGUlEROTg5OpzO2mlhXVxfHjx/HGDPtqV8+nw+HwxELBc+dOwdAIBBg586dVFZWcuedd1JVVcUnPvEJnnrqKUZGRqZ1LBEREREREZGZuOGCn8HBQUZGRsjPz2fTpk08/fTTsS/ob7/9NvPmzePDH/4wRUVFfPGLX2THjh2cOXPmksHB0NAQp0+fJjk5mU9+8pPk5OTg9XpZvXo1CxcuJBwOE4lECAQCnD59GqfTSUZGBmlpaYyPj9Pc3MypU6digcGlQoNIJILP52Pnzp3cddddLF26lKysLNatW4fD4cDlcsVCJJ/PRzAYjPWncTqdpKamxsKnyYqV5cuXs3DhQvLy8vD5fDQ3N9PR0XHRaUvGGOLj46msrCQlJSVWrTQ2NkZfXx/t7e2z1vsGJgKarq4uEhISuOuuu2htbeX48eOx6pwXX3yRv/iLvyAtLY3169cTCAR48803aW1tveS4TU1NJCYmUlFRQXV1Nenp6aSlpfHYY48RCoWIRCKMj48zODgYWwGuuLiYSCRCT08Pra2tsV4/M3nOPT09wESvn9WrV/PCCy/ExtuzZw9btmxh2bJl5OXl8bnPfY7nnnuO5ubmWf07i4iIiIiIiFyOGy74OXnyJHV1dWzevJnHH3+c559/noGBgdgUnkAgwODgIEVFRaSnp7NmzRrOnTt3yeBncmpTc3Mz3d3dpKamkpiYSHJyMklJSe+YJpSYmMjIyAihUIjx8XF8Ph8HDx6ktraWvr6+WEBzKZFIhMbGRn70ox9x1113sX79eqqqqti2bRurVq3i2LFjtLa2Ultby9mzZ+nq6opVF915550kJydTXFxMeXk5RUVFJCcn09HRwfHjx9mxYwf79u2jtbX1oufjcDhISkqiqKgoFvqEw2GGhobo7OxkbGzs8l+cyxAKhXjttdcIBoM8/PDD1NXV0djYSCAQAH4bOIVCIbxeL0VFRVRXV18y+IGJqq+Ojg46Ojro7+8nKSkJj8dDTk5OLFQJh8NkZ2eTkpISqwAKBoOcOXOGo0ePcurUqRmv7rV//346OztZvnw5Dz/8MP/xH//B4OAgQCx4CgQCZGVlkZmZye23305bW9uM+gqJiIiIiIiITMclgx9jTBHwQyAXsMD3rLXfNsb8d+BxoDt617+01u6c6Qn19PRw8OBB9u/fz4YNG3jyySf58pe/TE9PD+FwmKamJt544w0WL16MMYYvfOELHDlyhIGBgYs2KJ5s1nz+/HnOnj1LRkYGDoeD+Pj49/R7CQaDtLa20tzcTHt7O4ODg+zZs4eurq4rXuFrbGyMl19+mYMHD3Lq1CkefPBBli9fTn5+fqz/SyAQwOfzxcKruLg4cnNzcTqdhMNh/H4/nZ2d7N27l2effTa2CtnlrFTlcrmYM2cOS5cuxeVyARNTlQ4cOMDf//3f09HRcdnP5XJYa2ltbeX555/nox/9KE888QRer5d/+Zd/iU2ne/XVV6msrCQpKYnKyko++9nPsmvXrkuGd6FQiIGBAVpaWmhubiY1NTXWS2jq1K3JaqvGxkZOnjzJ0NAQx48f58yZM/T19c047Oro6GD37t3k5eVxzz338Nd//df81V/9FX19fYTDYd5++21WrFhBSUkJCQkJfOlLX+IXv/hFLMAUERERERERuVYup+InBPyZtfY3xphk4LAx5pfRfd+y1n5zNk8oFArx6quv4vf7WbBgAQ8//DBr167llVdeYffu3XR3d3P8+HEikQhOp5OKigqKi4upr6+PVV28n/HxcXp6eti+fTtvvfUWubm5ZGRk4Ha7GRwcxO/3EwwG2bdvHx0dHQwMDBAIBIhEIoyMjEx7itDo6Cg9PT0cOHAAYwznzp1j7dq1FBYW4vV6SUxMJCEh4R2PmZx21t3dzenTp3n77bc5evQo+/fvZ2Bg4LJCn8nqoXXr1pGbmxtbAn6ygXVnZ+dVqUIZHR3lS1/6EgUFBaxcuZKvfvWrPPbYY7z88svs2LGDY8eOxaq2kpOTmT9/PnPmzKG+vv6i404GOvv372dsbIx58+aRm5tLVlYWPp+PQCDA8PBw7G/d2dlJX19fbArYpfoyXa6xsTG+973vEQ6H+dM//VN+7/d+j7vvvpt/+7d/Y9euXfT19dHU1BR7jy5YsICioiICgcCsV1iJiIiIiIiIXIy50i/CxpgdwFPAHYD/SoIfY8xlHyw1NZU1a9bwyCOPsG3bttjS3MFgkPj4eBYtWhSr8vjJT37C9u3b2bdvX2xJ9ospKioiMzOTlJQU0tLScLvdDAwM4Pf7GRsbo7W1NfYl/UKNl6fDGENiYiIpKSmkp6dTUlLC4sWLKSgooKysjIyMjFgAdP78eWpra+no6KChoYHm5ma6uroYGBjA5/Nd9jkZY8jMzOSxxx7jj//4j3G5XBhj6OvrY/fu3Tz55JO0tbXN+Lm937FXrFjBpk2b2LhxI9XV1bHl10OhEJWVlSQnJwPQ39/PD37wA772ta/FGkFfTHJyMtnZ2bEeP9nZ2e94/QKBAG1tbYyMjDA2NnZVqmyMMRQVFbF27Vq2bt3K5s2bGR8fj1UUTTYnn1wp7h/+4R/4zne+Q2Nj42VPFRQRERERERG5TIettSsvtOOKevwYY0qBamA/E8HP54wxnwIOMVEV1D/DE43x+Xzs27cPn8/H4cOHSU9PJyEhgYyMDIqLi4GJ5rrDw8PU1dVx/vz5y65e6e7uZnBwMLZilsPhYHR0lPHxcSKRSGx599le7SoQCBAMBunp6aG9vZ0zZ86QlpZGQUEBKSkpsZXGent7Y42f+/r68Pv9jI6OXnQq2/sdMxgMcvDgQb773e/GKn6Gh4epr6/H5/PN2vO70LFra2sZHByktraW8vJy0tLSSEhIoKysjEgkQklJCWlpafT391NTU3PZIU0wGKSzs5Pe3l7cbnesJ9P4+DjhcDi2xHskErlqU6ustbEpXx0dHezfv5+MjAw8Hg8FBQUUFRUxOjpKaWkpIyMj1NbWXvE0QREREREREZGZuuyKH2NMEvAa8DfW2p8ZY3KBHib6/nwNyLfW/sEFHvcE8ET05m3TOklj8Hq9JCQkkJ+fz4IFCygvL+f222/H5/Px7W9/mxMnThAMBqcz/HVjjMEYg8fjweVyxfrVjI6O4vf7Z7z61OQxvF5vrLoGftvv6FoGEU6nE6/XS1JSEsuWLaO8vJyFCxeSk5NDW1sbX//61+ns7Lwm53I1TE6r83q9lJeXU15eTkVFBUuXLmVoaIivfvWrtLe3q8GziIiIiIiIXA3vW/FzWcGPMcYFvATsstY+eYH9pcBL1trFlxhn1sovHA4HBQUFDA8PX7Kxs9x4jDGkpqaSkJBAMBi8ZH+mm1F8fDxZWVkMDw/T19d3vU9HREREREREbl3TD37MxJJX/wz0WWu/MGV7vrX2XPT3LwJrrLWfuMRYWtJIRERERERERGR2zSj4uRPYC9QAk/OC/hJ4FFjOxFSvJuCzk0HQRcbqBgJMTBETkRtXFrpORW50uk5Fbg66VkVufLpO5VZQYq3NvtCOK17Va6aMMYfeL4USkRuDrlORG5+uU5Gbg65VkRufrlO51Tmu9wmIiIiIiIiIiMjVoeBHREREREREROQWdT2Cn+9dh2OKyJXRdSpy49N1KnJz0LUqcuPTdSq3tGve40dERERERERERK4NTfUSEREREREREblFXbPgxxiz2Rhz2hhz1hjz5Wt1XBF5J2NMkTFmjzHmhDHmuDHm89HtGcaYXxpjzkT/TY9uN8aY/x29do8ZY1Zc32cg8sFijHEaY44YY16K3p5rjNkfvSZ/aoxxR7fHR2+fje4vva4nLvIBYYxJM8Y8Z4w5ZYw5aYy5XZ+pIjceY8wXo//tW2uM+YkxxqPPVPmguCbBjzHGCfw9sAVYCDxqjFl4LY4tIu8RAv7MWrsQWAv8cfR6/DLwqrV2HvBq9DZMXLfzoj9PAN+99qcs8oH2eeDklNvfAL5lra0A+oH/HN3+n4H+6PZvRe8nIlfft4FfWGsrgWVMXK/6TBW5gRhjCoE/AVZaaxcDTuAT6DNVPiCuVcXPauCstbbBWjsGPAN85BodW0SmsNaes9b+Jvr7EBP/gVrIxDX5z9G7/TPwO9HfPwL80E54C0gzxuRf27MW+WAyxswBtgHfj942wCbguehd3n2tTl7DzwF3R+8vIleJMSYV+BDwAwBr7Zi1dgB9porciOKABGNMHJAInEOfqfIBca2Cn0Kgdcrttug2EbmOomWr1cB+INdaey66qxPIjf6u61fk+vk74L8BkejtTGDAWhuK3p56Pcau1ej+wej9ReTqmQt0A/83OiXz+8YYL/pMFbmhWGvbgW8CLUwEPoPAYfSZKh8Qau4s8gFljEkC/g34grXWN3WfnVjuT0v+iVxHxpgHgC5r7eHrfS4i8r7igBXAd6211UCA307rAvSZKnIjiPbZ+ggTYW0B4AU2X9eTErmGrlXw0w4UTbk9J7pNRK4DY4yLidDnx9ban0U3n58sN4/+2xXdrutX5Pq4A/iwMaaJiSnSm5joJZIWLVOHd16PsWs1uj8V6L2WJyzyAdQGtFlr90dvP8dEEKTPVJEbyz1Ao7W221o7DvyMic9ZfabKB8K1Cn4OAvOiXdPdTDTSeuEaHVtEpojOT/4BcNJa++SUXS8An47+/mlgx5Ttn4quRLIWGJxSvi4iV4m19ivW2jnW2lImPjd3W2v/E7AHeCR6t3dfq5PX8CPR+6vKQOQqstZ2Aq3GmAXRTXcDJ9BnqsiNpgVYa4xJjP638OS1qs9U+UAw1+r9a4zZykSvAiew3Vr7N9fkwCLyDsaYO4G9QA2/7Rvyl0z0+XkWKAaagd+11vZFPxyfYqIcNgj8vrX20DU/cZEPMGPMBuDPrbUPGGPKmKgAygCOAL9nrR01xniAHzHRt6sP+IS1tuE6nbLIB4YxZjkTDdjdQAPw+0z8z1V9porcQIwx/wP4OBMr3B4B/gsTvXz0mSq3vGsW/IiIiIiIiIiIyLWl5s4iIiIiIiIiIrcoBT8iIiIiIiIiIrcoBT8iIiIiIiIiIrcoBT8iIiIiIiIiIrcoBT8iIiIiIiIiIrcoBT8iIiIiIiIiIrcoBT8iIiIiIiIiIrcoBT8iIiIiIiIiIreo/w+28nCwBU4M6wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAB6YUlEQVR4nO39Z3hc15mmC9+rMlKhkHPOAAkCBEgCzBRJiaQlipJlS7Zlt7Pltk9Ph3OOO33TPccz0+MJ3e5jdx+P3U5tWbKtYEXmLGYSJAgSOeecU1UBVfv7AexlgBEkwSBp3dfFi6jaVXuv2nGtZ73v8wpN01AoFAqFQqFQKBQKhUKhUHz0MDzsBigUCoVCoVAoFAqFQqFQKO4PSvhRKBQKhUKhUCgUCoVCofiIooQfhUKhUCgUCoVCoVAoFIqPKEr4USgUCoVCoVAoFAqFQqH4iKKEH4VCoVAoFAqFQqFQKBSKjyhK+FEoFAqFQqFQKBQKhUKh+IiihB+FQqFQKBQKhUKhUCgUio8oSvhRKBQKheI+I4QoF0JsvMvv/kII8Z9n/14nhKhezLY9Kggh/l4I8fLDbseDQgiRKITQhBCmB7CtLwohTtzv7SgUCoVCoXg0UcKPQqFQKBT3GU3TcjRNO7oI6/lA07SM233uYQ/0hRBNQogtt1i+UQjRdh+3v0kIcUQIMSyEaLrB8sTZ5RNCiKpr2yqE+DMhRJcQYkQI8TMhhHUxvqtQKBQKhULxMFDCj0KhUCgUio8a48DPgP/rJstfBS4BIcDfAK8LIcIAhBBPAH8JbAYSgGTgPy3SdxUKhUKhUCgeOEr4USgUCoXiPjM3AmY2pel3Qoh/F0KMzqaBFc75bL4Q4uLsst8CtjnL5kXKCCHihBBvCiF6hRD9QogfCiGygB8BxUKIMSHE0OxnfyGE+FchxJ7Z908KISKFEN8XQgzORq/kz1l3tBDijdl1Nwoh/mTOspv+BiHEr4B44N3Z7fzf1+wLP2APED27fEwIET272HKL/XLT9lyLpmnnNE37FdBwg2ORDiwH/k7TtElN094ArgCfnP3IHwE/1TStXNO0QeC7wBfv9bu34MtCiA4hRKcQ4v+c007r7LHpmP33fT16SD8PhBB/IYTomf3ul+Z8N0QI8c5s1NE5IOVmGxdC/FII8Rezf8fMpp99a/Z1ihBiQAhhEEIECSHem93/g7N/x85ZzxeFEA2zx65RCPG52/xuhUKhUCgUDwgl/CgUCoVC8eDZCfwGcADvAD8EEEJYgLeAXwHBwGv8QVSYhxDCCLwHNAOJQAzwG03TKoGXgNOapvlrmuaY87VPA38LhAIu4DRwcfb168A/zq7bALwLXJ5d72bgT2cjWm75GzRN+zzQAjw1u/3/PrfdmqaNA9uBjtnl/pqmddxmvyykPQslB2jQNG10znuXZ9/Xl1++ZlmEECLkHr97MzYBacDjwHfmpI79DVAE5AHLgJXMHDudSCCQmf3xFeBfhBBBs8v+BXACUcCXZ//djGPAxtm/NzAjlq2f8/oDTdO8zPQZf85MJFM8MMkfjo8f8P8C2zVNCwBWA6W32KZCoVAoFIoHiBJ+FAqFQqF48JzQNG23pmkeZkSeZbPvFwFm4Puapk1pmvY6cP4m61gJRAP/l6Zp45qmOTVNu52vz+81TSvRNM0J/B5wapr277Pt+C2gR/ysAMI0Tft/NE1za5rWAPwEeGEBv+FeuNk6F9KeheIPDF/z3jAQcJPl+t8B9/jdm/GfZo/fFWaElc/Mvv854P/RNK1H07ReZlLGPj/ne1Ozy6c0TdsNjAEZs4LgJ4H/OLveq8Avb7H9Y8DaWXFtPfDfgTWzyzbMLkfTtH5N097QNG1iVvj6L7PLdbzAEiGEj6ZpnZqmld9imwqFQqFQKB4gSvhRKBQKheLB0zXn7wnAJmaqO0UD7ZqmaXOWN99kHXFAs6Zp03ew3e45f0/e4LX/7N8JzKRiDen/gL8GIhbwG+6Fm61zIe1ZKGOA/Zr37MDoTZbrf4/e43dvRuucv5uZOQeY/b/5JssA+q859hPMHL8wwHSD9d4QTdPqmfFEygPWMRNF1iGEyGCO8COE8BVC/G8hRLMQYgQ4DjiEEMbZKK7nmYk06xRCvC+EyLzFb1YoFAqFQvEAUcKPQqFQKBSPDp1AjBBCzHkv/iafbQXibyK2aDd4705oBRo1TXPM+RegadqOBX7/dtu/0/bda3vmUg4kCyHmRuEsm31fX77smmXdmqb13+N3b0bcnL/jAT3trYMZwetGy25FLzB9g/XeimPAc4BF07T22dd/BATxh5StvwAygFWaptn5QzqYANA0bZ+maVuZSS+rYiYiS6FQKBQKxSOAEn4UCoVCoXh0OM3MoP1PhBBmIcSzzKR03YhzzAhF/00I4SeEsAkh9BSdbiB21jPobjgHjAohviOE8BFCGIUQS4QQKxb4/W5mKlrdanmIECLwfrRn1ozYxkzanJjdNxYATdNqmBEz/m72/WeAXOCN2a//O/AVIUS2EMLBjK/OL+71u7fg/zcbTZMDfImZlDuYqR72t0KIMCFEKPAfgZdvt6Nm0+TeBP5+dr3ZzIg4t+IY8G1mongAjs6+PjG7PphJV5sEhoQQwcDf6V8WQkQIIZ6e9fpxMRP55L1dWxUKhUKhUDwYlPCjUCgUCsUjgqZpbuBZZipBDTCTPvPmTT7rAZ4CUpkxU26b/TzAYWaiT7qEEH130Q4P8CQz6T+NQB/wb8yYCS+Ef2BGtBiaW6lqzvqrmBE2GmY/E33dGu6tPeuZESl28wcj4v1zlr8AFAKDwH8Dnpv10UHTtL3M+NwcYWa/NjNH5LjH796IY0AdcAj4n5qm6e38z8AFoIyZymEXZ99bCN9mJu2rixnh6ecLaEMAfxB+TgC+c14DfB/wYWbfnwH2zllmAP6cmYikAWZSxL65wLYqFAqFQqG4z4j5NgIKhUKhUCgUCoVCoVAoFIqPCiriR6FQKBQKhUKhUCgUCoXiI8o9CT9CiG1CiGohRJ0Q4i8Xq1EKhUKhUCgUig83QogfCSHGbvDvvr//sH+7QqFQKBSPEned6iWEMAI1wFZmfAXOA5/RNK1i8ZqnUCgUCoVCoVAoFAqFQqG4W+4l4mclUKdpWsOsGeVvgKcXp1kKhUKhUCgUCoVCoVAoFIp7xXQP340BWue8bgNW3eoLQgjlJK1QKBQKhUKhUCgUCoVCsbj0aZoWdqMF9yL8LAghxNeBr9/Ndw0GA5qmoSqPLRy1zxSKRwMhBEIIdT0+AIxGI5qm4fV6H3ZTFB8ThBAA6tpW3BVCCAyGPwTdq/uXQqFQKBaJ5pstuBfhpx2Im/M6dva9eWia9mPgx7DwiB8fHx+ioqLIzs6mr6+PyspKRkdH7/tD0WAw4O/vj9VqxWg0IoTA6/UyMTHB2NjYQ+ngGY1GfH19MZvNjIyMMD09fcPPCSEICwujoKCA0dFRWltb6e7uxul0PuAWP1jMZjOapt10vzwq6IME/f+53C9hQAiBxWLBx8cHi8WC0WgEYHJykomJCdxu96Jvcy76sfF4PB/6wZEQApPJtOBzLTAwkKSkJCIiIuju7qa8vJypqakH0NI/CE434qMkQhkMBvz8/IiOjiYrK4upqSlOnTrF8PDwoj0rDAYDRqMRPz8/rFbrvIGax+NhZGQEl8t1z/vUYDBgMpmw2+2YTKZ5x8/j8TA4OLgo54/RaMRoNOJwOOT9AJDn9dDQ0D3fS4UQGI1GzGYzAQEB87bj9XpxuVyMjY098vfsW2E2m8nIyMBqtXL16lVcLtfDbtItEUJgs9mw2WyYzWZ5TCYmJhgfH38ox0IIgdlsxuFwLNr5/WFACIHdbicrK4uYmBgsFgtTU1P09fVx8eJFRkdHH8o9WheiLBYLAQEBAAwODjI9Pf2ReWYoFArFx517EX7OA2lCiCRmBJ8XgM/ea4OEEISHh1NcXMzOnTvp6+vj7bff5syZM/ftgWg0GvHx8SE2Npa8vDxCQkLw8fHBaDTicrlob2/n3LlztLa2PtAZGYPBQEZGBllZWfj6+nL69Gnq6+tvuA9MJhPLli3jxRdfZGxsjAsXLnD69GkqKyvxeDwPrM0PCrPZTHh4OI899hjDw8OcP3+evr6+G3YeLRYLFosFg8GA1+vF6XTKfbLQ80nvOJvNZtxuN263+7bngj54MxgMctCoD7z0ZR6Ph6mpKZxOJ16vd9HOb5vNRlhYGAkJCSQlJREcHIzNZkPTNLq6uqiqqqKhoYH+/v5Fv6YMBgMhISE8/vjjjI2NUV5eTltb24dWhPT39yc5OZmlS5cyNDTEiRMnGBkZuel+MxqNZGRksHnzZrKzs2lqamJ6epqqqqr7NsDSxR69466fZwaDQUYdeb1e3G43TqfzIyEA2Ww20tPTefzxxyksLGRwcJDq6mrGx8cXRdQ0Go3Y7Xb5bAgJCcFsNgMz9w2n00llZSW9vb13PfDXRZKAgAB8fX1JS0vDz89PDsx1oeTSpUsMDg7e9b1cPy/8/Pzw8fEhKysLm80279wYGxvjypUrDAwM3NU29O34+vri4+OD3W4nJSUFm80GzOwzfYBbV1fH0NDQXW/nYWIwGAgMDGTz5s2EhobS3Nx8X4SfxYoo0ifSUlNTiYmJITAwEKvViqZptLe3U1paSmtr6wMVHIQQBAQEsHz5cnJzczl06BANDQ1MTk4+kO0/DPSJmJCQENasWcPGjRuJi4vDbDbjcrlobW3Fz8+Pq1ev0tbW9sD6bUIIrFYrYWFhhISEEBkZSXp6OpqmcejQIdrb2xkbG/tI9iMVCoXi48ZdCz+apk0LIb4N7AOMwM80TSu/1wbpkSvLly9n27ZtuN1upqamqK+vZ3JyctFnhWw2GyEhIaSkpFBUVMTWrVuJjIyUne/JyUkaGhrw9fVl37599Pf3P5CZKV0Ae+KJJ9i6dStms5np6WlaWlpuOKgxmUwsWbKErVu3YjAYiI6OxuVy0djYyPj4+H1v74PEaDQSEhJCcXExf/7nf05nZydut5tz587dcNASFBREUFAQvr6+uN1uOjo65Cy92+1eUESK2WwmIiJCzk729PTcspOqD7zNZjMWi4WgoCAsFgtWqxWr1YrJZMLr9TI1NcXw8DB9fX04nU6mp6fvOULG4XCQnJxMbm4uBQUF5OXlERYWhq+vL5qm0dLSwtGjRzl8+DCXL19mcHBw0Tr8etRcYWEhf/qnf8rAwACvvvoqhw4dorW19fYreMSwWCwkJyezY8cOPvnJT9LR0UF3dzelpaU3FXF8fHwoKChg27ZtLFu2jK6uLoaGhmhtbb2lYHQ36MKByWTCZDJhtVpxOByYzWb8/PzmCRUul4vR0VG6urqYmprC4/F8qDvzPj4+ZGdn89xzz5GVlUVTUxN2u31eVM7dYDAYsNlsOBwOcnNzCQwMJD09ncjISKxWK4CMBPX19eXy5ct0d3fLe8lCMZlM+Pr6EhQURHZ2Ng6Hg/z8fBn1owsyExMTTE9PU1ZWxtjYGFNTU3c0AWGxWPD39ycyMpKkpCQcDgcrVqzAz89PCj96tA9ASUkJLpfrjmf6bTYbgYGBJCYmEhkZSWhoKLm5ufj5+cl95nK5aG5uxmQyceXKFbmdDxNWq5XY2Fi2b99OSEgIP/3pTxdNQNevYavVis1mw2AwMDk5Kf/dyTZ0gSo9PZ3CwkJWrVpFWloawcHB+Pj44PV6aWxs5J133uGDDz6gpqbmgYg/Qgj8/PxIT0/nC1/4AkVFRbhcLvr7+3G5XB/JdCd94igiIoLi4mI++9nPUlRUREBAAAaDgampKXp6enA4HBw4cIC9e/fS399/3+7PcycIgoODiYiIYMmSJaSlpZGcnExeXh7T09MMDw/Lia6PsiinUCgUHxfuyeNH07TdwO5FaotkenpaPmxsNhsFBQVERkbKAcu9oEdfuN1uTCYTiYmJrF+/nqeffpoVK1YQFBQ0LzQdICEhAV9fX7xeL4cPH6anp+e+iz9+fn5s3ryZz372syxfvpze3l5Wr17N7t27byj86CKGy+UiMDCQ1NRUsrKyCAwMXBThZ25EgT7InMv09DRTU1MPJE/dbreTm5vL5z73ObKyskhNTeXy5cs0NTVdJ/wYDAYSExPJysoiPDycqakpSkpKZNpcX18fk5OT8zpYU1NTcnClh6OHhISwatUqYmNjqa2t5cKFCzcd6JnNZnx9fQkMDMRut+NwOEhISMDPzw+73S7TCfVBXVtbG9XV1fT19TE2Nsbo6CgTExML6oDrKUhGo5GpqSksFgvFxcW88MILrFixgtjYWHx9fecNhqOjowkNDZVi0PHjxxkdHb2HI/IHrFYrqampfPGLXyQnJwePx0N7eztNTU0fSuEnMjKSzZs384lPfEJ2jI8ePUp5eflNB6yBgYEsW7aMpKQkGTHywgsv8Pbbby96WoXFYsFutxMYGIi/vz8Oh4O4uDj8/Pyk2GkymZienmZ8fJy2tjauXLnC8PAwIyMjTExMLEqq0sNAjy4JDg7GarXi8Xju+d6jD0pTUlIoLCzkpZdewuFwEBwcPO860kXbzMxM3nzzTU6dOkVPTw89PT0LbntoaCipqakUFBTwxS9+EYfDQWhoKBaLZZ43lNvtJi4ujp/+9KfU1tbS29vL8PDwgrZjNBqJi4sjMzOTtWvXsmPHDux2OxERETLyUL9nj46OkpSUxA9+8ANaW1vp6elZcJSe0WgkOTmZZcuW8eSTT5KXl4fdbickJEQ+K3SBqb29nbS0NH7+85/T0tJCV1fXh2awbzAYCAoKYuXKleTl5dHb27so69UF3LCwMOLi4oiOjiYhIQGLxUJjYyONjY1UVFTcUhgxGAwyvdbr9eLj48Pq1av50pe+RGFhIWFhYTLKSycmJoaAgACCg4M5cOAAJSUl932iSH9GPPPMM3zhC1/AYDCwZs0aTpw4wcDAwH1PQX7Q6PeU2NhY1q1bxze+8Q2ys7MRQsg+kxCCyMhInn32WWJjYxkcHOT48eOLPlEAf5iciY6OxuFwsGHDBvLz88nNzSUqKkpaC0xPT5OWlkZFRcVtJ7oUCoVC8eHgvps73yler5eGhgbeeOMNnE4nCQkJlJWV0dnZec9ii8lkIj4+ng0bNlBSUkJ4eDgbNmxg+/btLFu27DovAvhDGOyaNWuIjY0lNDSU3bt3U19ff19nKjds2MC3v/1tMjMzEULIUOCJiYkbft7lcvH+++8TEBBAQkICvb29nD9/ftFEH70THx4eTlxcHFlZWXLQ4HQ6aWlpoaKiguHhYTo6Ou6rMJaSksKTTz7Jli1bZAqXPsC9Udv1wciyZcsICgqir68Pl8vF+Pg4ly5doqenR3Y2PR4P5eXlnDt3jqGhIYxGI2lpaTz77LM8//zz+Pj4cPnyZX7xi19w8uRJurq6rhN/oqOjWbZsGatXr6aoqIjo6GgCAwOlYGYymeQAcnp6msnJSbq6umhubqayspLz589z9OhRRkZGcLvdt+z4hYeHk5WVRWhoKJWVlaSlpfHSSy9RXFyMv7//dV4h+gBDj2DIyckhICCAt956a1FSsUJDQ3nyySfZsWMHNpuN6elpfH19ZaTEh41169bx5JNPUlhYKNMjrt2v1zI5OUlnZyeDg4NERUVhMBgIDg4mODiYlpaWRWubEILU1FTWrVvHqlWryMzMJCwsjICAAEwmk5zR1ds6PT3NxMQEra2tVFdXc+nSJc6dO8fVq1dlJMmHUQCCmXO7urr6njxqDAaDjLr52te+RkFBAUlJSdIw3+12Mz4+LgUMl8vFypUriY6OZs2aNRw8eJBXXnnltrP0BoOBqKgoduzYwc6dO1myZAkJCQnAjDiiR/h4vV48Hg8ul4stW7YQHR3NyZMn2b17N8ePH7/tdnTR5ytf+Qrr1q0jNTWViIgIYOb5Nj4+LrehRxpu27aNiIgI9u/fz2uvvUZDQ8NtRRmz2UxCQgJ/8Rd/QWFhIQkJCdjtdrkdPYpET2u12+3s2rWLlJQU3n33XX72s589NA+9O8Vms5GcnMyTTz6Jr68vJSUlMnXybjEajdhsNvz9/SkqKmLlypXExsaSmJiIxWKhvr6eqqoq+vv76e7uvqn4Ex0dTX5+PtPT03R2dpKRkcFXv/pV1q1bh8VimffZuc+CvLw8YmNjyc7O5pe//CX79u27r55FmZmZfPrTn+bFF1+Uz8G2trZbehh+mHE4HGzbto3t27dTXFxMbGwsIyMjnDp1iurqalwuF8HBwaSnp5OXl8eqVavYvHkzFRUViz5RIITAx8eH+Ph4eU/ZuHEjMTExOByO64RBg8FwzxGUCoVCoXh0eOSEH4CRkREuXbpEdXU1Pj4+jI6O3nMIsNlsJj4+nu985zs89dRTVFZWEhQURFRUFMHBwRiNRmmi2dvby5UrV3A6ncTFxZGbm0twcDCJiYl861vfwm6389Zbb3HlypX7NlOZn59PcnKyTM/p6+tj//79NxVUNE2jubmZH/7wh9hsNhmauxhiWUBAADk5OSxZsoSMjAzi4uLIyMiQnjl6+P7Vq1fp6OjgzTfflKaAi01YWBgbN25k165dMoXgrbfe4tVXX6W5+cYm5noHV0950L+naRo5OTnzjqHX62VwcJCzZ89SX1+Px+MhMTGRTZs2ERERgaZpbNiwgcjISF577TVeffVVmpqa5PfNZjOJiYnk5eWRl5dHeno6QUFBGAwGOVgcHx9namoKX19fGaXh4+NDUFAQERERhIaGMjY2RkVFhezo32hg4XA4+MxnPsPOnTuJj4+nsbGRuLg4EhMT5czvxMQEQ0ND9Pb2cvLkSeljFRERgd1uZ/ny5XznO99hbGyMAwcO3FOHPzAwkPz8fL7whS/Ifbxv3z5++9vfcvHixbte78MiLi6OT3/60+Tn52O1WhkdHeWdd97h1VdfveV+Ghoa4r333mN6epodO3awfPlywsPDWbduHXV1dYuWWmc2m8nJySE/P5+cnBwSExNl6oDu5TM5OSk9zPToGP1cCw8Px9/fH6PRSF1dnUxX+rBgs9nmRTRVVlbetQ+OnnaVnJxMUVERBQUFREdHy2phY2NjdHR00N7eLkWTwcFBCgsL8fX1JTo6mvDwcMxm8y23r99Pc3NzWbVqFbm5uYSFhUkRfWhoiIaGBoaHh2WU1tDQEBs3biQ0NJTo6Oh5z6ubYTabsdvtrFq1ilWrVpGeno7D4ZAFCwYGBqisrJx3nrhcLtauXUt0dDTR0dH4+fnJe/yN0CNMHA6HFCz0aDM9mmFgYIDy8vJ5RRLsdjs5OTnExMQQHR2N1WqVgtqjjMViYeXKlXzmM5+hsLCQn//853z3u9+9J0+k4OBgli5dyqZNm8jIyGDNmjUEBQVJA2Z94kIX6fbv3y+LXVy7nj/+4z/miSeewGKx0N/fL6OG9HNSP5c6OjooKSkhPj6eFStWEBISQlhYGJs2bSIkJISpqSn2799/39KMEhMTyc7OJjIyEiEE09PT7N+/n/7+/gce+aVHOxmNRtra2hZ8/9Mjx8PCwpiYmJCi1bXtt9lsbNy4kT/6oz9i5cqVmM1m6urq+MEPfsDevXvl/cpqtRIREcHKlSt57rnn2LhxIxUVFezfv5/m5uZ7vjZ0w+asrCyWLl1KUVERjz32mOx73KwggNfr/dBE4ykUCoXi9jySwg/MzEiNjY0xMTGxKB0QPV2noKCA0NBQVqxYIaMvNE2ju7ubgwcPcuHCBVpaWmhsbMTpdBIVFcWGDRv48pe/THR0NDExMWzYsIGenh66u7vp6upahF87Hz3KxGq1IoTA6XQyMDBw221pmsb4+LhME1qMjnR4eDirV6/mk5/8JHl5eTgcDqxWq+ws6DPGCQkJ5Ofn09fXh8lkoqqqivLyclmtYzE6DwaDgby8PAoKCuTMtcfj4eWXX5amrrdjboltPZprLpqmYTabWbFiBampqXi9Xux2O0FBQfK7NpuNmJgYkpOTiYyMpKWlRaaF+fr6kpGRQV5eHsnJyQQGBmKxWBgeHmZgYIDu7m66u7sZHx8nNjaW9PR0QkJCpNeUj48PNpuNvr4+GQ10s4onekcuLS2N8PBwwsPDpZH16OgoJSUlXLp0iZqaGlpaWqiursZut7N27VqeeuopCgoKcDgcpKSk8Mwzz1BTU3PXRqUGg4GkpCQZGacfm7feeosLFy7c0+DoYWA0GuVgzG63o2kag4ODvPzyy7S2tt7ynuT1eqmsrMTlcuFyuUhMTCQ8PJy8vDyCg4MZHR1dlJRVPz8/CgoKyM7OlikbJpOJkZERent7aWtro6enB5vNJgeBesqSfq7oKUuArLT0Yejom81mMjMzWbZsGQ6HA0Cmet3pfc9sNpOenk5ubi4bNmyYZ7qq33v379/P0aNHqa6ulibZU1NTvPjiizz++OOkpKTI1Mob+bDpKaPZ2dmsWLGCnTt3kpeXR3h4uPSS6+vr4+WXX+b06dP09vYyPT0979+2bdtYunQpdXV1XLhwQXqbzUU/L9LT0ykqKuLFF18kIyNDRqmNjY3R19fHj3/8Y06ePInL5ZKROD4+Prjdbnbt2sWKFSs4fvw4XV1d9Pf3Xyfim0wmmaq2YsUKPv/5z5OcnCxT7oaGhmhqauI3v/kNx44dk8bO09PTpKSk8Pzzz7N161ZWr15NQkKCjKZ6VD2nDAYDWVlZbN68mbVr1yKEoL29/a6rjRqNRvz9/dmyZQu7du1izZo1BAQESCEWkPcP/Zg+/fTThIWF8atf/Yry8vJ5qTd2u51ly5bJlGI9WshsNjM8PMzx48e5fPkyjY2NtLa20tjYKA2qn3/+edLT0wkICCAzM5Ndu3ZRXl5Oe3v7oh8PPdotMjJSiqrDw8O0tbU90KpeJpNJFod45plnMBqNfP/73+fkyZO3bYePjw8xMTGsWrWKp59+mo6ODurr62lqaqK+vl4aZRsMBlatWsWXv/xl8vPzEUJQXl7Oyy+/zLvvvktvb6/083M6nYyPj9PX10dTUxN/+qd/ysqVK2lubqa3t/eeIrdtNhubNm1ixYoVFBUVkZycTEhICA6HY15Ej37fnJ6eZnR0lI6ODqqrqz9WFdcUCoXio84jK/wAMjx8MdArKugdK39/fwDcbjc9PT1cuHCBl19+mdraWkZGRhgbG8Pr9dLV1cXg4CB2u53nn3+e0NBQsrKyePzxxxkZGeGtt95a1Jx43fthyZIl2Gw2PB6PrMK0EF+Hxa7Wo1cESUlJITExUQol+nb0mWJN02SUx7Jly7BYLLLDMDIyck+DSd1baOnSpWzbto3c3FxpWut0OhkaGpIDXz3KaWJiApPJRGRk5HUeN/o6b7Yt3cg5ODgYTdNk2oz+u2FGdMnIyCA/P5/y8nLGxsZkBz0lJYW0tDQiIiJkelBZWRkXL16ktraWgYEBrFYry5YtIyAgAD8/P+n7o6erZWVlUVlZSW1tLaOjozc0WtUjOaxWqxR8dPHv8uXLshpeZ2cno6OjjIyMYDabZVqP0+lkzZo1BAYGsm7dOqqqqnjjjTdobW1dcEdPF8PS09PZvHnzvLQC/dgEBwfL7U5PTzM2NobJZCIoKEh6Gj0KYoP+W4xGIwUFBezcuZPw8HAMBgMej4fJyUmGh4dJSUmR57bT6ZTeSsHBwTLNcWJigu7ubtrb23G73RgMBtLS0nA4HIuSCmkwGAgICCA7O5vExERp6Dw5OcmlS5c4ffo0NTU1uFwuoqKiWLp0qUwn0Ss76R5n3d3dNDc3U1NTw8jIyCLtzftLaGgoeXl58j65kCp7N8JsNhMUFER+fj6FhYXk5eVJ0Ue/9zY0NHDmzBnOnj1LW1ub9FARQsgUZLvdTlRUFKGhoXR1dc0TZPRnj+4NU1RURHZ2NmFhYdKbq6uri5qaGk6ePElpaSnDw8NyOwaDge7ublktLyIigqCgIPr7++dtR08Z0iMHioqKyMjIkKWZx8fH6erqora2lg8++ICrV6/K9D5N0wgMDKSnpweLxUJERATh4eEEBARcl4JjMpnw9/cnMTGRVatWsWLFCjlR4fV6ZVRJWVmZ3M7c55LFYmFgYACLxUJUVBRhYWG0t7fPq7b4qOHr60thYSErVqzAbrdTUVHB+fPn7zqq1c/Pj8jISLKzs1myZImMLvN4PDLltru7m4GBASk0JCYmMjExwZEjR66rgGUymfDz88NiscyrojY2NkZJSQm/+93vKC8vp7e3l7GxMcbHxzGZTPI5uWPHDpYuXUpgYCDr16+nvLycV1555Z4qyd0IfaIhJiYGmBG3SktLF307t0IvhLFx40Y2b97MihUrANi+fbuMfLzZ/dlut1NUVMSGDRsoLCxk2bJljIyMMDw8TE9PD+Xl5Zw9e5bTp08zMDBAfn4+S5Yswd/fn/r6eo4cOcKBAwfo6emZ93t1MXlgYICysjL2799PTk6OfL7fTR/TaDQSGBjI2rVr+exnP0tGRgaxsbHSPH5uH0hPX52cnKSjo4ODBw9y+fJlzp07Ny8VXqFQKBQfbh5p4WcxsVgssoypjsfjobOzk5KSEt577z3OnDlznZne1NQU1dXVvPnmm8TGxrJx40aCgoJYtmwZ3d3dHD9+/K4eynp0iNFoJDQ0VIoTZrOZrKwsEhMTMZlMdHZ2cvbsWY4dO/bAy2ELIaSvj95Z0GeHu7u75ayQntZlsVhwu900NzczNDQkfQRu5Ycyd1t6pQm9k6FXidFTonbt2sX69euJj4+f991169ZhNBqlYDc6OkpbWxt+fn4kJSWRlpZ2Q1+WmwlkeiTQ3HNF70R3dnZitVoJDg4mLi6OgoICjhw5QnNzMx6PB19f33nGyXqqRG9vL9XV1XKmNioq6jr/Hl2cMpvN0gfoVvn1DofjOm8jj8fDlStX2L17N0ePHqWmpmaeB4XH46GpqYmjR4/Kc3Dt2rUkJCSwZcsWzp8/T29v77yOr35s9MGwx+ORA1ldtNq4cSNbt24lKytr3u9ZuXIlWVlZuFwuhoeHmZiYoKGhAX9/f6Kioqirq5PG1g8C/RzQzzWn0ykHsv7+/vj6+hIQEMAnP/lJVq1aJQVimBmsbdiwAZvNJo1ve3p6GB0dxc/Pj+joaI4cOUJLS4v0TJlrEq6bLd+rZ4IuTun7cK43g9frpaenh4qKCioqKvDz88PPz2+ef8/c46kbgy/kGn1UEEKQkJBATk4O8fHxCCEYHx9nYGDgjqtd6WknW7duJT09nZiYGDweDy0tLfT19XH+/Hnq6+spKSmho6Nj3r3eZDLJ/apXVrt2X+plq+Pj40lLS5PRQbroOTAwQG9vLxcvXqSmpoby8nJZ3eja7eh/69uZi8FgICwsjPj4ePl70tLSsNls9Pb20t/fT0dHB+Xl5dTX10tBea6XnR7FNNfA/9pz1Wg0EhsbS1JSEqtWrWLdunUytbS9vZ2BgQFqa2upra2lqqqKurq6eftMT0Ocnp6WVQ8f9fPPYDCQkJBAYWEhSUlJjI+Pc/LkScrLy+9KrAgICGDVqlWkpqaSn58vo1edTietra1SXGxqaqKnp4eIiAgKCgpIS0sjISGBtLQ0qqqqGBoakveWa/1Z9Cp++gTAiRMnrosQm56epr6+nj179sjooGXLlpGYmMgTTzzBoUOHGB0dvePfqD8/TSYTNpuN8PBwKTSkpqaSm5tLSEgILpeLuro63n77bTnR9iDIzc3l6aefpqioSPo0ORwOHnvsMbk/blRIxGq1UlBQwFNPPcWaNWuwWq1UVFQwMjJCdHQ0WVlZxMbGkpCQQFRUFMePH5dRtf39/ZSUlHDs2DEaGhpuuk+9Xq+M0PLx8WFqauqu/fH0il1bt25l/fr1srLotRE+uug0OjpKf38/V69e5b333qO0tJSBgYE7ru6nUCgUikeXj4XwI4SQM5T6QE7TNEZHRyktLeX1119n7969N4yo0aNazp8/z29/+1uSk5PJysoiLCyMrKws4uPjZUdtIei54QEBAaSlpWGxWCgoKCAqKkpGbejpC16vl5KSEt58803279//wB++RqNRRq8EBARIn4a+vj5OnDhBY2MjV65coaOjg+npaXx8fNA0TYaIj46OMjk5ectZUb0Cls1mw2KxEBYWJivjREZGkpWVRWRkJHFxcTzxxBPExsbKNDOYGYy/9NJLmM1mpqamZGpUZWUlDoeDkZER7Ha7HHDP7ezoJXL1Tpg+oHY4HPMGVrpXTkVFBYcPHyY0NJSioiKioqLIyckhJyeHwcFBxsbG8Pf3x2azzZtR0wW06OhohoeH8Xg8pKamkp2dTURExLxBux4hVVNTQ2trq4ySufbYGwwG4uPjCQkJkVFFunfH22+/zW9/+1s6OztvmLald/h1b4GcnBy5r5OSkqirq5sXweTj4yMjWvTZ4pCQEHJzc4mJiSEmJoa1a9eSmppKYGCg/N0+Pj584QtfkPvb6XQyOjrKpUuXcDgcOBwOjh49Kkv53s/zW0/RmxshFRYWJkuAp6amEh8fL6vqPPXUU9KYWT8vIiMj+fa3v43FYmFycpKJiQlaWlro7e0lMDCQwMBARkdH6e7uvuE5rw+Erh203w1ms5mAgIB5HXl9G6GhocTExDAyMkJ4eDhLly4lPT1dVozSzxWXy0VPTw91dXW0tbUtuJLcw8ZgMJCenk5SUhKBgYFSbC4vL19wJJXVaiUyMpIdO3awYcMG1q1bh6+vL5OTkzQ0NHDy5Emqqqo4cOAA/f39jIyMXHct6f4X+v50u92y/DH8oZpPWloaW7dupbi4mMceewyj0cjw8DDl5eWUlpZSU1PD0aNH6evrk4P5ucytlKhHno2Njc3bjsPhoLCwkLVr18rS3SaTib6+Pk6dOkVlZSUVFRWUlJQwODh4w9TLa7ejp1rr57IQguDgYDZt2kRRURGFhYVkZmYC0NPTw4EDB6iurubChQs0NDQwNDR03TNV34a+HT2t5FGO9vHz82P16tXk5+fj7+/PlStXOHbs2F2J1SaTiYSEBF588UVycnJISEggICCAiYkJ+vv72b9/P6dOnQKgpaWF4eFh0tLScLvdpKSkEB4eTn5+PlevXqWpqQmn04nBYCAlJUVG/elpdT09Pbz11lv87ne/u2G6HsxMbFVUVEiPq6SkJBlxnJiYSHt7+x2l/lqtVvz9/YmNjZVV6lasWCGjgZcsWUJOTg5Wq5Wuri7effddfv3rX99XM+m5WCwWnn/+eT75yU8yODjI+++/z+7du8nOzuZHP/oR3/zmN6mtrWVoaOi6e4ndbucTn/gEW7duxWazcfjwYX7zm9/Q3t7O6tWr2bp1KxkZGRQWFpKamooQgoKCAoxGI+Xl5Rw/fpyLFy/e9h6laRq1tbWkpKRgMBgIDw9ndHT0jn2wzGYzoaGhFBQUyKjbawVW3dOwp6eHjo4O2traKCsro7y8nL6+vkf2mlQoFArF3fGhEX701J67KdmrV6VKTU2V1UY8Hg9Xr15l7969HDlyhMHBwVuuw+VyUVJSQkNDA3FxcQQFBZGQkMBjjz3G5cuXGRsbu+X39Rlhh8NBWloaa9eu5bnnnsPf35+QkBAZ/WM0GuVgc3R0lN27d3PkyJG7SsEwGAwyj/5uQtJ174vExET8/PwYHx+X1bveeecdGhsb6e7ulhVZ9AGt3kG5VWn3uV45hYWF5OTk4O/vz5IlSzh58iSANK4NDg7Gz89PngNzZzU1TSM6Olqu1+v1kpCQQG5uLkIIMjMzsdls/OVf/iXp6enyc0NDQ5SXl3PhwgWGhoYA5PF54YUXCA0NlduZmJigurqa73//++zbt4/AwEC+9rWv8eSTTxIcHExKSopMZ9AjMPSSzHp7k5OT8Xq9xMfHo2kasbGxpKamEhoaKtM9pqamGBsbo6mpiZMnT1JTUyPTvK5FF+XCw8PljODk5CQffPABb7zxBu3t7bfsYE5PT9PV1cWlS5dobW0lIiKCsLAw1qxZQ2NjIyMjI/j7+1NcXMyyZcvw9/cnLS2NxsZG2trayM7OZs2aNfLc1TuV1x6b8PBwuU39fMjIyJCf7e3tpaSkRKZT3Q/0qIvc3Nx5g62lS5fy2muvkZaWRn5+viy/PjeKam5H2Wg0ynNN/y3JycnSL0rTNPbv33/DDjbMzPQnJydTWVl5yzK9+rpuhp7WERsbK1NX9e2ZzWZSU1NxuVxyEJeQkEBMTAwhISEYDAZcLpdMK6ioqODMmTPU19dLA9lHHV2QtNlsGAwGhoaGOHToEOfOnVtQSoLZbCYqKort27fz7W9/W5q29/X1cfHiRXbv3s2+ffvuqISx1+uVqRJ6pKPFYmHJkiXs3LmTz3zmM4SGhqJpGp2dnezbt4+9e/dK/6uFRnN6PB5p3K9vx2azsWbNGj7/+c+zZs0a7HY7Xq+XtrY2fvOb3/Duu+/S0NAgqwQu5LfoKUd6UQW9GtDjjz/OSy+9RHJyMjabDafTSVdXF7/5zW949dVX6enpWbBXj57KPTExsWg+cIuNnsb62c9+ltTUVNrb2zl79iylpaV31F5dPNZ9uQoLC4mJicHHx4fJyUlaW1spLy/nwIEDlJaWSjNm/dltt9t5+umnCQoKIi4ujpiYGHx9fZmampJVGnVTaN0k/Pjx47zxxhv09PTc8n7idrvnTeLoUb6bNm2S94VbPUvmFk/IyspizZo1bN68maSkJAICAggJCZGRXXoUq8vloqmpiZ/97Ge37XstFgaDgbi4OHbu3Immabz++uv8/ve/p7GxkZ6eHoaHh/Hz88Nqtd4wKtNms8n0zJqaGl577TUOHTqEx+Ohrq6OI0eOSMHMaDRit9uJi4vD4/FQWVkpxZSFoN9P1q1bx8qVKzl+/DjHjx9fsECm93lzcnJITU2d1x/R8Xg8DA8P89prr3Hq1ClZTGJsbGxBtgIKhUKh+PDxoRB+4uPj2bx5M1NTU9TV1ckw54Wi+9RkZGRIcWJ4eJiDBw9y4sQJGWFyOzo6OvjVr36F0Whk3bp1RERE8MILL1BaWsq+fftu2qmOj4/nk5/8JGvXrpXVTAA6OzsZGxvjyJEjjI6OkpaWxs6dO+UD2tfXl7i4OCIiIu44IiI4OJjs7GyWLl1Ke3s7p06dWvA65vrc7Nixg4yMDCwWC+fPn+f111/nyJEjVFZW3tNAPSkpiW9+85u88MILhIWFzSs3+9hjj8l2zG0T/CH6Znh4+DqxrbW1lYaGBjo6OuTv/Ju/+Rs2bdo0bxuapjEyMkJlZSXvvfee/LzubbFhwwaCgoJkalt/fz/nz5/n/Pnzcua/sbGR3t5e4uLipKhnt9tJS0sjKioKX1/feW3WKwbFxsZKLw5AGoReuHCBtrY2uru7qa+v58SJEzet5gUzaV5ZWVnY7XZZQaenp4ff/OY3NDc3LyjyYWJigqqqKn70ox/xt3/7t8THx/PEE09gtVr53Oc+x5YtW4iMjLwu5e1Wx8btdt9wpr+vr4/6+noaGhrmRV2dOnVKDnTuF9nZ2fzrv/4rS5YskQbIOuvWrbvpb4EZgfBG0R4VFRUyjUUXuTweD7/+9a9l+eprcTgcpKenc+LECdrb2+d9RvdjCAgIwGw2y0iIgYGBeZ/TB1mBgYFkZWXJwd7c5X5+fmRmZpKamiqjzzRNkyWTjx07Rk9PDy0tLZSXl1NVVfWhKuUeGBgoTdFhRsQcHh5e0KBIr0KVkZHBY489RmhoKE6nk7a2NhoaGjhy5AiHDx+W3j13ix5Rlp+fz8qVKwkKCmJycpKWlhYqKyvZs2cPJSUl16VV3gl6Sk1ERATr168nMzMTHx8fRkZGaG9vp7y8nPfee08KyHd7jelRqlFRUWzZsoXY2FgMBgM9PT20t7fLiQC9KtKjKODcDXq0xcsvv0xsbCxnz57lt7/9Le+99x79/f0LXo+ecpOcnMzSpUv5zne+I8WB/v5+Tp48ya9+9StKS0tpamq67jjpz7unnnpKVmhbs2YN9fX1XL16FSEEOTk5MnJ0cnKSxsZGXn/9dVpbWxd0XQ8PD3PmzBl++ctf8h/+w3+QfZbW1lbef/996uvrb3pPW7JkCZ/61KdYs2YN6enpCCEYHBxkeHiYuro6Xn75ZRwOB1//+tfnpTMHBQWRnp5OY2PjA7n3+Pr6snPnThISEvjggw9obm5mfHwcIQTDw8PSV+tm6JMUkZGRDA4OzjP519PWGhoa5P3529/+trw360L1QvHz8yMvL48nnniC8PBwsrOzqa6upqWlZcHr0L2h9GirmzE+Pk57ezv9/f2MjY0tWOxWKBQKxYePR174MRgMrFmzhm9+85sEBQVx+fJlXn31Vd56660FdWSFEMTFxbFq1Sry8vLkwK6zs5PKyko6OzsX3FF1u90cP36c8PBwHA4H69atIzY2ltzcXA4fPnzDCitZWVl89atf5cknn5QdhkOHDlFSUsL+/ftxuVx0d3cTGBjI9u3beeqpp2TFEJvNRmpqKsnJydTW1t5RqdH09HSeeeYZnn32WSYmJvjnf/5nfv3rXy/Yj0jv7OvRHG63m66uLurq6q4zJrxTDAYDGRkZZGZmzqvuMfc46P4oHo+HwMBA+b4ulL3xxhtUVVXN+87Y2BgjIyPzQqKTk5NJTEyUJVt1pqenGRwcpLm5mdbWVmmi2tbWxrFjx0hKSsLX15eRkRHKysr4xS9+ITvlTqeTqqoqGf2VmZlJVVUVZWVlOJ1O3G43Ho9HdnKnpqa4dOkSzc3NjI2NYTabCQ4Oxuv10t/fT19fHxcuXKCrq0uaMN9K9NG9c1atWkVISAhCCFwulwzTXmh0l7793bt3s3z5cr74xS8SERHB1q1b+f3vf8/zzz/PmTNnrjs2+myky+WSFZVgxqOivLycn/zkJ9fNiDudTmmCOfd36dEn9wuj0cjy5ctlhTU9pW5uG6anp6UB81xPn8HBQf73//7fnD59mu7u7nm/Rx/YXCuYzPWq0KMzrvU4mYueBvjUU09RWFgoUzbGx8e5dOkSP/zhD2XVuLnoKT96GqD+u8bHxykpKaG+vh6n00lwcDA2m02W1u7t7eX48eMMDQ0xOjoqUxo+LKKPxWJh48aNrF69moiICKanp+nv76empua293G9NHZxcTEbN25k48aN9Pf3c/DgQV555RU6Ozvp7++X/mS3Q09T1aMs9MgYIQSrV69m06ZNbNmyhZSUFFpbW/nggw/46U9/KlMrJiYmFvTs0T2o9Kg4/ViZzWbWr18vnxsWi4Xy8nI++OADXn/9dQYGBqSR+O2Ory726+f/XO+foKAgVq1axeOPP85TTz3F2NgY58+f59ChQxw7doyhoaEFC2UGgwGbzSYHo4+qSKT7nxUXF5OQkEBzczO/+93vOHDgAL29vdelAt/sd/j4+MjqUS+++CKJiYnExcXJY3n16lX27NnDwYMHGRsbu+F5pxvit7a2smTJEvz8/AgJCSEyMpLW1laysrKkXw0go0avXr264Of09PQ0LS0t7N69m4yMDL7yla9I8+kLFy7Q2Nh43boSEhLYtGkTu3btYtOmTZjNZpnOdObMGdrb22WlqiVLlvDlL38Zs9nM4OCgrFa2cuVKjhw58kD8C/XIT93z7pvf/CZPPPEE+/fvx+12S8+5qakpMjIyiImJwWazceLECVpbW5menpbHPjs7myeeeIK6urp5bdfvASaTiYCAADweD+fOnePgwYPX9VduxdTUlHwm+fr6zot4XgiapjEwMMD58+fp6uoiKSnpus8YjUaCgoL48pe/zBNPPEFFRQWVlZXU1NTQ2NjIxYsXlamzQqFQfMR45IUfr9crH7qhoaFkZGSwbNkyDh48uKBwVCEE4eHhJCQkyEHq1NSU9CG4XYrWtYyPjzM8PCxniiwWi/TA0X0K9Io7RUVF/NVf/RXJycl0d3dz4sQJWR1mYGCAvr4+vF4vqampbN++nV27dslB/F/+5V8SFRVFQUEBGRkZnD17dsGRSV6vl76+Pvr6+rBYLISGhrJy5Uref//9BXkp6DNWycnJOBwOWSK6s7NTpgHdC16vl4aGBhobG+no6MDr9dLS0kJTU5McoLjdboQQREZGsn37doxGI263m7Nnz/Luu+9y4MCB60QEXZC4Vgya65Gjp9HM9ZrQl+uizvDwsBQH9FSE/v5+ud+8Xi+dnZ10dnbKdLKlS5dy6dIlent7pc+HPjiYmJjg1KlTlJeXMzw8LP1yNE2Tn29ra5Nlvm83UNMrROmeLbqAc/r0abq6uu5oEO/1eqUAoK/b4/GQl5fH3/3d39HW1kZTU5M0r4aZQcLU1BTh4eHs3LkTo9HI9PQ0VVVVvPvuu+zevfu6SBU9feTac+9+Cw5er5fy8nLpwzU8PCyPnb7tyclJ/P39yczMZPny5TKCavfu3bzzzjvXGWTr+2DuIPxGv8fpdNLR0cHVq1fJzs6+LtRejzDbvn07n//852UKmslkYnp6mri4OEZGRvjRj34kzz/9nNSrr4yPj8+LEhocHOT48eNcvXqV8fFxQkNDZdUrXayqr6/H5XIt6Fx7lNBFsmeffZakpCRpsn358mUuX75820GV2WwmIyODlStXkpaWxuDgIHv27OHEiROUl5fLtMqFDJYtFgvR0dHk5eURGBjI4OAgbW1tsmLd8uXLpTDb3NzMsWPHOHv2LFVVVdLceCFijJ4OW1BQgBCCrq4uuru7cTqdWK1W6edjNBopLS3l7NmzlJSUyCiuhYgxulF4fHw8hYWFuFwuWltbpbFraGgohYWFFBUVMTk5ydGjR2UEZG1trSzTfjt0wTs1NZWcnBwmJiZoamq6aTrrwyQwMJDc3Fx27drFxMQE7777LhcvXsTj8ZCTk0NGRoaM4NCrKLa1tc0TAUwmExEREdLPLS0tjZCQEBm1Csi0momJiZued3qEqH4t6xFuQ0NDaJpGamoqwcHB8t7d2tpKSUnJgvsLOnqUoZ56ZTabiYuLIzIyEpvNJgVss9nMqlWr+OIXv8jKlSvx9fXl/PnzfPDBB7z//vvSq8rlcsnIFd0bbWpqil//+tdcuXKFpKQkCgsLCQ0NvS4C8n6hpyzm5uYyPDxMWVkZg4ODrF69GpfLJU2wN2zYwM6dO/Hz8yMxMZH/9t/+Gx6Ph8uXL9PY2EhSUhLLly8nKCiIzs7Oeduw2+3k5+dTXFxMZWUlb731FpcuXbqjKHU9rczHx0dG5NxpERE98mv37t3s2rWL4OBgrFbrPNFSCCELaISHh5OXl0dvby+VlZU0NzffcX9CoVAoFI82j7zwAzNpIpOTk7KcbVJSEv7+/gsWfqxW67wZk8nJSaqqqhgYGLjjMHs9517vpOlVTvz8/OTgTPcPef755ykuLmZsbIxDhw7JFCnd/BhmZgSXL1/Oxo0bycnJkfn5x44dk1WGxsfH79gQdnx8XJbh9fHxIT09ncDAQHp7e287sNHDsJOTk/Hz85M5+aOjo4vWSW9vb5feEy6Xi76+Pnp7e+eV/U1MTOTzn/+8FGuqqqrYt2/fDSMwbsbNOi268HPtcl0Iut17k5OT0lgzNDSU+Ph4KWjV1dWRlJQkDbvHxsa4dOkSFRUVjI6OYjAY8PHxAWaOk9vtliaqN2rTtejCop63r/u1VFVV3XGYtr4fdAFACIHH42FoaIiysjL27t1Ld3c3vb2989rm5+fHH//xH0sxQ68UdvDgQTo7Ox8ZU0hN02hoaODf/u3f8Pf3l5WU5gpTXq9XljPWX+vVcGpqahgcHLyrzq8+U6/vu7nYbDaio6PZunUrzz33HLm5uRgMBmmADRAVFcXWrVv54IMPuHjxovQF0o3Ta2pqqK+vx2azYbfb5XG7ePEilZWVOJ1OWbZ9rmeLHpU091r7MGA0GklKSpIpe/og9+zZs9cNvq5Ffw5ER0cTGxuLzWaT52xVVdWC/W90fHx8iI2NJT4+XhrVdnR0SEFGr+zjdrupqqrigw8+oKam5o4MtPXZ/ri4OOLj4/F4PPT29tLX14fb7cZms5GUlCRTgS9dusSZM2dobGyUwsJCMJvNBAYGEhcXR1xcHJOTk3R2dkoBPCAggKSkJMLDw+no6ODkyZNcuXKFlpaWO7rfWK1WQkNDpZgwOTkpxbJHqXKQXmlz5cqVFBcX09TUxOXLlwkLC2PZsmVS+NFN9YeHh/Hx8eHYsWNSYNYrWG3fvp3MzEyys7NxOBxy8qKnpwc/Pz9qamrkfr4R+iRBeno6GRkZ2O12Ojs7qa+vp7m5mcnJSQIDA6WvmNPppLOz87pIlIWgPwvmmnmHh4dLwUAXHtLT03nuuedkqmRFRQW//vWvOXv2LDU1NfL7umfeli1bWLNmjTQ1Lysr48CBA6SmphIVFTUv9fZ+ohfqmJiYoKenh7Nnz3LlyhWCgoIoLCyktLSU/fv309PTQ3h4uEylHh4elqJaW1sb7e3tTE9PExUVRWBg4Lx7jx5VlJ2dTVJSEvv27ePUqVN0dXUt+P4ihCApKUn22QYGBmhpabnjSUo9Qun48eOycEN4eDg+Pj7zIk91b0m9UmdYWBiA7KMoFAqF4qPDh0L40VN+dK+UsLCweSkZt0KvVqGHQWuaRldXFzU1Nbc0WL0ZmqbhdDrlQN1sNhMSEiKNRq1WK6mpqezcuZMnnngCp9PJiRMneO+996QJtL7NgIAAcnJy2LRpkxzMTE1N0dDQwMDAAN3d3Rw7dkzO8N8JelSGHnocEREhjWBvh4+PD0lJSWRnZ8sKWkNDQwwMDEizz3tlbGyMY8eO8cEHH8h2zj0WgYGBhISEyOoYmqZx9OhRjhw5Qn19/T21QdM0WZ3qbgUKfdCsG83qvhdtbW1UV1eTnp6Ov78/AQEBuFwuOjo67sj49GboKRl2u32emXZ7ezt1dXV3tW5Nm6lw53a7pTdRc3MzP//5z+W+nntsfHx8yMrKIisrS1ZKu3DhAocOHaKsrOyREX10hoaGeOWVV/B4PHKAOff3REZGEhAQQFRUlBTS9uzZw/Hjx2/r+3Ar9EHUtR1+k8lEdHQ0a9as4VOf+hTFxcVMT09TXV1Nc3MzQ0ND+Pv7s2XLFnJycnjsscdobW2dZ4I7Pj5OY2MjFRUVhIWFyYHfxMQE7e3t9PT04Ha7H5nB9L2iz9QvX76ciIgIzGYzIyMjNDU1ceHChdsKHfr3IyIiCAkJkYaspaWld+yzYzAYiIiIIDs7W5rADw8P09/fj9vtJjAwkOjoaAICAuT9oKys7LoouNuh++pkZ2cTHBwsyy3rqWi+vr5y0uHq1auUl5dTWVl5x8asehWmzMxMWXpav1fpJrHR0dH4+vrS0NBAWVkZDQ0NUqBcKLrPTXJyMgEBAfT19dHd3T2vsuLDxmQyERYWRk5ODkVFRSQkJHDo0CF8fX3Jy8sjPz+f1NRUWYnL5XIREBBAT08Pra2tdHd343a7MZlM5OXl8eyzz5KSkkJAQAAGg4G+vj7effddGhsbCQoKwu1239R7T69GmpKSwsqVK0lKSsLHx4fW1laqq6vp6OjAarVKnzeYude1tLTQ0tJyV/tUF5WnpqYwmUwEBgbi7+8v7y8BAQE89dRTbN++ncDAQOrr6zlw4AC7d++eJ3D7+PgQHR3N6tWreeyxxwgKCkLTNFpbW+nq6qKzs5PJyUn27dt3x5Esd4vH46GxsVH6yh07dgyz2cwTTzxBZmYmv/jFLzh79iyjo6MYjUaZ6h4fHy/379jYGF1dXQwODuJwOIiJiaGqqkpuQ4/Si4iIkCKdfu9eKEIIMjIyZDGSjo4O+vv771jI06N5L168yMGDB0lPTyczM5O4uDgcDsd1ApDBYMBsNmOz2WQVVIVCoVB8tPhQCD9zMRqN+Pj4zPMWuRW+vr5ER0fL0sz6bP6VK1fualCnC0d6mkVQUJCsAmQ0GuUs/Ve/+lXsdjtnz57lv/7X/8qVK1fmPfxNJhP5+fl861vfYtOmTbLiy8TEBEePHsXpdOL1ejl27Ngdte9m2Gw2aQR7KxHJYDDgcDgoKCiguLgYq9WK1+ulublZhuXfi+iiV/bQNO2maSZGo5GEhAQKCwtlFaXx8XH27NlzVzOZ16IP+urq6picnLynwbFevSMhIQFfX1/6+vpobW2lpaWFyMhIWa3N398fq9V6z2WL9YFYSkqK9Bbp7u7m8uXLVFRU3NWx8Xg81NfXMzIyIiOJTCYTLpfrurbqEU6rVq0iNjYWmEll06NS7nRW8kFxs3Nevw4zMzMJCgrC6/UyMjLC73//+3npfYuBnhoaFBREVlYWL7zwAsXFxZhMJmpqavjFL37BmTNnGBkZITMzk5SUFPLy8vjEJz7BsWPH6O7ulgKFLv40NDSQnp6O3W6XUY3+/v4yreKjIvyYTCbCw8PZunUrDocDIQQDAwM0NTXR0tKyoLQp3W8lKCiIoaEhmpubaWtru+NS0vqg/rHHHiM6OprBwcF5UXH6oDcgIICxsTFaWlro6Oi4o4gifZCdn5/Pli1bCAwMlObvesqI/myz2Wx0d3fT3NxMd3f3HUVk6um0K1euZP369djtdmpqaujq6mJyclLe36KiorDZbLS0tNDa2kp/f/8d3Wv09NQ1a9aQn5+PzWajr6+Pzs7OR0qgDAwMpKioiF27dlFcXCzT055//nkZcTM2NkZtbS0VFRUMDAzwhS98gaVLl1JWVsbly5fxeDz4+fnJCoLBwcFMTU3R398vhYfW1lZ8fX2xWq03NIPXo71iY2NZsWIFxcXF2Gw2mR7X2dnJ9PQ04eHhpKSkYDQa8Xq9Mjqprq7ujp8FmqbhcrlkBTibzYbVapXpQXqK1J/92Z8REhJCdXU1v/vd73jllVfo7u6e1/bk5GR27NjBs88+S2FhITAzgXfu3DlpAq4XI3hQOJ1ODh06JFPWJycn2blzJ9u2bcNkMnHmzBkZ3Tm3IqcuhuhVD9va2mhra2PlypUsX76cw4cP3/T8tdvtWK3WG1Z5vBkGg4GEhASCgoKwWCwYDAZMJtMdCzF6sYWGhgZ+8pOfyCi2NWvWUFhYKH0M57ZPCCGrweoRxY/KtalQKBSKe+dDJ/zYbLZ5ZdRvJwKEhYWRmppKQkKCNECtrq6W/gV3ii786KG3QUFBcllkZCSf+MQn+MQnPoHD4cDpdPLjH/+YysrKeQNPo9FIREQE//RP/0R6err0CpienpZGv4v5sNVDth977DFZnvVWA1q906lHSc19/263bzKZ5KDUx8eHiYkJRkdHb3j8AgICKCgoYP369ZjNZpxOJ4cPH6ahoeGOZs5uhsfjobq6mqqqqnuebdTNXPV9Mz09TUdHB3V1dcTExBAaGoqvry/p6ekMDAzg8XhkCt7dYDQaiYmJYcmSJbLaVl9fn+ys3w36/hgaGiIyMvKWn9XTBp988kksFov0RbjTSnuPCsHBwWzfvp3U1FQMBgP9/f0cPnxYGn4vJvpMbkFBAfHx8eTm5mKxWOjt7eUHP/gB7777riz3Oz09zcmTJ8nNzSUgIACbzXZdtJ5e5bC+vl5GHQYEBJCZmSkH1bqA/GHH39+flStXUlRUJEXJsrIyzp8/v6ASyV6vl7GxMRobG6VQlpaWRmBg4B0LfCaTiczMTLKysrBYLNTV1XHq1ClKSkpwu92MjIxQXV1NcHAwgYGB0rtpcHDwjo6FXp0tMzMTgIsXL3Lq1Ckpfg8PD1NVVYXD4SAuLk5WE5xrMH479GhQvQqcXmnv5MmTMmqst7eXmpoaWZUuODiYwcHB63yvbredxMREsrKyiImJYXJyklOnTnHq1KkHYuy7EIxGI0uWLGHXrl089dRTcnKpsLBQRsKUlZVx5MgR3nzzTTo6OkhKSmLXrl3ATN/AZDLJAfZzzz1HWFgYbreby5cvs3v3bsrKyigtLb2l2KinxBUVFbFjxw42b95MSEgIXV1dlJSU8Oabb1JaWooQQj4LjEYjHo+Hjo4OWltb71qAd7lcVFdXMzIyQmhoqHzf19eXyMhIvvnNbxIaGorX62X37t3s37+fjo6OeesICQnhpZdeYufOnURGRkohRU/zGhgYuKu23Su64fGJEycQQlBQUMDKlSvx8/Pj3//93zlw4ACapuHj4yPLz5tMJmJjY9myZQt79+6V6bJutxs/Pz8KCwtlGpjO9PS07FesW7eON998k+Hh4QU/n/XKjfrfDoeDlJQU7Hb7gsvBX/u7+/v7pfB46NAhcnJyeOKJJygoKGDt2rXz0u30KOaYmJgFmeYrFAqF4sPDh0L4mZqaYmxsjKmpKYxGIyEhIWzfvp1XXnnllrO9RqORvLw8srOzZaix3jG/11Sha7dpNBr51re+xY4dO4iNjaW+vp5XX32V3/3ud/NEn9jYWHbs2MHXvvY1WWq9oaGByMhI4uLiGBgYoLy8/J6FH93TQ+8AWq1WtmzZwpEjR+jp6bllJ0SPJtA7LwaDgdzcXAoLC7ly5Qrt7e3Sq2Ku6AF/EHn8/PwICAiQaQQ5OTmEh4fLKJEzZ85w+PBhKioq5v1Wg8HAl770JV544QVyc3MZHx9n7969/Nmf/dmiescsxEvnbvB4PDL9JCAggLCwMFJSUvjGN75BWloax48fp7S0lNbW1jtet15pZsOGDURFRWE0GpmammJycnJeJbO7bfftMBgMPP7443zta19j48aNTE9Ps3v3bv7jf/yPsorUhwmj0cjf/d3f8cwzzxASEkJTUxPvv/8+//AP/3BH5ZoXgn6drF69muzsbIxGI35+fnR3d7N792727t0rBQjd4F2/dgMDA0lNTaWiomJelKLX6+XKlSuEhoYSEBCAn58fYWFhfOtb3yI+Pp59+/ZRWVl5xyk5jxr6QGTuffz8+fO89dZbnDhxYkGRNHp6Z0NDA83NzWRkZJCUlERkZKQsYbyQ60cXenVfDN1XSS+FrAtM1dXVMtojISGBsLAwJiYmFpyye+129OplAwMDsprbyMgIFRUVpKSkyOdHcHAwbrd7wdfi3Bl+g8GA2+2WUUVut1v6r1VVVckKidHR0fT09Mh04jvZjv6scLlcdHV1SYPih43BYGDLli38yZ/8CatWrZoXUdzU1MQPf/hDjh49KiszappGfHw8f/7nf87U1BSvvfYae/bsYWxsjOTkZPLy8oiPj5cG/mfPnuXVV1+ls7PzpqKPXvHsiSeeYN26daxdu5bk5GQmJyepq6vj+9//PiUlJTQ1NTExMUF8fDzr1q2TYr0uONzLffhGFcqEELIq1xNPPMHAwACvvPIKv/zlL6mqqprnCfSpT32Kr33ta+Tl5WEwGKiurqatrY2tW7cyPDwsJxgeNgaDgdjYWKKjo+W9QdM0WTUwNzcXh8Mh/fg+85nPUFpaSnt7u1yHnvI8V/jRC2vovj5JSUls3LhRmjPf7jkrhCA6Oprc3Fz8/Pyk8JORkUFwcPBdCT/6evXfcqNJhLnodgY38qZTKBQKxYebD4Xw09/fz6lTp0hMTJRGhkFBQTgcDlpbW28ZZqvPMJpMJrxeL729vZw5c+aeUnysVis+Pj4yvHpsbIzQ0FDy8/OJjo6mv7+fAwcO8PLLL8tOmP4ALyoq4qWXXiIjI4Njx47x/vvvs27dOtLT02W47WJ56NTU1HD27FnS0tJkionD4ZCRIjdCN0Bsb2+ntbWV3NxcWeUrKSmJnJwcLBYLHR0dTExMYLPZsNlscoYMZmbnY2JiZFWw2NhYsrKy8PPzw2QycenSJYaHh2/YAQ4MDGTFihWkpaUxOTnJhQsXeOWVV+65hPyDZHJykp6eHurr66moqJD7Pj09nb6+Pumhofu1LBSTyURISAjLly+X4dnDw8My7eBe9o+/vz8mk0mKDjfy3fD39ycnJ4f8/HyEEHIw09raesfpMg8b/XrcuHEjwcHBtLS0cPjw4XlRN4vFXJFRn83XK8O9/vrr/OxnP7tlio5urhsUFDSv8h0gyzzX1NRgt9vxer2EhoaSk5MjPUecTucjZZ57p5jNZkJDQ8nMzJRpog0NDdILbaG43W5KSkpkCfZVq1bx1a9+lcOHD3PkyJHber7pA/OoqCiysrIIDAyU4svVq1dlW1wuF0ePHsXHx4fHH3+cFStW8KUvfYkTJ06wb9++2wpVevn2uLg4mV7U29srK1HqqUHj4+McPHiQoKAg6bvi5+fHmTNnOHHixG1FGT2NKSkpSaZ96M/Hjo4OmerZ09PD4cOHCQwM5NOf/jSf/exnSUxM5OzZs5SXl982etFsNhMREUF6ejrR0dEYDAZpyv0oDC7NZjMpKSns2rWLJUuWEBgYCMwIKZ2dnXzve99j3759MgJKr9b1yU9+kvXr19PT08PAwICcKJk7GeJyuejp6aG7u1t651yLwWDAYrHg5+dHVFQUGzZsoKCggNDQUPr7+6moqKC2tpbz58/T3t7O5OQkVquVyMhIGTUIM5GfV65cuWHp9YViMBjkswCQ20pKSiI/Px+j0cjRo0f51a9+RVNTkzz2ZrOZmJgY/o//4/9g6dKlNDQ0yCIMeuVHuPGk2cNibvqVwWAgKCiIlJQUPvvZz7J06VIZnTs5OcnKlSvZtGkTx44dm+d/cyMBRa+KV15eTnR0NEVFRbS1tQFQX19/y+vSZDKRnZ1NXl4eZrNZCo2BgYFs27aNnp6eW1oU6KlpFosFHx8f6dmXlpZGdHS09A5KSkoiNjb2Ot9HPQV/aGjorjwwFQqFQvFo86EQfiYnJykpKaG4uFhWmgoNDWXJkiVUVVXddNCp+9pYrVamp6eZnJzk6tWrtLW13XWqjT5TlJiYKCvLtLW1sW3bNpKTk3E6nZw+fZpf/OIXNDc3o2kafn5+PP7446xcuZKCggKioqK4cOEC//2//3caGhrIyclZdCO9qakpOjo6OHfuHE8++aT0tkhPT+fKlSv09fXd8KGuG/2WlZUREhLC2rVrsdvt+Pr6UlBQgJ+fHz09PVRXV9PT00NISAghISHzqkxZrVYcDgdhYWFYLBZpYFlZWUlvby+nT5+mqamJnp6eeW0QQpCeni47JO3t7Zw5c4Zz587dcfW1+43FYrlp7r4+S15dXY2Pjw9Op5O1a9cSGRlJdnY2PT09tLW1MTQ0NE9gmbsvbuZ95OvrS3BwsCyN3tTURG1t7R2X7p2L2WwmJyeHoKAghBB0dnZelzqmp2okJiZKU9KzZ89y9uzZe442ehiYTCaysrKIjIzEbDZTX1/PmTNnKCsrW9TS0nPLrgcGBsoojrGxMerq6jh48CANDQ23PL91o9EbDTImJiakX4geBbJy5Uri4+PJy8ujsbFRRg/pA/nbnWePEgaDgcjISPLz8+V9Uk9zulNTYE3T6OnpoaqqSpYu37p1K2FhYXR1ddHY2MjIyMgNU5h0z524uDiKi4tZvnw5fn5+lJaWUl9fT09Pj3wOaZpGW1sbZWVlZGVlsWLFCrZt20Z0dDT19fV0dnbKCNZr0UvWp6WlsW7dOpYtW4aPjw8XL16Uxt/69zweDy0tLVy6dInVq1eTlpaG3W4nIiKCzs5OOjs7b+rJJoQgKiqKvLw8iouLSU9Px2g0cvXqVVpaWqSfCfyhLHRJSQk7duyguLiYiIgI/Pz8ZNW6G/nUwB9SU4uLi1mxYgUxMTGMjY1RUVFBW1vbPXus3Ssmk4n4+Hi+/vWvs3HjRsLCwjAajbhcLtrb23n99dfZv3+/jDb19fUlOTmZ7du38/TTT2O323n99depqam5Ydqw0+lkaGiI0dFRGQ3r8Xjw8fHBarVis9mIjIwkPT2d+Ph4srKyKCgoICAggKqqKk6cOMGFCxfo6emRVdQ8Ho8UB4OCgqRpfU1NDY2NjXds7j0XHx8fWYFMv17i4uJYunQpDoeDlpYW/uVf/kVWqLNYLMTHx7N9+3ZWrlxJZmYmVVVV/PrXv+bUqVOEhYXx7LPP3sshui94vV4aGxtpbm5m/fr1bNu2jZSUFKKiosjJyWFoaIijR49y6tQpjEYj3/3ud/nGN75Bfn4+QUFBZGdnAzf2jpuamqKnp4fdu3fLiN/nnnuOoKAg9u7dS3l5+U2vfavVSkZGBkFBQTQ0NMjtFxcXs2XLFt5+++2bCjK6GbjD4SAkJITw8HAiIyMxGo1kZ2cTHx8vqw0GBwdfZ+6s75fJyck7NqRWKBQKxYeDD4Xw4/V6aWlpobu7m4mJCZnWEBsbe8uQVZfLRUVFBSEhIXR0dDA2NsaePXvu2JhyLkIIgoODCQsLw2azybz+tWvXEhwcTFNTE5cuXeLSpUuyMsbSpUt59tlnKSoqws/Pj8bGRl5//XWOHTvG9PQ07e3tjIyMYLfb73YXXYdeZrapqYmhoSFZxlOvYHQr0z6n00lrayuXL1+mu7tbpqXExcXJlIXMzEx6e3sJDg4mKCgIu90uzYbn+t643W6ampooKyvjwoULdHZ2Ul1dzfj4+LzOj9FoJCUlRabK6YLaiRMn6OrqWrTBgb6ee1mf7ouh71OPx4Pb7Zbn1NTUFIODg3g8HhmRAUizxpycHIxGI319ffT19TE5OSk7kHrHa244vNFolIKB2+3mwoUL8tw7efIkpaWl95TOo4uZ/v7+GAwGhoaG6OnpkW0yGo0kJiayefNmsrOzEULQ19fH0aNHH6nS7QtBT5fTvTn8/PyYmJjgypUrXLp0aVGjfXSz9rmztjBzfjQ3N3P69GmuXr26oNQM/Zq6Fj1lRh9s6LPweue/uLiYuLg4BgcHGR4eZmJigomJCTm4HR8flx18/RwTQjA5OYnL5VpUEexu8PHxITU1lfXr18s00ba2Nmpra6UR650wN0Kqs7NTpt3l5+djMplklJTL5ZLr1k25Q0NDycrKorCwkIiICJxOJ5WVlTQ3N1+XxjE8PEx9fT319fVkZWWRkJCAxWJh2bJl+Pr6Xifi6Nux2WzExsaydOlScnNzCQsLw+l0UlpaSk9PzzzPJk3TGBoaoqqqisbGRsLDw0lLS8Pr9ZKXl4fNZqO+vp6JiYl5bdONrvWUJL1s9ODgIJcuXZLt0n//9PQ0AwMDVFVV0dTUxNKlS6WRfVNTE/X19Tc0yte94tLS0lixYgXx8fFYrVaampq4cuWKrE72sNCjPDZv3syOHTvkMXI6nbS1tXH06FHeeust2tvbZZRPSkqKNH/Ozs5meHiYw4cP09TUhNvtltE3Ovq543A4pMjscrmIjo7G4XAQHBxMSkoKK1asICEhgZSUFHx9fWVa1JEjRygrK8PpdM47V3Q/wHPnzsnI43379lFbW3vXvnV6tEhMTIz09zMajaSmpsoiC1euXOH06dO4XC6MRiPR0dGsW7eOz33uc2RkZNDW1sZ7773H/v37qa+vJyMjg87OTpYuXSq38SigVxhrbGzE7XazbNkyeV5PTk5y7NgxXnvtNc6cOYOPjw9f//rXWbp0KeHh4bJYw8jICJcuXbquL6lX0zp69CghISF8+ctfZtmyZbJ/pKfu6ee+fm+3WCxS5J6enubcuXMcOXKEkJAQlixZQmpqKlFRUXR0dFy3TaPRKAW6xMREwsPDCQ8PJyIiQh6noKAgAgMD8fX1labRc/eHXj22ra2NkydPzqtAq1AoFIqPBh8K4QdgdHSU3t5eRkZG5MPMz88Pg8FwUxFjeHiY3bt3U1tbKw0lT58+fU8PNH1WRi/f7vF4GB8fZ9WqVZhMJhobG6mvr5ezejExMezcuZM1a9YQGhpKbW0tb7/9Nm+++aYM+W9ubqanp0empOnlWe/1oet2uxkYGKCnp0fO6NpsNhmZczN0waKlpYWLFy8yMjJCYmKiLOuqp55ERUXJqh9CCKampmSa0OjoqAx/r66u5ujRo1RUVDA+Ps7o6Oi8Dr9eKeqpp57ihRdeIDIyUoatnzt3btEHB3q0zN3uX6PRSHx8PHFxcfj6+uJyuaQnhu6RoA+w9QiDkZER0tLSiIuLIy4ujqeffhqn00lfXx9DQ0Oy1LPeodersuidcb3aVG9vLy+//LIsIXvlyhWampoW7B1yI/QBmh7e73a75wlZugHypz/9abKzsxkbG6OyspKTJ08+dGHgTrHZbCQmJvL000/z/PPPYzKZqK2t5cKFC/fFyNLlctHZ2SnFFV0MKi8v5/Dhw/Oq4dwNHo9HGoe2tLTIqLqsrCySk5MpLCykuLiY8fFxhoaGGBwcpLe3F4vFwujoKB0dHXR3d8tzzWq14na76ezspK+v756uk8XA19eX1NRUioqK8Pf3x+PxcOnSJS5cuEB3d/cdt83tdstovIsXL5KamkpQUBBr164lLCyMyspKKioqpDE2zKTnRUREkJWVxcqVK8nIyMDtdtPc3MyFCxdklaK5OJ1O2tvbKSsrk2kWwcHBPPbYY8TGxnLp0iWZqqZ/12azERcXR2FhoTQAn5ycpKmpibNnzzI0NHTd9TY5OUlzczMlJSXExcXJbW3atEnen3Wz3+npaSkuJSYmsmrVKpYtW0ZQUBAjIyMy6m1iYmLedaB7vjU1NXHu3Dni4+Ox2+2kp6ezadMmYmNjZVqKLv7oz+f4+HiKi4tZsmQJJpOJ3t5eqqqqKC0tfejRPhaLhZiYGD7zmc+QlJQk77M9PT2cPXuWN998k+rqaqKioggJCWHZsmWsWrWKVatWkZWVhdPp5PLly1Iw1veZ/nzRK7zFxsaSl5fH+Pg4nZ2djI+Pk5aWRmRkJMHBwcTExMhoLSEEXV1dtLW1UVVVJUXFa+9LTqeTuro6fvnLX0pPQD1F706qx12LHlWqT6hNTk4SEhJCREQE4+PjlJSUMDU1hc1mIywsjOLiYnbs2MGyZcuYmJjg3Xff5c0336SlpUV6DtXW1rJ582Z5TpjN5rs/aIuILs6Wl5eTmpoqU6fb2to4cOAAJ06cYHBwEB8fH/bs2cOOHTvw9/cHYGBggNbWVt59990b9k+mpqaoqanh7bffZtOmTSxfvpy8vDysVqssbDEwMIAQAj8/P3x8fAgKCmL58uXk5+dTV1fH4cOHuXjxIgkJCdTW1rJx40by8/NpbGyU/QVdNPL19eXxxx/nySefJD09XZZr1wU8vZ+s9yvn9v/09K6+vj46OjooKSlh3759j2yFToVCoVDcPR8a4UevYNLY2EhKSgoGg0GmF+lGw9eiR410dHTIB929iggmkwlfX19sNhtCCJxOJ1/5yleoqqpC0zRaWlro7e0lPDyc5ORkPv3pT7N9+3bsdjvNzc3s37+ff/u3f5tnHqtXijAajQQHB1NYWMjVq1fvuRyzbtSpp8nN7WToIec3Qp+Vamxs5Hvf+x7Z2dk89dRTZGdnywpkOpOTk3i9XgYGBmR5ZL3qWV1dHWNjY3LQebN0Fl9fXzZt2sRLL71EQkKCnOE+duzYohhBXpvaMj09zdjY2E3LCM/1IbiRJ4HujWG322VklR4afe1nvV4vTqeTK1eu0NnZSVRUFLm5uaxevZq4uDjS09NxuVwyFUAXfnTxUNM0DAYDnZ2dVFVV0dPTQ21tLXV1dXL99xq9ZDabZbTZtYKg0Whk48aNfPWrXyUtLQ2Ampoa9uzZw+Dg4F1v92ERFxfHtm3b+MpXvkJ0dDTDw8Ps37+fysrK+xLars+k6h47QggpqtbW1t70mtDP02s76bfajn5eX758ma6uLhoaGti4cSOZmZkkJydjs9lwu90MDQ3dUPjRB+yVlZWMjY0xPDz80Mv5ms1mfH198fPzA2bulRcvXqSlpeWujtf09DRDQ0NcuXKFV199lRUrVpCamsquXbtwOp00Nzdz/vx5Dh06RHNzMzBjyL9u3TpWrVpFamoqVquVmpoa3nvvPQ4ePEhbW9t199KpqSl6e3s5evQoNpuNtLQ0EhMT+exnP8v4+DhXr17lxIkTlJSU0NXVBUBSUhKf+MQnZETR9PQ0tbW17Nmzh8OHD99wwmJqaorOzk7eeOMNwsPDCQkJITIykhdffJGxsTHOnj3L/v37qampYXh4GLPZTFxcHJ/61KdYsWIFdrudgYEBysrKOHDgAEePHr1OONDLfHd0dPDv//7vZGVlyaIJ2dnZjIyMSKGkqamJqakpAgICSElJYfv27RQXF+Pr60tLSwvnzp1jz549nD59+qGn7/r7+5Oamsrq1asxm83S30wXtTs6OmT1o4yMDHJycoiMjMRms8mqZD/+8Y/p6emRwozX62V6eprh4WHGx8cJCgoiOTmZ2NhYNm3aJI257Xa7NNl1uVyMjIzQ398vI2ObmpooLy+nq6vrhmK0bkhcVVVFbW0tcO99G91rKCAgAJh5Fnzve9/jscce46WXXmJwcJDKykqCgoJITExky5YtbNy4kSVLljA2NsbFixf5wQ9+MM+PT6+Gpmkadrud3NxcafD8sL2dpqenuXz5Mj/84Q9JT0/HYDDg9XqpqamhpKREenZNTk7yr//6r9TX1+NwOGTkbXd3NydOnLjp+r1erxRSYmNjSUpKIjc3F39/f1wuF+fOncNms5GTk0NiYiIxMTEUFBSgaRo/+clPOHTokGxDeXk527Zt41Of+pSs7qZpmrQxCAkJ4Zvf/CaZmZnzPBxv9uyYGzWopzUePXqUCxcuUFFRQUtLy2LtZoVCoVA8QtxW+BFCxAH/DkQAGvBjTdP+WQjx98DXgN7Zj/61pmm771dDdY8efRbWbDazadMmfvOb31BWVnbLiIfF7GAEBweTm5srI2gsFgurV68mMTGRPXv2sGTJEpKTk8nJySEiIgKTycTg4CD//M//zDvvvENlZeV1HeuGhgaqq6tlSsD/+l//i4aGBioqKhgcHJTRF3c6APN6vbjdbjlgMBqNLF++nEuXLsnZxFsxNTVFfX09o6OjGAwGrl69ep3wA38ok9rU1ERHR4eM9BkdHWV6ehqv13vTY2C1WklJSeGv//qvSUlJwev18qMf/Yjf/va3lJWV3dHvvRn6wFs3U25ra+ODDz6gs7PzhoOP0dFRXC4XNptNztzObW9CQgJFRUWkpKQwOjrKyZMn+f3vf3/LstADAwOMjo7S1dUlj+mKFSvIzMzE39+f8PBwLBaLnCVNT0+X1brGx8cZGxtjYmJCioGLdU6bTCYiIyNZu3btdcfWaDQSGhrK3/zN35CTk4MQgjfffJOf/OQnHD9+fFG2/yCx2+1yEJOYmIjH4+E73/kO77zzzqIbOuvMTcmIjY3F5XJRWlp6y2pbuvBaWVnJ4OCg9F66WbrXXDweDwMDA4yMjMhB48jICNnZ2SQlJUkDWZPJxMTEBImJifK+ql+zevrZwzaE1ivcJCQk4O/vLysknThx4pYGpwtBH+xcunQJIYRMsdE95HTDb03TZFXC6OhozGYzw8PDXLx4kcuXL9+2QuTo6ChNTU2Ulpbi9XpJTU0lICBADgCTkpKk11lSUhKFhYU4HA5ZiODixYsy1edWv7e/v5/q6mqSkpKYmpoiMTERu93OypUrsdlsNDc3MzIyIj1tiouL8fPzw+Vy0dzczMWLF6moqLilSbumaXR3d3PlyhV8fHxISUmR3nHFxcXStNnlchEQEEBCQgL5+fn4+voyMTFBZWUlpaWlNDQ03FNUymIQEhLCunXr+MY3vjEvAsXX15fNmzezdu1a6emjp1HW1tZy7Ngx6uvrqaqq4uzZs9fdN6ampmhra+Pdd9/Fbrezbds24uLiCAwMJCgoSFal04UePVrr+PHjNDc3097eLlPgFnqPX6yIWD3NcM2aNTL6c+nSpfzoRz/igw8+4Ec/+hGf+MQn+Id/+AciIiKwWq1ykuaf//mf2bNnz3Vi7NjYGGVlZTQ3N5OSksJf/dVfYTabef3112ltbZV+NQ9LBGppabmtyKFpGs3Nzfz4xz++4/UPDAzw85//HH9/fx5//HHp4/Sf//N/Znh4WBbO8PX1ldfX3//93/PWW2/JiBuXyyXv6WvWrMFoNFJVVSXPpZKSEkZHR0lMTLwu1fBGE1GTk5OMjIwwMjLC+Pg4x44d49y5c5w9e1b2iR62KKdQKBSK+8NCIn6mgb/QNO2iECIAKBFCHJhd9k+apv3P+9e8+cyNvtA9YdavX09ra+ttO8aLxdyIH6/Xi8fj4W//9m/5H//jf5CSkoLJZJK+Px6Ph7179/L2229z8ODBm4ZhX758GZiZzf72t7+Nn58f//RP/0RFRQU1NTU0NTVRV1fHlStXGB4evuOOni4aCSHkrJJucn27delGf7rXz40GnvpxmZ6ellEqC6neIYSQ5e31aJK2tjZOnTpFTU3NoswIDw4O8sYbb3D+/Hkp5PT399PS0jLPL0NnamqK3bt3k56eTmhoqBy064aZwcHBLFmyBLvdztDQEH19fZw+fZrS0tJbpj15vV5cLhdut5vy8nIaGxt57733CAwMJDAwUJaPdbvdjI+Py7SI9vZ2meY4MDAwz3tkMdAjfnTfJ7fbLf1dAgMDeeaZZ+RsaFdXFxcvXuTixYsfuipeBoOBVatWsX79euLi4vB4PDQ3N8tZ1fvlNTI1NUV7ezvf+973qKyslAPnpqameebZ1zI2NsaZM2c4cOAATz75pDTl9PHxuW0Ivp5q4na7OXr0KOfPn8ff3x+73Y7dbmf16tXSYFoXd/r7+2lvb2d4eFiWHn7Ywo/ZbCY1NZW0tDQp/AwODjI4OHjPKYZut5uWlha++93vEh0dzZo1a4iMjCQlJYW0tDSKiorYuHEj4+PjUnivqKigvLycCxcusH//fgYGBm4abaozPj7OuXPnaG5uJjIykk2bNhEWFkZubi4xMTFs3rxZinBOp1MWILhy5QoXL17k9OnTDAwM3PZeODQ0xBtvvMHx48eJjY2lqKiI8PBwioqKSEtLIzc3V5Zp1lNTjx07xqVLlzh79ixVVVUMDw/fdsDX39/PD3/4Q8LCwkhPTycnJ0dup6CggNWrV8v73NTUFP39/Rw8eJDTp0/zwQcf0NbWJsvePywMBgNLly5l+/btrFixApfLhcvlwsfHR/qzjI2Nyevorbfe4tChQ7S0tDA4OCj96W50TPQIiq6uLt5//32mpqbIysoiKSmJmJgY+Rm9zHlVVRVlZWVUVFQwNjaG0+l8aL5H10b8TE5O8uKLL/KZz3yG0NBQoqKi+PSnP43FYpGCw7Fjxzh8+DAnTpy4YQTe8PAwBw4cwN/fn3/8x3/E39+fL33pS6xbt46amhr5T09lvNco50eRhoYGfvCDH3D16lV27NhBbm4ukZGRhISEADOTA4ODg9TW1rJ3716ZZqXvh87OTvbs2YPRaOTrX/86oaGhLFu2TIqPV65cISoqiomJCVk59Vr0ya/BwUFaW1upq6ujoaGB8fFxjh49SltbG/39/TeNglYoFArFR4PbCj+apnUCnbN/jwohKoGY+92wG7RDVl7p7e0lNDRUCiwP0jDQ4/EwNDREe3s7g4ODlJeX89Of/pSYmBg+97nPERERQW9vL+Xl5TQ0NLB37166uroYHh6+aefd5XJx9epV2WF+5plniIuLIyIigqKiIukVo+deHzx4cEGdQ70TWltbS1dXF5GRkXg8HmniulD0dKXFRvcUCQkJwWKxMDw8zCuvvCK9gBYD3efJarXKUtB6udIb7UM9Xe9f//VfsdlsTExMyNk2mBlg6VVWAgICZHpIZ2fngjpM+vZHR0eZnJykv78fq9XK4OCgFKZcLhcmk4mxsTEZfaQb7S52p0xvT1dXFxaLhYaGBo4cOUJ5ebmsMGS1WhkdHeW9997j1KlTi5J+96ARQmC32wkICMBgMNDX18fPf/5zaYx8P5mamqKxsZGXX35ZCnu3E/Cmp6fp6uriJz/5CTabDZvNJk05F4o+0He73VI8tFqtjI2NSeN1fQA+MTEhK1rp1b8eNnoKoq+vr/TNOn78ON3d3YviLaVXPuzr66OlpUX6bMTFxZGamkpkZKRMhdPTVfv7++nt7aW3t3dB/ke6p1Nra6tMgbXZbERHR8v0jqCgIDo7O+nq6mJ8fJz+/n76+voYGBiQJvG3Qzd6Hh0dpb29XVYUfPfdd+Vv0c/77u5uxsbG6Orqoq+vj8HBwQWLMboHju5xcvbsWXx9fXnnnXfIysqSXjC6UD0+Pk5XVxfd3d1yYPmwowlsNhtRUVFERUUxPj7O7373O9rb22V6XXNzs5wY0DSNyspKWbVNj2C9Ffpzt7q6moGBARwOhyyAoNPb2yuP1+joqDTgfpiDbj1CuLOzE4vFQnl5Oa+//jpOp5O8vDx27tyJ1+vl9OnTNDY2curUKelTdbO0S6/Xy/DwMO+88w7h4eHs3LmThIQEcnNzyczMlPed06dPc/ToUU6fPi2LIXxU0AtcvPfee5SXl5OTk8NXvvIVadxeWVnJhQsXuHDhApWVlddVXJ2enqanp4f33nuPhoYGrFarTCXVr+XOzk5+9atfkZ+fT3x8vCzjrt83L126JCurNjY2yshjj8cjI5AfttCvUCgUivvPHXn8CCESgXzgLLAG+LYQ4gvABWaigu6b6YfX66W5uZljx45hsVhkikJpaekDrT6gV2toa2vDZDLJ6jx2ux2n04nD4WBwcJD6+nr6+vpobGy8bcdd0zTGx8epq6vjjTfeoKuri/Xr18uHtx5qXlZWRnt7+x391omJCS5evMhrr71GWloa09PTspz6w+6Az/3d+/fvp6+vj3379t3U1+Bu8Hg89Pb2Xvf+rfahbpwphJAzZXp79NncwcFBWU1FH1zfCXonWzfEnp6exmg0yrB33e9HHyjdr2Pl9Xrp7+/n5ZdfJjAwkI6ODq5cuUJXVxcmk4mmpib279/P4OAge/fupba29pEQBe4UPYy+tLQUgJ6eHvbt23dfBM0boZs8L/Ta1QePZWVl/OpXv8LhcFBZWXnH7dU9hrxerzzXGhsb5aBgbuWmqamphz74nMvU1JQ0NtYHyPv371/UiJHp6WmZRqx7abW1tdHY2EhISAj9/f0MDg4yMTGB2+2W4vydbF8XV6empuR2uru7aWlpITQ0lICAAAYHB2WFP30bCxEZ5jI30mtsbAyj0UhPTw+tra2EhIQghJAG33p6n9vtvuNjru8zvVS5/ns6OjoIDg5mcnJSGo47nc5HSkwEZBpdaWkpHR0d/PrXv2ZgYAB/f3/pVzfXSPvaYgQLQU/XbGtro7u7G4vFMi+lTK/SdScpXfcbPU1Nv980NTVx4cIFnE4nDQ0NtLa2omkapaWl9PX1ycjA2507+jP47bffpquri8LCQmJiYmTk0MTEhEwHW6wJn0cNp9NJZ2cnw8PDsiqX3W7H5XLR1NREQ0ODrO56M7Porq4umXav9x/0fofb7ea1116jpKRE+lDBH8R/3bdNn4ScnJyU0VWPyv1eoVAoFPcfsdCbvhDCHzgG/BdN094UQkQAfcz4/nwXiNI07cs3+N7Xga/Pviy4l8YajUbCwsJISUkhJiYGp9PJ+fPn6e3tfWDVhQwGA/7+/vj4+ADICg1CCBwOByaTSXa879SXR0+7CQoKYsWKFfj4+EjhZ2hoiKtXr97SJPlmWK1WWeZzenqaxsZGGhsbb5lq8qCw2+0kJyeTkZEhTULvJp1tsdGjyG50/K71WlmMztON/FseVKfMZDIRFBSEyWRicnJSDnKtVitpaWnk5ORI0+Du7u6Hbsp6N+hphcnJyYSHhzM8PMypU6c+FJVL/P39sVqtcrB+rwPFuWV84Q/n+KM2ANCPWVJSEuHh4UxOTnLu3LnrZsQXe5smkwkfHx+sVut10XaLdU3OrQ6pl/jW03zu1bB9LgaDQf4WPZXz2t+zWNvx8/PDarVK8WmuqPQonVtGo5HY2Fji4uIwm83XVSe8H+29H8+MxUbvfwQGBmIymaS/nNfrxWKxyIilgYGBuzpHTSYTDodDliXXhbDJyUlKSkoYHBzE5XI9MkLY/WLu81avCrsYKX76Nejj4yMjunXhX+9TPex+lUKhUCgeCCWaphXeaMGChB8hhBl4D9inado/3mB5IvCepmlLbrOeRenp6KUpYfGMDT/qCCHkgG8xBxaLgd62h2nyqLgxH6VjM9cg+aPwez4OXGtqre73isVg7jml7gMKhUKhUCg+QtxU+FlIVS8B/BSonCv6CCGiZv1/AJ4Bri5GSxeC6qjdOfrMz6PIo9y2jzsfpWPzKM6yK26NOmaK+4E6rxQKhUKhUHzcuG3EjxBiLfABcAXQFZe/Bj4D5DGT6tUEfGOOEHSzdfUC48ykiCkUikeXUNR1qlA86qjrVKH4cKCuVYXi0Uddp4qPAgmapoXdaMGCPX4WCyHEhZuFHykUikcDdZ0qFI8+6jpVKD4cqGtVoXj0Udep4qOO4fYfUSgUCoVCoVAoFAqFQqFQfBhRwo9CoVAoFAqFQqFQKBQKxUeUhyH8/PghbFOhUNwZ6jpVKB591HWqUHw4UNeqQvHoo65TxUeaB+7xo1AoFAqFQqFQKBQKhUKheDCoVC+FQqFQKBQKhUKhUCgUio8oD0z4EUJsE0JUCyHqhBB/+aC2q1Ao5iOEiBNCHBFCVAghyoUQ/2H2/WAhxAEhRO3s/0Gz7wshxP87e+2WCSGWP9xfoFB8vBBCGIUQl4QQ782+ThJCnJ29Jn8rhLDMvm+dfV03uzzxoTZcofiYIIRwCCFeF0JUCSEqhRDF6pmqUDx6CCH+bLbve1UI8aoQwqaeqYqPCw9E+BFCGIF/AbYD2cBnhBDZD2LbCoXiOqaBv9A0LRsoAr41ez3+JXBI07Q04NDsa5i5btNm/30d+P8efJMVio81/wGonPP6e8A/aZqWCgwCX5l9/yvA4Oz7/zT7OYVCcf/5Z2CvpmmZwDJmrlf1TFUoHiGEEDHAnwCFmqYtAYzAC6hnquJjwoOK+FkJ1Gma1qBpmhv4DfD0A9q2QqGYg6ZpnZqmXZz9e5SZDmoMM9fkL2c/9ktg1+zfTwP/rs1wBnAIIaIebKsVio8nQohY4BPAv82+FsBjwOuzH7n2WtWv4deBzbOfVygU9wkhRCCwHvgpgKZpbk3ThlDPVIXiUcQE+AghTIAv0Il6pio+Jjwo4ScGaJ3zum32PYVC8RCZDVvNB84CEZqmdc4u6gIiZv9W169C8fD4PvB/A97Z1yHAkKZp07Ov516P8lqdXT48+3mFQnH/SAJ6gZ/PpmT+mxDCD/VMVSgeKTRNawf+J9DCjOAzDJSgnqmKjwnK3Fmh+JgihPAH3gD+VNO0kbnLtJlyf6rkn0LxEBFCPAn0aJpW8rDbolAobooJWA78f5qm5QPj/CGtC1DPVIXiUWDWZ+tpZsTaaMAP2PZQG6VQPEAelPDTDsTNeR07+55CoXgICCHMzIg+v9Y07c3Zt7v1cPPZ/3tm31fXr0LxcFgD7BRCNDGTIv0YM14ijtkwdZh/PcprdXZ5IND/IBusUHwMaQPaNE07O/v6dWaEIPVMVSgeLbYAjZqm9WqaNgW8ycxzVj1TFR8LHpTwcx5Im3VNtzBjpPXOA9q2QqGYw2x+8k+BSk3T/nHOoneAP5r9+4+At+e8/4XZSiRFwPCc8HWFQnGf0DTtrzRNi9U0LZGZ5+ZhTdM+BxwBnpv92LXXqn4NPzf7eRVloFDcRzRN6wJahRAZs29tBipQz1SF4lGjBSgSQvjO9oX1a1U9UxUfC8SDOn+FEDuY8SowAj/TNO2/PJANKxSKeQgh1gIfAFf4g2/IXzPj8/M7IB5oBj6tadrA7MPxh8yEw04AX9I07cIDb7hC8TFGCLER+D81TXtSCJHMTARQMHAJeFHTNJcQwgb8ihnfrgHgBU3TGh5SkxWKjw1CiDxmDNgtQAPwJWYmV9UzVaF4hBBC/CfgeWYq3F4CvsqMl496pio+8jww4UehUCgUCoVCoVAoFAqFQvFgUebOCoVCoVAoFAqFQqFQKBQfUZTwo1AoFAqFQqFQKBQKhULxEUUJPwqFQqFQKBQKhUKhUCgUH1GU8KNQKBQKhUKhUCgUCoVC8RFFCT8KhUKhUCgUCoVCoVAoFB9RlPCjUCgUCoVCoVAoFAqFQvERRQk/CoVCoVAoFAqFQqFQKBQfUZTwo1AoFAqFQqFQKBQKhULxEeX/D/HOoozpTrvnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAACCPUlEQVR4nO29d3Td13Xn+/nd3tB77yA6wAb2KooUVWnLVrFc4xfHTrOfMyszKe/NzIuTlRlnZcYpTpnYjh0XuciWRJESi9h7J0D03nuvF8C9v/cHcI4uSAAEwCrpfNbSEoh78Wvn/M7ZZ5+9v1vTdR2FQqFQKBQKhUKhUCgUCsVHD8OjvgCFQqFQKBQKhUKhUCgUCsWDQTl+FAqFQqFQKBQKhUKhUCg+oijHj0KhUCgUCoVCoVAoFArFRxTl+FEoFAqFQqFQKBQKhUKh+IiiHD8KhUKhUCgUCoVCoVAoFB9RlONHoVAoFAqFQqFQKBQKheIjinL8KBQKhULxmKNpml3TtP2apg1omvbLR3099xtN097VNO0Lj/o6loumafWapu2a57N/1zTtWzM/b9E0rWKRx3wkz8T3ehUKhUKhUHw0MD3qC1AoFAqFQnFXPgVEACG6rk896ou53+i6vvdRX8PDQNf108CKRX73Y/FMFAqFQqFQPHhUxI9CoVAoFI8/CUDlR9Hpo1AoFAqFQqF4sCjHj0KhUCgUjwGapmVqmnZC07R+TdNKNE17fub3/x34f4GXNU0b1jTty3P87X/TNO1Xmqb9XNO0IU3Trmmaln+3Y8989rSmaaUzf9eiadp/mvl9qKZp78z8Ta+maac1TTPMfBatadobmqZ1aZpWp2naH/ocr1DTtCuapg1qmtahadrfzvzepmnajzVN65k55mVN0yJmPjuhadr/NfOzQdO0P9c0rUHTtE5N036kaVrAzGeJmqbpmqZ9QdO0Rk3TujVN+7O7nXuO5xU0c29dmqb1zfwc6/P5CU3T/kLTtLMzz+WwpmmhPp9/bub6enzPv4g23q5pWvPMz/9Z07Rf3fb5dzRN+7s5nskXNU07o2na38xcb52maXt9/i5J07RTM9d6VNO0f9Q07ccLXYOmaX868/zqNU17banPSdO0T2uadvW2739T07S3Zn6es18pFAqFQqF4+CjHj0KhUCgUjxhN08zAfuAwEA78AfATTdNW6Lr+X4G/An6u67pL1/XvzXOYF4BfAsHAT4E3NU0zL3Tsmb/7HvA7uq77ATnAsZnf/xHQDIQxnWb2p4A+4/zZD9wEYoAngG9omrZn5u++A3xH13V/IAX4xczvvwAEAHFACPBVYGyO+/jizH87gGTABfzDbd/ZzHTK1BPA/6tpWuZdzn07BuAHTEdSxc9cx+3n+AzwJaafmQUQDrEs4J+AzwHRM/cSy9J5HXha0zS/meMagZeYbru5WAdUAKHA/wS+p2maNvPZT4FLM9fy32aubSEiZ44Tw3S7/KtPf/Bloef0NpDk8+yZOe+PZn6er18pFAqFQqF4yCjHj0KhUCgUj571TDs4/lrX9Qld148B7wCvLuEYV3Vd/5Wu65PA3wK2mePe7diTQJamaf66rvfpun7N5/dRQIKu65O6rp/WdV0H1gJhuq7/fzPHqwX+D/CKz9+lapoWquv6sK7rF3x+HwKk6rru0XX9qq7rg3Pcx2vA3+q6Xqvr+jDwJ8Armqb56hL+d13Xx3Rdv8m0A0pEN8137lnout6j6/obuq6P6ro+BPwlsO22r/1A1/VKXdfHmHYgFcz8/lPAO7qun9J13Q38P4B3rvMshK7rDcA14BMzv9oJjM53zUCDruv/R9d1D/BDptsmQtO0eKbb5P+daY8zTDtl7sb/o+u6W9f1k8ABpp1Ot1/jvM9p5t5/DnwWQNO0bCCR6b4F8/crhUKhUCgUDxnl+FEoFAqF4tETDTTpuu7rQGhgOiJjsTSJH2aO0zxz3Lsd+0XgaaBB07STmqZtmPn9t4Fq4LCmabWapv2Xmd8nANEz6Vr9mqb1Mx0NFDHz+ZeBdKB8Jp3r2Znf/wdwCHhd07RWTdP+50w00lzPouG2azX5HB+g3efnUaYdWwudexaapjk0TfuXmXStQeAUEDgTdXO3c0Qz+1mPAD1znWcR/JQPHHCfYf5on1nXo+v66MyPrpnr6fX5Hb7XNw99M9ctaJg5ziwW8Zx+CHxmJvLoc8AvZhxCMH+/UigUCoVC8ZBRjh+FQqFQKB49rUDcTBqVIB5oWcIx4sQPM8eJnTnugsfWdf2yrusvMJ3S9CYz6VG6rg/puv5Huq4nA88D39Q07QmmnQp1uq4H+vznp+v60zN/V6Xr+qszx/sfwK80TXPORA39d13Xs4CNwLPA5+d5Fgm3XesU0HG3BzDfuef46h8xnSq2biYtbKt4dHc7B9DG7GftYDqSaTn8Etg+o5vzCRZ2/Cx0PcEz1yGIm+/LMwTd9lzimX7ut7Pgc5qJTpoAtjDtuPoP8Yfz9SuFQqFQKBQPH+X4USgUCoXi0XOR6aiSP57R5dkOPMe0DsxiWa1p2idnUqK+AbiBCwsdW9M0i6Zpr2maFjCTIjbITNqSpmnPapqWOhPNMQB4Zj67BAzNiBPbNU0zapqWo2na2pm/+6ymaWEzEUb9M9fm1TRth6ZpuTPRIoNMpwLNlSL1M+D/nhEsdvGBvtFdK5rNd+45vurHtF5Nv6ZpwcB/vduxffgV8KymaZs1TbMA/x/LtKd0Xe8CTjCto1On63rZMo7RAFwB/ttMe25gun3vxn+f+f4Wpp1wv5zjO4t5Tj9iWvdncibNjIX6lUKhUCgUioePcvwoFAqFQvGI0XV9gunF+l6gG/gu8Hld18uXcJi3gJeBPqbTbj45E2Vzt2N/DqifSeX5KtMaOwBpwFFgGDgPfFfX9eMzGjPPMq15UzdzzH9jWrgZ4CmgRNO0YabFll+Z0cmJZNppMgiUASfxiRDx4fszvz81c/xxpgWpF8N8576d/w3YZ679AvDeIo+PruslwO8xHZ3TxvTzbl7s38/BT4FdLC/aR/AasIHplLNvMa29417g++1MX3cr8BPgq/P0tf/N3Z/TfzAt3nx7FbH5+pVCoVAoFIqHjDat06hQKBQKheLDiqZp/41p0eTPPuprUTx6NE37OVA+UxHu9s+2Az/WdX05lcjmOpcd6ARW6bpedT+OqVAoFAqF4v6iIn4UCoVCoVAoPsRomrZW07QUTdMMmqY9BbzAtK7Ow+BrwGXl9FEoFAqF4vHFdPevKBQKhUKhUCgeYyKBXzMtMt0MfE3X9esP+qSaptUzLfS8b5Hf/1OmK8DdjhMYWcLvT+u6vndxV6lQKBQKheKeUr1mdpW+AxiBf9N1/a/v14UpFAqFQqFQKBQKhUKhUCjujWU7fmaqclQCTzK9u3QZeFXX9dL7d3kKhUKhUCgUCoVCoVAoFIrlci8aP4VAta7rtTMVQ15nOqdcoVAoFAqFQqFQKBQKhULxGHAvGj8xQJPPv5uBdQv9gaZpqoSYQqFQKBQKhUKhUCgUCsX9pVvX9bC5Pnjg4s6apn0F+MqDPs/9QtM0DAYDuq7L/z6qGAwGNE2T//Z4PI/wapaO0Wic9e8H0WaiP/ji9Xo/tP3i9mcGD+Z+HkbbKJbHw+oDintHjNEf9vbRNA1N09QYoPhIcbt9cL/fU/HeiGN/1Lif49vt9iyoeU2hUHxsaZjvg3tx/LQAcT7/jp353Sx0Xf9X4F9haRE/mqZhNpux2WxYrVYGBweZnJx8YJOfzWZj165dZGVlERcXx/j4OKdOneLQoUNMTk5+ZCYPo9GIy+UiJCSE6OhoYmNj0TSNsbExSktLaWlpYWRkrgIaszGbzdjtdiwWC2NjY4yPjz9Qx5GmaZhMJvz9/XE6nQQGBpKSkoLNZgOmHQsdHR3U1dXR1NS07GsR/S4oKAi73U50dDQRERGzztPY2EhlZSW9vb2PvTFmNBqxWq0EBgZit9vJzs7GbrdL56bb7aapqYkbN24wNTW1rHNomobRaMTpdOLn54fT6SQzMxO73Q5MP7OBgQEaGxupqKhY9nnEucQx7ydGoxGLxYLVasVsNtPX13dP17lYhGH/IPuR0WjEZrMREBCA3W4nJycHu90uF+Lj4+M0NjZSVFT0UO75w8LDaJv5sFgsREREUFBQgMPhoKysjMrKSsbHxx/6tdwrBoOBjIwMoqOjaWpqoqGh4Z7v40GNA4+Kh3U/D/O5ifdHzA8BAQGYTB+YnF6vl9HRUYaGhh74tdxPDAYDNpuN4OBg4uPjiYuLw2AwMD4+TkNDAzU1NQwMDNzzeTRNIyYmhtjYWGw2G1euXGF4ePg+3MGjx2g0EhUVRXJyMiEhIVRWVlJaWrqkfilsteDgYGw2G7GxsURERGCxWIDpPl5fX09FRQUDAwOPva2mUCgUD4N7cfxcBtI0TUti2uHzCvCZ+3FRFouFkJAQ0tPTiY6OJiQkhCtXrtDU1ER/fz9jY2P3bRAXk0d4eDif+tSnKCgoICIigrGxMZxOJz09PdTU1NDR0XFfzvcgEQu5+bDb7cTFxZGdnU1WVhaJiYnExMSgaRqjo6O88847nD59mpqamnmPIwy4nJwcoqOjCQoKoqqqiurqanp7exkeHr6vbSMcChEREURHR7NixQpCQ0MJCgq6w/HT2NjIyZMnGRoaoqenZ9HnMRgMmM1mnE4nYWFhxMXFkZubi5+fH9HR0URFRc0yJsrLy3njjTcoKipatNEqDG5xT2azWRrBk5OTTExM3LfdKaPRiMPhICgoiLCwMGJjY8nIyMDhcJCdnY3D4ZDXMzY2RklJCc3NzXR0dCzp/MKJGBYWRkREBElJScTFxeFyue5w/HR3d3Pt2jW6u7uX/S4J5wxMR6dNTU3dl77mcrlITEwkNjaWsLAwXC4Xp0+fprW1laGhIaampu7bQkmMNxaLRS4e7HY77e3tuN1uxsbG7ouDW7w3wcHBhIaGEhcXR3p6Ok6nUzr/RB8YHh6mpKSE1tZW2tvb78dtfmgRbSPmIKfTSVdXF+Pj4/K/h7GACAwMJD8/n1deeYXAwECOHj0q350PU2SmpmkEBgayc+dO0tLSOHHiBJ2dnffk+PEdB6ampvB4PI/Vou5u87AvBoMBo9Eo54KJiYn72r6apmGz2TCbzQQEBOB0OjEYDHR3d+N2u+V8fT8dQb7zQkhIiNwkysjImDXujI+PU19fz4kTJxgeHn4s+vXd2s5qtRIREUFaWhorV64kNTWV+Ph4NE1jfHycixcvcuTIEa5du3bPz9TPz4+CggLWrl2LyWSioqLiI+P4iY6OZuvWrWzfvh2Xy8WvfvUrysrK7vrMDAYDFosFp9Mp57X8/HxcLhexsbGEh4fPstVKS0t5/fXXKS8v/8g8O4VCobgXlu340XV9StO03wcOMV3O/fu6rpfcj4vy8/MjIyODT37yk6SnpxMZGUlwcDCXLl2iqqqK9vZ2Jicn70skjtFoJCQkhMLCQnbu3El4eDjj4+M4HA7Wr1/P+Pg4x44d47333ntsd8ONRiN+fn64XC4ZhWIymfB6vbjdbrxeLw6HgxUrVrBp0yZ27NhBQUEBQUFBOJ1ONE1jYmKCkZERWlpaaGpqwu12z3kuq9VKYmIiL774Iunp6URERHD69GlOnz5NaWkpjY2NTExM3HPbmEwmnE4nkZGRJCcnk52dTXZ2Nvn5+YSFhWG1WvH398doNEpjrb29HV3XKSsrW7Tjx2KxEBQURFRUFAkJCaxYsYL8/HwKCwux2Wy4XC4cDocMI9Z1nbS0NOrq6mhpabmr40cs9E0mk9z9tNvtBAUF4efnB8DAwADd3d2Mj48zNTV1T/3MarUSExNDcnIyycnJpKSkkJmZSX5+voxkEtcioj1SUlI4dOgQ3d3dizq32PGMjo4mLS2NFStWsGLFCrKyskhKSpLn8W2b/v5+QkNDuXDhwrIcP6KdIiMjMRqNDA8P09vby9DQ0Lx9dbFERESwZcsW1q1bR1xcnLz2CxcuUF9fz/DwsFxg3kufFn1BOC7DwsJIT08nJCSE69ev09/fT1NTEz09PdIRuJxz+PaB1NRUUlNTycjIICcnZ84+MDY2RlJSEkePHqWzs/OxWkQ/LEREYUBAACEhIQQFBZGbm0tISAhlZWXS6dLa2vrAnT8Gg4Hw8HDWrl3L7t278ff3x+v1cuzYMXp7ex+LBfJisVgs5OXl8cwzzxAVFUV9fT1Wq3VZx9I0DYvFQmBgIFFRURgMBvr7++nv72d4eJiJiYn7fPVLw2g04u/vT1xcHM3NzfT19S04XphMJlwuF4GBgQQHBwPQ3t5OX1+fnLfvBbGhERUVhb+/PykpKURHR2MwGCgrK6O3t5eqqipGRkbuy9hmMpnkJlpqairZ2dmkpqZis9lwOp3k5+dLx5Ou64yOjlJSUkJLSwtVVVUMDQ09srFH0zTpGBsYGGBqako65UZHR/F6vdjtdpKTk1m1ahVbtmxh69atcqNA0zQmJydxOp20t7dTWlrK2NjYsq/HbDaTnp7O9u3b2bRpE/39/Tgcjvt4x0tHbFoZjUYmJibuqb+kpqby5JNP8txzzzExMUFJSQlvvfXWgu1vsVgIDg4mOjqahIQE0tPTycvLY/369bKPiWhmMbelpqZSUVFBZ2encvwoFAoF96jxo+v6QeDgfboWYNp4CgsLIz8/n+3btxMREYHdbmfDhg3SUKqsrKSvr4/+/n5GRkbuyVhwOBzk5ubye7/3e0RFRdHa2kpJSQnBwcHExcXx2muvER8fz9WrV+ns7HwsjW6Xy0VhYSGrVq3i6NGjjI+P43K5GB8fp66uDq/XS25uLl/+8pfZsmULUVFR2Gw2GTEhog8yMjLIzMykrKyMpqamO85jMBjw9/cnJyeHHTt2EBERgcPhYGxsDF3XcTqdWCwWent7Zdss53kJZ1xubi5PP/00O3fuJDo6WoaK357HLSb50NBQ0tLSyMjIoKio6K79wmQyER0dzZYtW9ixYwdr164lMjKSwMDAOXVQxHmio6PJysri+vXrNDY2znseg8GA1WolPDwcl8uF2WzGaDQSGBhIfHw80dHRADQ3N1NRUUF3dzcDAwPSebfUsGeLxUJKSgqvvvoqO3fuJDY2lqCgIOm4uv378EEU2KpVq7h69epdHT8GgwE/Pz/S0tJ48cUXeeqpp+TCwmq1ztk2AAEBASQlJZGfn8+lS5eW9M6K/rB+/XqefPJJ7HY7dXV1XL9+naKiIhoa5k1lvStms5nU1FQ2bNjAhg0bCAoKwmw2s3XrVgwGAw6Hg/b2dgYHBxkaGmJ0dHRZBq+maXKRl52dTUpKCnFxcWRmZhIcHExsbCxdXV1cuHCB0tJSuru7GR0dXfI5bDYbycnJvPbaa+zcuZOYmBiZ5jdfH3A4HMTHx7Nq1SouXbr0SBbQQivDYrFgt9ulA9T3Weu6jsfjkYvU+xmF5XA4ZB/NzMwkNjaWgoICgoODSUlJkYu5y5cv097e/kAXEWazmdjYWDIzM+VYFBoaOmcbPs6I6/6t3/otNm7cSF9f3z1dv9lsJiwsjLVr17J3714sFgslJSXcuHGDsrIympub7+PVLw2DwUBwcDAbN27kP/2n/8R3vvMd9u/fv6BT2t/fn/T0dFavXs2qVavQNI2TJ09y8eJFGhoa7slxYDKZZNTnunXriI+PJy0tjZiYGAwGAykpKXR2djIxMUFLS4tMpV8Ovg7tqKgodu/ezY4dO8jMzCQ0NFRuAIg5VYw7Ho+HiIgILl68yNDQEOPj4/fsxF8uJpNJtsOlS5fo6+uTkX+lpaVMTU2RnZ3Npz/9abZt20ZaWhoul0tGZ1osFgwGAwkJCeTl5cnI6eUSEBDAiy++yJ49e4iMjOTGjRsLft937PR6vXKcFOi6Ln+/XL09EaEaEBAgo2GXaw/HxcURExODw+HAZDJRUFCA0Wic1/4wmUzExcWxdetWdu7cyapVq4iIiCAgIGBBWy0mJobs7Gxu3rxJc3Pzx3JTQ6FQKHx54OLOS0Us8Pbt20dmZqb03u/cuZP169czPDxMV1cX165d4/Tp0xw5coSurq5lGy3CsBcLr7/6q7/i/fffJzk5mc985jN8+tOf5oknnuCZZ57h+PHjNDY2LvtcDwKDwUBAQADbtm3ja1/7Grt27WJqaorGxkZOnz5Nf38/q1ev5s/+7M9IS0vD4XDg8XhobW3l1q1buFwuNm3ahMFgIDc3l127dtHS0kJra+sdk7qfnx/Z2dm8/PLLZGZmSoNu7dq15ObmMjIyQm9vL5cuXeLUqVOcPn2alpaWJRmwJpOJhIQEdu/ezSc+8Qk2bdokU4Zux+v1yoncYDDgdrvp6+tbVMqS2WxmxYoVfO5zn2PPnj1kZGTIEGFfhIHke56xsTE6Ozvp7++fdR4R0SN2CoODg9m0aRMvvfQSiYmJ+Pn5SQPNz89P3tfIyAhtbW00NDRw/vx53n77bTo7O+nu7l6UcSacMZmZmfze7/0eL7zwgozkmut+hFNJ6JeMjIzQ1NR0V6PIaDQSERHBunXreO2119i7d++S2mZgYIDW1ta73s98583NzWXlypUEBAQQHR2N2WxmeHiYxsbGZTsBYmJi2LdvH1u2bCE+Pl4uTJ977jl27NjBwMAAVVVVFBUVcfnyZU6ePLnodoEPFkX+/v7s3btXOpji4+Ox2WyYTCYMBgPr169nYmKCS5cuceLECU6ePMmpU6cWbagaDAYCAwPJysria1/7Gs8///yslD5fRPuLPuDxeBbdBx4U/v7+ZGZm8txzz7Fv3z4qKipoamqSaZBut5upqSlKS0spLS2lv7+fgYGBe9aKEW2zc+dOCgsLWbt2LVlZWdjtdumo3bBhA5OTk1RVVXHs2DGOHj3Ke++998A2AQIDA2WUntFoZHx8nCNHjtDY2Pih0vgxGo0EBQVRWFiI0+mkr6/vnvqX2WwmMjJSjgMul0tGr42OjtLS0vLINH/i4uLYuXMnL7/8MmvXruWll17i/PnztLe3z9tPgoODSU1NJT8/n1WrVmGz2fB6vQwODtLd3b0sx4/Q84qKimLbtm1s3ryZ3bt343K5sFgscs7esWMHbrebFStWcPToUU6fPk1dXd2ynp+I8lm3bh3Z2dns2bOHtLS0eTdQBL4bI3f77oNERElu3ryZ3/3d36WyspKRkRF6enq4du0adXV1FBYW8sd//MdkZmbi5+eHpmkMDAxw7tw5/Pz8WLdunYyG3rFjB5WVldTX1y97jBCpnkKDcaH3xmQykZiYyKuvvsq+ffvo7OykpaWF/v5+Ob97vV4qKyuprq6ms7OTwcHBJesQJSQk8KlPfYq9e/dy6NAhfv7zn1NfX79kZ53VamXt2rVkZ2djNBoZHBzk/fffn9euFrbab/3Wb7Fnzx5SUlIWbauNjo7S0dHB4ODgR0YPTKFQKO6Fx8rxY7FY2LJlC88//zyrV6+Wi7Dx8XGZhmKz2UhLSyM1NZU9e/awbds2fvrTn1JUVERvb++S02QiIyPJysrCYrHwpS99idOnT8tIGRF++tnPfpbvfOc7dHd3861vfYsjR47Q3Nz8yFO/hJNk69atrF+/nqmpKSoqKrhy5QqlpaW43W62bt3Ka6+9RnZ2NmazmcHBQYqLizly5AiHDx/mhRdeYMOGDdIhkZCQQHZ2Nu+//z59fX3yXGazmZycHF588UW2bNkijTS32y11l0wmE/Hx8cTHx7Nr1y7Onj3LW2+9xblz52htbb2rw8xisZCbm8tv//Zvs2PHDuLj42elBXg8Hnp6ehgZGWFwcJCamhoqKysBSElJwd/fnxs3blBVVTXvJC+MvIKCAv7sz/6MNWvWEBISMkt00uPx0NbWhtvtpr29nfr6epqamtA0TWrl3Lhxg9bW1lnnCQgIwOVyYbVasdlsxMXF8eyzz7J582b8/Pwwm82znEOif1utVux2u9R7EQvc48eP3zXqQ0Qtbdq0ia997WusXLkSp9MpPxfpXGJ3t6KigurqasbHxwkMDJSGZVFR0YLtY7FYSEtL45Of/CT79u2Teg0CsWARfaGyspLy8nK56xYcHExrayvFxcVLXvxZrVZSUlLIysoiOjoap9OJx+MhPj6eiIiIJWlq3H7cT3/60+zevZvo6GhpYLvdbpmOFhoaSkREBIWFhTz//PMcP36c7373u9TU1MybjuFbicVkMhEUFERWVhbPPvssWVlZREZGYjAYGBwcxO12y515sXDIy8ujra2N8+fPL8qoNpvNxMTEsGPHDn7rt36LgoKCO/rA6Ogo3d3dTExMUF5eTlVVFRMTE4SEhBAVFYXX66WoqOiRRDT6+fnx1FNP8eUvf5nCwkL8/PxITU2V1yLa1uv10t/fT29vL0VFRfzwhz/k1KlTS4pQ8m0bTdPw9/cnNzeXvXv3kpubS0xMDFarldHRUcbGxmQkkMViITIykry8PFpbWzl69OgDeVaappGUlERaWhphYWF4vV46Ojo4dOjQh0JMXqBpGk6nk5ycHIKCgvB6vdTW1tLa2rrkSDaBw+GQKUTR0dGynWJjYwkJCVnWOCA2lu6lLXfs2MEf/MEfsHXrVgICAvB6vXeNbNI0jdjYWFasWEFqaiqRkZGYzWYSExOJjIzEYrEs+n58+7TD4SA6OppVq1bx7LPPkp2djb+/P263m8HBQQApwm+328nNzaWzs3OWo3UxGAwGTCYToaGh5Ofn8/LLL7Nz5078/f2x2WxS82ZgYECm461Zs2bWfC7m4i1bttDa2iqjnB7mAl1s0GzevJnNmzfj9Xqpq6vj8uXL3Lp1i7a2NtavX89v//ZvU1BQgM1mY3R0VGoT/du//Ruf+tSnyM/Px2KxyGeycuVKAgMDl6Q1KDAYDGRlZREeHo7JZKKrq4vKyso5HTUWi4WkpCS+9a1vsWvXLlwul4yMFM9ROEOEs6e+vp7jx4/z93//90tyJDudThITE1m9ejWZmZlERETw7W9/m/r6+kUfw2QykZmZSUZGBkFBQYyOjtLU1DRnhLmIYM3Pz+e//tf/yurVqwkMDLzDVmttbWViYoK2tjbq6+tpbm6+w1Zbqn6hQqFQfFR5bBw/YgJes2aNFKD1er0MDw/z61//mlOnTjE8PExUVBRr165l3bp1BAUFsXfvXhISEjh06BBnz56lpqZm0QKlmqaRmprK+vXrMZlMNDc3zzI8Ojo6OHbsGLW1tdIp9cd//Mds2bKFX//617z11luPbDIxGAykp6fz9NNP89JLL5GWlkZPTw+/+c1vKC0txWKxsHXrVrkQNJvNjI2N8f777/P2229z9uxZKSQr7sHj8TAxMXHHQkqkeGVmZrJu3TqcTie6rjM0NMR7773H2bNnaWtrw8/Pj/Xr17Nt2zaCgoLYvn07CQkJrF69mnfffZfy8nJaWu4o/CbPsWHDBr72ta+xbt06IiIipJHo9Xppa2vj7NmznD59msbGRqnxIgyr4OBgHA4HfX19dHd3z/vcnE4n69ev5+tf/zrr16+fVWlkcnKS9vZ2jh8/zqFDh+jv75fODGF0hYaG4nA4qKurm6XvYzAYeOqpp9i4cSOxsbFScykpKYng4GC50+qLeO4ipchqteLn50dCQgKtra3Ex8dz6NAhOjo65qyaJoybp59+mueee47c3FypAyAWyZWVlVy6dImTJ08yMjJCd3e3dJCKSk9ms5m2trZ5F5WaprFmzRpee+01tmzZQlJSkhTV9nq9dHZ2cvXqVS5cuEBJSQnDw8N0d3fLdvD398flcjExMbFkfR+xOEhNTSU9PZ3g4GCGh4dpa2ujqqqK2traZS2GhYG+c+dOwsLCMJlMTExM0N7ezrvvvsv7778PwOrVq1m7dq2sPvLCCy8QExPDj370I6lP4dsPTCYTdrsdh8OBrusYDAYiIyMpKChg5cqVhIWFMTY2RktLCy0tLXR2dhIdHc3q1atxuVz4+fkRFxdHUlISTqfzrkLPmqaRnZ3N888/z1NPPSXHTphum97eXsrLy7l48SLnzp1jZGSEzs5O+vr68Hg8d/SBhz2eRURE8Pzzz/Pss8+Sm5sr0wXNZjNms1neu3h3rFarFPWMjo4mIyODn//853R1dd31XEajEbvdLiOtpqamiIiIID8/n5UrVxIbG4uu6zL6rrm5mZiYGHJzcwkKCpK6Vunp6bhcLqn7dD8xGAyyko/oQ/39/fT09DyWacbzIfRQnn76aQICAhgaGuLMmTOUlZUty/EjHElpaWmkp6cTGBhIb28vTU1NVFVVLZhyOx+JiYk8++yzrF27lj//8z+fM8r1bqSmpvLNb36T9evXExgYiKZpDA4Osn///gX1mAwGgxRcT0hIwOVy0d3dTVVVldTdudu7KHR1HA4HTqdTOvOTk5MpKCggPz+f0NBQ+vr6qK+vl++3SH8RAswpKSmycuVihLItFgtr1qwhJSWF/Px81qxZQ2ZmJgEBAXg8Hq5du0ZNTY1chHd2dso0chFFB9Pz39TUFO3t7XR2dj706qmaphEVFcWWLVv43d/9XXJzc+np6eHQoUNcuHCB8fFx0tPT+epXvyo1/yYmJrh27RoHDhzgwIEDNDU1zUpJ9Xq9TE1NLTsyT9M0oqOjefrpp4mJicHr9VJVVcWJEyek407g7+9PQUEBL7/8MuvXr8dqtcpnazKZpMPHd4MpJCSE2NhYkpOTiYuL46//+q8XHYU7NDREY2Mjo6OjMoK1tLSU9957b1HRTcLZ+eUvf5n09HQmJiYoLi7mu9/9LqdPn76j3/n5+bFhwwZ+//d/n8LCQqnpCMi5+sSJE7z33nsMDAxIJ6N4TqGhoTidTqqrqz90leMUCoXiQfHYOH4AKdwoQmk9Hg9DQ0OcPn2ac+fOMTw8TGhoKAMDAxiNRrKyssjIyCA3N1fungOLFqkVeecmk0kKJPsyNTXFwMAAlZWV/PCHP2RsbIz169ezcuVKKioqeO+99x5Z6L3dbic/P5/NmzezYsUKHA4HjY2NUuA4NzeX7du3k5WVhc1mo6WlhatXr0qnT1NTE/7+/rOO2dvby82bN7l8+fIs41zox/j5+UnjVrTNxYsXOXv2LO3t7TgcDilCmJWVRWpqKitWrGBqakqGHXd0dMzZNqI916xZI3c8vV6vjB45cuQIx48fl6U5p6amZjmpurq6MBqNMmJjLoSwck5ODoWFhQQGBmIwGOT1VVRUcOrUKQ4dOiRLJwsR8cnJSTRNo7u7W4ob+t6HKL0qBC39/PykUe4rNuibay+u3Wq1yvQwl8uFzWYjKCiIPXv2yN2rjo6OO3RFDAYDiYmJFBQUkJ2dLfvvxMQEVVVV0hlz5coV6urqZNqMcCaI6mIifW0+DAYDK1asYPXq1SQlJUnHgtvtpqysjJMnT8pFXXt7+6y20XWdzs5O6VxbzvsiNFiEHoBo47GxsWW/f0KgOiwsDLPZjK7rTExM0NnZycmTJzl37hwAfX19jI+PMzY2RkpKCikpKaxdu5aamhoMBgMTExOMjo5KozcoKIj8/HwKCgqwWq243W4CAgJYs2YNYWFhTExMcO7cOa5cuUJNTQ2dnZ2Ehoby0ksvSeHy2NhY8vLyyMvLo6SkZMHUMoPBQFJSEitXriQzMxOXywVM94HKykouXrzIhQsXuH79Og0NDbIPiLZZbB94UBQWFrJr1y7sdjtHjhzB4XCwZs0abDYbbrdbRtWFhITI+0pISJD6KGLBuRjHT2BgoJwvIiMjGRgYICAggMLCQqKjo9F1nZKSEk6fPk1ZWRktLS2EhITw3HPPsXLlSqKjowkPDyc3N5e8vDxKS0vp6em5r5GfdrtdVpcT40xpaemHStRZ0zTCw8MpLCyUmypiPGptbV328xKOOzEOiHd2OeOAWITu2bOH1atXc/XqVX76059Kh+hiMJlMfP7zn2fVqlVyXhwYGODSpUucOXPmrtF6VqsVh8MhU7A8Hg9jY2OMjY0t6hpMJpPUQ9y4cSMDAwOYzWYZtRscHMzIyAhvvvkmxcXFNDc3y0jJZ555hlWrVhEcHExGRgZ5eXk0NTVRX19Pb2/vvOc0GAzk5OTwuc99jrS0NFlC22QyUVJSQkNDA++99x5VVVUMDg4yNTWF3W5n586dd2jAiSiUs2fPUlJSsuxIsOUiIkl37txJTk4Ofn5+NDU1ySp+cXFx7Nmzh/z8fBwOB62trZSWlnL06FGOHTs2Z/XT4eFh6agZGRlZ8jWZzWbWrl3Lxo0b8ff3l1GyxcXFd0RjJScns2PHDlavXs3777+PzWZj1apVuFwuPB4Pg4ODtLe3y6jeyclJwsLC8Pf3JyYmhpUrVxIUFLRoh39fXx8lJSU0NTWRmZlJdHQ0Tz31lEy5XSitUWjcPf/882zduhW3283ly5c5ffo0ly9fviOayTdisLCwkICAADRNY2pqit7eXmmrHTlyhIqKClkYYy5bTaQJKxQKheIxcvyIVCOxGysW/W1tbZSUlMjUm5GREaamprBYLExNTUntlMzMTDweDxaLRQrl3g2R2jE1NYWmadLhdPskOD4+zsmTJ3G73TQ1NeFyueaNXHlYOJ1OVqxYIUUGPR4Pzc3NskrT9u3bZXROU1MTR44c4dSpU1y+fFka31arlaCgIHnPTU1NXL9+nVu3bs0yWkV1EJvNJnOrx8fH6ejooLy8nKamJgYGBuQuemBgIBMTE4SHhxMSEkJiYiKbNm3CYrFw69atOxaywihYuXKlLMfZ3d1NfX09FRUVXL9+nVOnTlFRUSErbNzOYlJiRNpNXl4ewcHBGAwGGhsbZcpYcXEx58+fp6ysbM7jibSpuRDOMZfLhb+/v+xLwkk2NTVFd3c3w8PDjI6OMjIyIo2dwMBAXC6XDMEXKWMFBQXs2rWL4OBgLl++TFVV1SzjT6Q+JCcn4+/vj8fjoaqqilu3bnHjxg2uX79OWVnZvGl2i60g5nQ6ycvLIzo6GrvdzsjICLW1tZSVlXHp0iXOnz9PVVUV/f39cxp+c0WRLQXf1Byxy22322UVj+UcT+hLiMWIcPI2NzdLcWWAkpISmbYwMTFBXFwcwcHBrFu3TmoMdXd3y13GoKAgsrOzeeqppwgODmZsbAyLxUJcXBwGg4GOjg7Onz/PiRMnaGxsZHBwUC72RduLXfvVq1fL1Kb5DGqHw0FGRoYcBycnJ6mpqaG4uJjr169z9epVysvL6ejouKc+8CAQEWsTExOcP3+es2fPYrPZKC0txW63Mz4+Tn9/P3a7XaajdXd3s2vXLvLz8/H39ycpKYns7Gyqq6vver7AwEBZKScrK2vWQtlqtdLe3s6NGzc4fPgw1dXV9Pb24nA4ZAqmy+UiPj6ehIQE1q5dy9DQEENDQ/f1+UVHR5OamipTGKempmhoaGB4ePhDk6qgadMl3FNTU4mNjQWgqqqK+vr6O6IWlnNs33HAZrPhcDhkBOJiERF/mZmZhIeH8+STT3Lo0CEGBwfv6nQR1bvy8vJ4/vnnCQkJYXx8nNbWVm7evMmBAwcWFYEkxjWxMSAqWTqdzlnpLPMhxK4LCgr45Cc/OWs+CQ0NRdd1WlpaOHz4MLdu3ZJRY1FRUQQHB8s01qioKLKzs2loaGB8fHxBx4/JZCI3N5dt27YRGxsrxYQ7Ozs5c+YMRUVFHD9+nK6uLpxOJ7GxscTHx5OXlyfHWtGPp6am6Onp4caNGzQ1NT10UXlR2CA3N1dugrW2tjIyMkJUVBQbNmxg586dBAYG0tLSwvvvv8+5c+e4fv26TPUVOlMiEqWrq4vi4mKuXLmyrE0Jk8lEeno68fHxWCwW2tvbqa6uvsM5IzaaQkNDqaqq4ic/+Yl0vrlcLqntMzQ0RHp6OjC9ISo2JSIjI4mJiWH16tWUl5cvytE4NDREWVkZR48exc/Pj/j4eFavXi0jiC9cuEBTU9OcxxIFGp588kkSExO5fv06x48f5/jx47S1td3xfbPZTEhIiLTVNE2jvr6e6upqaatdunRpWbaaQqFQfJx5bBw/VquV4OBgafRMTk7S0dEhq/aIXXWxwzc6OsrU1BRZWVmsWLGCxMREQkJCCA4O5tSpU4ty/JhMJiwWC2azGWBew1rXdbq6uti/fz8nT57Ebrfjdrsf6cQidm1CQ0Olc6GxsRGn0ylLjSYnJzMyMsL58+f5u7/7O2nYiQpckZGRpKWlYTAYpAZDTU3NHXnpFosFf39//P39ZSROV1cXRUVF1NXVMTAwIBf3jY2NvP/++0xNTREfH09+fj7h4eFs3LiRqKgoDh48SF9f36zFkjAKhMClruvU1NTwxhtv8Jvf/EamOnm9XrloX056j9VqJTIykpUrV8rooMuXL/PLX/6S8+fP09vbK3VbxOdLWWwJ3R6j0SjDqycnJxkdHaW/v58rV65QX19PR0eHLA8N04u9sLAwIiMjSUlJIS8vT+rv7Nu3j+TkZKampmhtbWVwcFDee0BAAJmZmdKpIFL5/vEf/5H29nbGxsZkGLrYUV4OwcHB5Ofny13tzs5ODh48yPe//33a29tnlbdebtssBd/S7uHh4Us+p9AOCA4OlnoUg4ODNDY2cuvWrVmLkPb2dqljNTExQXp6OitWrGDlypVERUXR19dHbW0tg4ODaJomI3ZiY2OJiorC4/HISLO2tjbKysooLS2loaFBVtKZmpqisrKSjIwMWd49ODiYgoICGhsbKS0tnbfthH6QKG89OjrKkSNH+Id/+Ac6OztnRQ88jLZZCuJ6Dhw4wJUrV6Tz5sCBAxiNRpxOp6x+1tLSgsfjoaioCIfDQXJyMuHh4WRlZbFr1y72799/13sLCQkhJiaGuLg4EhMTpcPfbrfT2dlJVVUVpaWl1NTU0NfXx8TEBB6Ph9raWurq6khOTiYxMRGXy8WqVatoamqitrb2vkUqGAwGMjIyyMnJISIiAph2mooolA+L40dE04kUQq/XS3Nzs4zUvF+I1JWoqChCQ0OX1L9tNhuBgYFSGyghIWFRVdOEU6uwsJCvfOUrZGRkoOu6jAR59913OXfu3JLfM9EPIyMjiYyMvMNJMhcWi+WO8QaQEYwdHR3cunWLsrIyGcUi0j+rqqpoamqS0XVJSUnk5OTQ2dlJeXn5vNplVquVrKwswsLCsNvtaJrG8PAwlZWVnDhxgoqKCvr6+nA6naSmprJmzRoyMjJITk6e5cwSjona2loaGxvvuTrrcnC5XERGRs7Sd2tqasJkMpGVlSUjgbxeLxcvXuSf/umfqK6ultVKzWYzERERpKeny37e1tZGeXk5nZ2dS74e4fwTlSV1Xaenp4eOjo47ojGF07C6uprLly/LCNXDhw/PimZdsWIFw8PDeL1eKYofGBhITEwMkZGRfOITn+DnP//5omwDt9tNfX09P/jBDwgODmbPnj0EBgby5JNPEhYWRmBgIIcPH6alpWVWuXeTySTns5ycHMxmM+Xl5Zw8eZLLly/PuSEhBMpFtS+v18uFCxf4xS9+wZUrV+jr67snW02hUCg+rjw2jp/w8HBWr15NYmIiDoeDgYEBLl68yIEDB+4IvxYlSPfv34/H4+Eb3/iGLH0rNHsWU5pa5LgHBwej6/qiUh0GBwfvedfyXhECoJGRkTLiQaRKfeUrX2HTpk1yYdPc3My5c+eorq6Wz8NisRATE8P27dtZuXIlBoNBOijmCjMPCQkhPz+fjIwM/P39ZfWhgwcP0tbWNmvi9nq9tLa2cuDAAYaHh/nSl77Etm3bpN7Npk2buHXr1h1pSyaTCZfLNWsX1Gw243A4SEhIoK+vj9HRURnpNZcIpEihWkirxmw2y3QYcR6r1SqjbgYGBhgeHsbhcMjostvP41tSeiGmpqbo6+ujrq6O+vp6Dh8+TE1NDd3d3QwNDcn+5nA48Pf3JyIiguzsbNxutywrLarOhYeHY7PZ7tCTEakCvvdot9uJiYlhZGRE3oPVamVgYOCOaxapZwu9K2In2rccr9FolGXABwYGGB0dlU65uaITfEtxLwffFAERqRYZGUloaOiSjyWqA23YsIGwsDAMBgM1NTWcPHmS48eP3xF2PjAwQElJCV1dXYyMjPAXf/EXhIaGEh0dTV5entS00DRNprdERkbKXWTxjK9du8bBgwfl7ruvtlZVVRWVlZUUFhZKTa2CggIqKys5cODAvLvhog8I57VoG7HbPjw8LBcqFotlzuom99o2y0U4fTo6OmY9c5HatWbNGl555RXWrl0rSydfv35dvquiD4aFhd31XEajkZUrV7Ju3TqSkpJkWqRom+LiYo4ePcrFixfp6OiQY4jH46Guro6qqipyc3OBD9JsRbrBcsXF57rGlJQUQkNDZZpgU1PTgo6/xxHhwEhMTETTNCYmJmTaz/1cnNlsNkJCQoiMjJSpgEv5W6E9pus6FRUV80Ys+uJwOCgsLOQf//EfSUxMBODWrVv8z//5Pzl06NAd89piETpvUVFRMtV5IYQDat26daxfvx6XyyWdVrqu093dzaVLl9i/f/8dlUhHR0eprKykqqqKqakpnE4nCQkJ5ObmUldXN2clQJjun+Hh4ezYsUPqrYhU7H//93/nxIkTeDweGeH7xBNPsG7dOhkx58vw8DC3bt3iBz/4AXV1dQ892kfo+8TFxUl7QNM0VqxYwWc/+1nS0tLIysrCYDDQ2trK2bNnqaiokOlbQpNyx44drFq1Sm6IjY+PMzw8vCwHp9FoJDAwkLS0NBk9PTIyMqeto+s6169fl6lXvr/39/cnLS2NHTt28JnPfIaQkBA8Hg/FxcWzok9NJhORkZHztvftiCIB5eXlfO9736OtrY3PfOYzxMbGsnv3btatW8fu3bv5y7/8y1nR2aGhoezdu5c///M/Jz4+nubmZg4dOsT169fnFRMXEdS+RQqMRqOc+10uF4ODg/fNVlMoFIqPC4+F48dgMJCXl0dhYSERERF4PB7q6+t54403OHfu3JxGweTkJD09PZw/f56XXnqJ5ORkrFarTLdZ6FyAjB6xWCzY7fYPlWFtMBhISUkhKipKGlQmk4lNmzaxceNGjEYjw8PDnDt3jh/84AccOXJkltMnLy+PF154gc9+9rOzQsJLS0vnDCnOzMxkzZo1JCUloWka7e3t/OpXv+LMmTNzLvJFHva1a9fYvn27rNQjnC7zGRq+USO5ubkkJCTwxS9+Ue5WtbS0EBgYKEt0+jp4dF2nvr6eoqIiSktLF6xO4nueXbt2sXbtWsbGxnC73VRWVtLU1ERUVJQU7vW9P6/XS0lJCZcvX6atrW3efiOM75/+9Kf88z//M8PDwzJqZD7HVGlpKefPn+fNN98kPj6ev/iLv2DNmjUyDWyucre+O10Oh4NXX32V3bt3y1325uZmqY1VUVEhdYYEo6OjlJSUcOzYsQXT5cQCWWhjfOlLX2Lfvn2yTGxLSwtmsxmTyURDQ8MdbdPV1cWtW7e4dOnSko1836o1MJ1m2NXVRVNTk9S0Wgoul4v8/HzWrVuH3W5naGiIs2fPcvDgQUpLS+9oH9+003PnzjEwMEBISIjUHPFd1DidThwOxx1t5fV6aWhokKLg8zlffNvTt/LbQvi2qZ+f36w+0NDQQEtLixR+raqquuP+hoaGZBW5h7kAEwtu32dhMpnIzs7m93//99mxYwfR0dGz0nhiYmIApDZXQ0MDJ0+eXFS0gBDBFU4y3+tobm6mrq6Onp6eO451e9vcXpXvfiEi+AIDAwHo7Oxk//79nDhx4kOlUSEcGCkpKVKf7PTp0/T19S17AeZbDVEwNjZGR0cHTU1NS67aY7PZ5Hur6zoXL15clF5TSkoKW7duJT4+Hpgei771rW9x8uTJJTl9br8XEQEjKhyJyNyF8E0N8x0fxSZWfX09dXV1c96TSD8WY4e4nruVVL99DheV8dauXUtqaioOh4NNmzaRkpJCUFDQHSlrwplx7do1Xn/99QWd2g8SIaIuhLXFvWzYsIH169djMBhwu91UVVXxt3/7t+zfv19G9olqqnv37uXrX/+6dDx3dHRQWVlJXV3dsqKXhDMpOzsbk8lEd3c3RUVFlJWV3WFn6Lo+pyhzRkYGL730Ek888QTZ2dlyLAFkRJhoO1GcY7GV3ARTU1OcO3eOiooKAgIC2Lt3L/Hx8QQFBfHcc8+RmJjIt7/9bY4fP87w8DCpqak8//zzxMTEyMjlrq6uRW20+tpqe/bsYf369VJzT0StxcTEyKixuWy1Cxcu0NnZ+aGy8RUKheJB8dg4fkQZcKfTKfU2mpqa7mpMLcXYs1qtrF69muzsbN544w2ZriUqH7hcLsxm8x2VdO7Xju69IKrZ9PX14fV67ygPDkijzev1Ul9fz7lz5zh79iyDg4OYTCZpoH3yk59k165dUvSvt7eXf/3Xf2X//v3U19fPuleDwUB0dLSc2HVdZ3h4mMbGRoaGhhY0cMRC6W7PTtd1BgYGqKiokCH3drtd3jMwKzUDmNMQam5u5uDBg/zHf/wHlZWVdxiUwllYWVlJamqq1HUSu766rssy0kajcc4dJF3Xqays5J//+Z85fvw4zc3N8y4WRD/u7u7GbDbLNEaRQnI7vm15+3MThrmvgT80NCRTx0TKQlBQEAEBAbOeGSCjum6/l/HxccrKyujp6aG4uHjOBcfg4CCVlZWy0pTIvw8KCgIgISFh1v3M1TY9PT1cvHiRsbExiouLF23s+1auEQv28fFxuru7aWpqkuK/i0WkeSUkJBAfHy93rTs6Omhvb18wbUc4vxbq03Mt6NxuN+3t7Vy4cIH6+vo5Dd7BwUFZkXBsbExWtRJj0nxj0ODgIHV1dbLylMFgWHIfEM6/vr4+ioqKcLvdD228E+ex2WwkJibyiU98gt/93d8lODhYip77Oh1934H+/n5u3rzJsWPHFnUu4azxfcdEGeDLly/PWzJ5aGiIhoYGWU3Q14kthLGXuqgwm80EBwfLNisrKyMgIIDU1FRZfrutrY3r168/EtHt5SIW1CKqStd1ent76e/vvyfnlYhQsNvt0png6/jp7OxcdJ8NCAhgz549PP3008C0Lssvf/nLu1bSio+P55VXXuErX/mKdAz83d/9HadPn15QF2cuhD6RzWaTqSojIyM0NjZKx89iuN0pPjk5ydDQELW1tVy8eJHm5uY5oyDEfNvf3y/fM6vVKsf3ufqz1+tlYGCA8vJyEhIS5D2kpaURFxcn31Gh0zjXBk93dzdXr17lwIEDvPPOOw+1bwtbpre3F6/Xi9PplKm+t9tQYuPm4sWLMgpUFF/IyMhg9+7dvPLKKzKqrb+/n1/+8pf8+te/pqioaMnjpxAzzsjIkM6agYEBGel8t/sKDg7ms5/9LF/96leJioqSbQDIdGPfsW98fJyGhgZ+85vfLMtJJfTWfvazn9Hf3y910wICAsjKyuILX/gCJpOJ9vZ2CgsL2blzp9RufPPNN2lqalrwvBMTE7LKnXAgC+1EMf+mp6ff1VarqKjg7//+7zl16hRtbW0fKge6QqFQPAgeueNHLL5zcnKIiYnBbrczMTGB2+1maGjorrsRS5lg7XY7zzzzDM8//zwZGRl0dHSwadMmAgIC0HWdb3zjG7z22ms0NDTQ2trK6OgoVquVsLAwGhoaOHbsGJ2dnY9k8vB4PAwPDzM5OUloaCjZ2dlS12AuzGYz8fHxPPXUU7jdbgwGgxSMFRUZRNUYYSS2tbXdsSD38/MjKytLVtIRiyWhT3I/FoiiukdlZSVbt26Vxphv6LpYCAtuN3hhepH71FNP4XA4eOONNzh79uys/jM5OUlfX58USbZYLHc4W25PKRLn8mXFihV87nOfIzIykiNHjnDz5k25gB4dHZXPRVSjWrNmDQUFBbhcLoaGhmZVoPNFGDdCQDYrKwur1YrdbicsLIyoqCgGBgZkqqFYKHR1deHxeKSxbTQa5TPz3XG9vaoKTEe/5Obm8s1vfpMf/vCHXLp0SToXBUNDQ9TU1DA0NDSrNL3vee7WNjabjY0bN+LxePjRj37E6dOn7yrILdLWIiIiKCgokDvIHo+H8fFxmcq2FCwWC6GhoeTk5Mgw96mpKdl29/pu377zLqrf1dbWSsfCXOcYHR2lra2N/v5+3G43ZrNZpsw4nU7Zr25neHiY+vp6uru7SUpKWlYfcDqd5Ofn881vfpMf/OAHXLhwYc6UsAdJdHQ0O3bs4NOf/rTUK4LpxU9dXR01NTVYLBa2bduGv7+/dIRNTk4uuEieK1IEPnCsCp2Rqqoqenp65uyTIsKsu7ub8fFxWXkvKioKf39/qe+xmOdlNpuJjo6moKCA1atXExcXR0dHB//6r/+KzWaTjqSJiQl6enqora19rHSZ7oYQgi8oKMBut9PX18dvfvMbWe1vOYg0KFHtTjjLfMeBpegsrVu3jl27dpGdnY3H45HlxOd7zmazmY0bN7Jv3z527dqF0+mkra2NH/7wh3zve9+ju7t7SW0kFupZWVlys0s4ZYeHhxkeHl60I/H2+cvtdtPV1UVNTQ01NTVzbpwJJ1Nzc7PUTjSZTAQEBBAREYHD4ZgzMlVs0Fy/fp1Vq1YREhIinUZ2u132f13X6evro7+/n9HRURwOh4wWHhgYoLW1lebm5iU7y+4VsWklClCkpaVJ5/9ciAic3bt3Mz4+jsFgIC4ujuzsbLKzs0lMTMRoNDI5OUlDQwNXr16lpqZmWc4skX68Y8cOAgICGBoa4ujRoxQVFd21FLndbmfjxo185jOfkUL18EHJ80uXLmE0Gtm0aRPBwcFSP8jj8Sz43oi+Nd9Gh67rFBUV0d/fT2NjIy+++CLbtm3DYrFIfbre3l4yMzNxOp1MTk5y5coVLl68SF9f34L3JMa/6urqe7LVMjIy+MIXvkBUVBRHjx7l1q1byvmjUCg+1jw2jp+0tDRCQkIwm82Mjo7KKjp3M6YXm58MH4RABwYG8vTTTzMyMiKrSOm6zvr16/F4PHR3d9Pb28v4+Dhms5mAgADa2toYGxvj8OHDd52IHwRikvZ4PPj7+xMZGYnD4Zjz/jVNIzQ0lMLCQpKTk+UzFM4DoQfQ399PVVUVb7zxBtXV1YyOjt7xvP38/KSQqs1mY2pqCrfbfV/bRjiTbt26xcWLF+WutxAk7urqkju6wpkihKb9/PykQ0CIvoqorcrKylmpa16vl6GhIVm9KyUlRTqZRDUTUXFMaCg4HA6sVisul4vAwEC565efny93apubm+nq6pJ/Pz4+TkBAABaLhaioKFatWsXmzZsJDQ2VGgDzOTSdTicRERGyIpqvBpGIghBMTk5SW1vLtWvXpKaL1WqVu5WiD+u6jsFgICwsTN6Ln58fNpsNg8FAYGAg27ZtY2hoiJ6eHkpKSmY5VCYmJmQFr7GxMUJDQ+Vit6OjY1aKhLhWq9WKv7+/FHi1WCxERkbK81RXVy8YLQUf6C8JPR8hJioiNxaTmnA7FouF4OBgUlNTpVi12+2WJV8X26cXGwU4OTlJd3e3TFWcryrd5OSkdOoJ54K/v78URp2YmGBgYOCOfiOqeF29ehWLxUJ0dLTsA11dXbOcGUajUerHiD5gt9vlAmfbtm309/fT3t5OZWXlQ9uNF1olL774ohSbh+lopnfffZdTp07R0NBAcHAwSUlJZGVlzdnuQtQ0JCQEPz8/goODiY2NxWw209bWJt9fgRC6LS0tpampad4KXZOTkwwODkotKxFxmZaWRkpKCr29vXR1dd3VkWk2m2XFt9WrV7NixQqCgoLo6emR5ZDFNY6NjTE8PPzI9eSWSlBQEGlpaXJR3N/fz4ULFxgaGlp2qoVwLPiOAyJ6QTg5lzIOxMXFERMTg7+/P+Pj41RUVMzbdpqmkZ2dzSuvvMKOHTuIi4tjbGyMoqIi3n77bWpra5fsIBXRtxEREXKsFHOOyWSaN1pmMYh0scrKSlpbW+eteDQxMUFvb6+ciywWC+Hh4aSlpZGUlERFRcUdTiPxdxUVFVRXV+N2uwkICMBqtcpUSOHAEuP7+Pi4TKnSdZ3Ozk5aW1vp7e1dcorRvSIcvR6PB5fLRXh4uJwD5kJsSIpIZ5gudCD+zmw2MzIyQnl5Ofv376e4uJj+/v5lOcyFLl9eXp6MjLl+/boUSp4PIcz9+c9/nszMTKkNNTY2Rnl5Ob/61a+4evUq/v7+hIWFkZ+ff0eqK3ygqePv7y81dNLS0mS1Q9Gfbr8WEak6NTUltepWrVolhb29Xi9BQUEMDg5y+fJlfvrTn1JeXn5XR63YDCwuLubChQukpKTITYuxsTF6e3ulTp6IdLbb7dhsNlwuFwEBAdJWW7VqlXQUt7W1yaIaCoVC8XHkkTt+jEYjYWFhREdHSx2TkZERuYC+206an5+f3HW6G+Pj45w9e5aYmBjy8/OJiIjAz89P7niJna6YmBiio6PlpKJpGnFxcVy6dInTp08/EseP2N3WNI3o6GiCgoLuEID0TUUJDAwkMDDwjnQhsavY09NDTU0Np06d4o033qCjo2PORU9ISAjR0dFyAS/C68fGxu7aNg6HQy4s74bH4+HmzZuYTCZycnIICwvDbDYzNTUld/xFKHlgYCBhYWHSSZKdnS0rIYndxV27dnHw4EG6urqkgSkcf9evX8dsNrNq1Sr8/PykIHFTU5PUpzEYDERFRcnS6hEREWRkZBAWFkZISAiBgYHk5OQwPDzMhQsX6OrqkuXn09PTCQ0NxWazkZ6ejr+/PytWrJAi4sJImgvRD0UKgOiDRqMRk8l0RxpRXV0dR48epb29Xe6seb1emTIg9GRMJhOJiYk4nU5CQ0NJTEyU/SgoKIiIiAh27NjBpUuXZMqTr8Ps1q1bGAwGqquriYuLm1V9rb6+Xj5jYcA6HI5Zz0wYk9HR0Tz55JO888479Pb2LriwFYaoEEoWkUa+Vb0iIyPn1K2ZDxFBJMLhYTr9QFSmW8hoNxqNMs1nsUxOTtLV1UV1dfWcjhuBx+NhZGSE/v5+hoaGpNMxKSmJFStW0NnZycjIyB1/7/V6qaqqktVUVqxYgcPhkOmeTU1NMoXFtw+Eh4eTlJREVFSUTA2LiIjgiSee4OzZs7IK0IOO+jGbzaxYsYIdO3awZcsW+WzF4vqNN97g6NGjjI+Pk5SUdIdAua+YdUREBNHR0WRmZhIREUFcXByZmZnYbDZKSkoIDAycJRbq9XplVI2oEjPX/Xo8HsbGxhgYGGBgYICIiAjsdjuJiYmkp6fLtNeFHD/CKffcc8/x0ksvER8fj8PhwGAwEB4ejp+fH9XV1URERGAymRgeHl60Dsbjgt1uZ8WKFXL803VdpsndyyJfOH/FfC0i2Gw2G6GhoURFRREWFrYobRWDwUBsbCzBwcEyXauoqGjOvzMajURGRvLiiy/yzDPPEBERga7rNDY2cvDgQcrKypaV0mO32+V755vq5XA4ZJnturq6OTdi7sbg4CCtra3U19fPW5pezEEjIyP09vbKzbCgoCCSk5NJT0+npaVlztQ3r9dLRUUFR48eJS4ujvDwcJxOJ2NjY9KBBHDz5k3a29ul3plwRJeUlFBTU0Nvb+8jSZ8XNlR4eDihoaF3iE7D9D16vV7sdjtJSUlSxBum209EmnV2dlJbW8uRI0d4++23ZdXUpSI2iLKzs4mPj0fTpiultba2MjAwMG+fFmLbGzZs4JlnnpGbQm63W0aof//736ezs5OEhAR6enrueA+FQH5ISAjh4eEkJiaSlJREaGgo69evx263U1FRwXvvvcfp06dpbGy84zpE2lhfXx+nTp3ilVde4Ytf/CKpqanYbDbcbjfV1dX84he/YP/+/YuKJhXRWVeuXMFgMEitQxE11tzcLNPFRAqfqDwrKq2Fh4fLdNr8/HwGBga4fPkyXV1dH6ooSoVCobifPHLHj8lkIiUlBX9/f0wmk9wVKisro7+/f8EBWlRBCQ4OlgaHqOw0F263m+PHj3Pu3Dm2bNkiFxs5OTn4+fnR0tJCV1fXHZOSSMF5HDAajeTl5RERETHL8SNCdwcGBqRGiAiPFUxMTNDZ2UldXR03b97k5MmTXL9+fV4jTIhIBwYGynMNDQ1RVFR0R6W1ua4zISGB8PDwWSKa81VYEJV1KioqCAwMlJE48EElNeEEEYLcZrOZwMBAtm7dypo1a9i0aRNJSUlYrVYSEhLYuXMnV65cmbVYFAvK8vJyDhw4IBeawhAWjhIRWWSxWOQCY8OGDWzcuJFdu3YREhKCv78/6enpbNmyhcuXL1NSUoLVaiU7O5vY2FhcLherV6+WkWPCcTNXKtR8CI0YkSLma7jpuk5DQwPNzc2cPXt2VkTDyMiI3M0VET9i0RQYGEhWVhb5+fmsWrVKps/ExsayceNGqqqqaG9vl7t7uq5TVlZGdXU1R44ckakJoj+I3XzfRbgo4bpu3ToKCgooLCwkLy8Pp9NJXFwcO3fupKysTO7AztV//Pz8ZLUZIaYs3sWUlBQZiSEike6GcBrGx8fj5+cnI8rKy8tpbm5esKSw0K5ITU3Fz88PTdPkAmGhMWpqakq23ULGrqgII6LbwsLCcDgccjHocDjuEEqF6bYRJZFPnToldzoBmTYiIpl8+0BQUBC5ubmyD2zevBk/Pz9iY2PZvHkzlZWVdHd3P3Dh1bCwMCmw7vsuVldX85Of/ITLly8zMDCA0+kkKiqK2NhY2fcMBoOMdIuKiuKJJ55g1apVZGVlyUW1w+EAIDU1lbGxsVkLM7GrLKo5zdc+ItKhr6+P1tZW6dgUKZgi3Ws+TCaTrGzzpS99ibi4ODRtutrV1NQUJpOJpKQkEhIS5M50e3u7nAM/LMTHx/P888+Tn58vnQEiEmq5i3yj0UhAQICM9BIOG03TCAgIICMjA7fbTX9/Pzdu3LjrwluMybGxscD0O3Ljxo05zxsUFMS+ffv45je/KVOZGhsbOX78OP/n//yfZS3yRV/Iz88nOjpaOv8AWcmuq6uL8vLyedNCF2JsbIzBwcG76hV5vV5GR0dpbm4mISFB6t34+fkRGRkp59+5HD9FRUU0NjZKh4HD4WBoaIjx8XHsdjsul4vW1lb8/f1ZvXq1TBUSelxVVVWPzPED0+NGZmYmsbGxcnyADzbOhoaGZJVKXzsEPkgXb25u5tatW7z33ntcvnxZ6gYth9DQUNatW8czzzxDSEgIU1NTdHd3zzs3Cvz9/cnNzeX555+XTh9RyfXw4cO8+eabMrolMjKS2NhYaYtpmibTy4KCgti0aRN5eXlkZGRInUXhaElJScFsNjM0NDSn40dsqI2NjdHZ2cnVq1d57bXXsFgsmEwm+vr6uHXrFu++++6cGmrzMTo6Km21gwcPyvlvampKzm3CVhPaVHa7nfDwcAoLC9m4cSO7d+8mODiYwMBAMjMz2bx5M9euXVtSaqhCoVB8lHikjh8x+cTFxcloH7HQvZvehqZpWK1W0tPTCQ4OxmQy4fV6ZVnyhXC73Rw7doyrV6/S1NTEb//2b5OQkMBf//Vfc+rUqTvOazQaycjIoK+vb9nlWu8XYuFrsVik8ClMT75NTU387Gc/o76+HqfTKReogqGhIW7cuEFDQwM9PT13FWcWOe1CxBSmDR9ROnOha7RarSQnJ0sHle8u43wIjYK7heIKTRaA9vZ2qqqqeO+99/jSl77EJz7xCXJzc3E6nTz55JP86Ec/YnR0dNYCViyyW1paFjyPbzSKMPQOHz6Mx+PhySefJDIyUkbK/PjHP6a9vZ3Gxka5U2e322WZV5GmZ7FYsFqti05NEIua/v7+OZ+7eK7CATMfHo9Haip0dnZSXV3NiRMnyMnJwWAwsHfvXiwWC+vXr+fSpUuyfLnveUTefU9Pz7znEamA4jxVVVUcOnSIvXv38sUvfpHNmzdjtVrZuXMn+/fvp7u7e853SkQ+BQcHy9Qy388CAgKIiYkhNTUVp9OJ2+2+q+Et3p2oqCiZJinC/+/29yJsfMWKFbKKjuhHYmE7lzNPpJYFBQUt6OwT0REVFRWUlpbK3UqTySTT8ubrMyIaUDjC5uP2PlBVVcWxY8dYtWoVmqaxe/durFYrGzdu5Ny5c1RXVy/Y1veDvXv3sm/fPrKzs4Hp/lNcXMy3vvUtjh07Ju/Hz8+PnTt3Eh0dLRfKQUFBPP/88+zcuVOmf873jJ1OJzt37uQ//+f/zO7du4Hp8S0kJITQ0FCZXjOfloXQ0yoqKiI2NlZGJLpcrnmdcoCMLtizZw/f/OY3SUhIAKbHrWvXrtHS0kJycjK7du2S7esrCv9h0aMwmUzs2bNHVvgZHx+ntLRURhwsd5EvnrEQk/dNgxJO7Pj4eCk8v1DVRIBt27aRlpaGy+VidHSU2tpajh8/fsc54+LiePbZZ/nrv/5rGRk4MDDAL37xC77zne8sy+kj7J2AgACZOu3rxDSbzTLdKiQkhObm5iWXohYpjgu9C/CBUPO1a9eIjY0lMDBQzlciinq+vxcaPn19ffPOoeHh4dLRmZycLKOrmpubaWlpeaR2lKZpUqfLV8wZoKmpiXfeeYeKigo8Hg+hoaGznsPo6CiVlZVUVlbS2dl5183Ju2E0Glm1ahV79+5l06ZNmM1m6uvr+f73v09VVdWCGxp5eXmyUIe4h/Lycr7//e/z7rvvUlVVJe/3iSeekA4dmI6iy8jI4Mc//rG0FeebX0T0riggcbeo2LCwsFmR3iMjI9TX1y9Zjw8+sNWam5sX/J6vQ6mpqYmbN29y+PBhAHbv3i1lDrZv387PfvYzGhoalnwtCoVC8VHgkUf8iElYVK4ZHR2lpaWFmpqaBdNhwsLCWLt2La+++ipRUVEyPLaxsZEzZ87c1WAWho/QdRAl5EXayO3pBFVVVfOK3D0sxC5nZmam1DsR6VsdHR384Ac/4J/+6Z9mRa34IpwEizVURNsII1CEN5eVlS0YGSHa5tOf/jSZmZmYTCbcbjetra2cPn36vqcviNzt8vJyWlpayM7OXrZGwkJMTU3R1NTErVu3KCwsJCIiYtbnbreb+vp6Ll68SFRUlPxOd3c3Z86c4fz58xgMBvz9/e/YSRQInQeLxSKdPk1NTdy4cYOKior7FoEhoh0aGhooKSlhz5499708NSA1s6qqqqiurmbjxo2LcnqJSJfExERiYmJmPSuxExsSEkJ8fDwul2vRBrjFYplV0ntgYIDKyso5y3gL/Pz8iIuLY8OGDbzyyivYbDapPXXr1i2Ki4vxeDxzPj8ROeabYjQfXq9Xpgy2traSnp4un8VSU8wWgxgD6+rqKC0t5cknn7yvx18MItJAaIM0NjbyO7/zO5SWljI2NibHW7HI9+0HIirMz8/vjuOKAgEej4fJyUmOHj3K17/+9VmaZyLtRoylCyGEbevr62lsbCQvLw+YTm9yOp2ztLd8EelC69evJyEhAU3TaGpq4t///d85cOAALS0trFy5kh07dsiUmOLiYg4fPsy5c+c+FCWIRXSnEI/VNI3a2lrefPNNDhw4cFfto4VwOp2ySpgQ/RZzm9D+CQsLkxGWd4uQ8nXc9vf3U1paeseYmpWVxb59+/j85z8vnT7Nzc289957HD58mPb29mXdi9FoxN/fX6YP3T4HCOdyYmKijGL2fQcWg9lslqnCd0OkBNfX15OcnCwX9k6nc1bJ9uXgm7YmxIpFqqvQVHtUBAQEkJaWRmBg4KwCEt3d3fz4xz/mhz/8IS0tLUxNTc0pCi/0jO6HLRgdHc2qVatYsWIFFouF0dFR3nzzTd5+++07iizcjtVqneV07u7u5o/+6I+4fv36rPlQ2I2+866InI6JibnjuF6vl7GxMaamppicnOTMmTO8/vrrnDx5csF7drlcPPHEE/zVX/0V4eHhGAwG+vr6OH36NP/jf/yPh+rsE7ZaSUkJGzZskNVhFQqF4uPOI3f8wOzKXG63W4plzjXJOJ1OkpKS2Lt3L+vWrSMpKQmz2Ux/fz/19fVSEG+x552YmJC7d8Kxc/t5H7XDRyAm8LS0NGnYeb1e+vr6OHDgAD/72c/umoK1VHzve2pqisHBQdra2uY0SISOxYsvvkhhYSHZ2dm4XC5ZQeTKlSs0Nzff9/xqIVwsIoyEYK/I575fu+ZC9yctLU0uNvv7+7l69aoUhfatECXSsoSYbl9fHx0dHRiNxnmjfkSkS0BAgCyD3NvbK3P971c/FAZ+TEyMFNT1eDyUlJRQV1d333SsRHnxhIQEufD1eDxcvXqV1tbWOXfOhf7Sli1bWLduHTk5ObMqkAhxV5fLRXx8PIWFhVJD4m66YLeXYx8dHaW9vX3e1Ijw8HDWr1/Phg0bKCgoIC4uDoC2tjaKi4spLy+/b9VpdF2XEWwZGRnouo7RaGTNmjV0dHTQ1ta2oINqqQjHbmxsLKmpqbJtbt26RV1d3UPflR8aGuL69euUlJRIfSHh8MnNzWX79u3zRtbAtLOno6NDLlyampq4fv06dXV1nD17ln379pGSknLH3y1mgavrOv39/VRWVkq9MYPBQG5uLt3d3fT09MxZojgkJISsrCzWrl2LyWRiYmKCd999lwMHDlBSUgJML9gmJydlxGtjYyPV1dV0d3cv8Qk+fMQO/9e+9jW2bdsmnS9VVVXcvHnznpz8ZrOZ9evXs23bNtauXUt6ejqTk5PSUSMWvSIVbM2aNQB0dHTMmV5msVjIzs7G4XBI8dsjR47INrNarTz77LN8+tOfZtu2bYSEhKDrOpWVlfzJn/wJN27cWLD610L4iug//fTTFBYWYrPZGBsbk2myTqdT6r2IflVfX09vb+8DSbn0er3U1NRQVVXFypUrSUxMxOFwsG7dOurr6ykvL1/03OlbOc9oNJKZmUlGRoZ0BDY3N/OTn/xk2dpF9xM/Pz+SkpIICAgAPog0PnDgAK+//jrNzc33lJ64WAIDA3nttdd49tlnSU1NZXJykpaWFi5evMjw8PCS+pnH4+HatWuUlJRIG1A4RhMSEmQ1uvnGOpHCJhw+Qq+npqaGy5cvU1dXt6BTVYiDr1y5krCwMKmbWFlZya1btx66VpnRaCQqKor09HScTie6rtPb28u1a9ceeBSrQqFQPM48UsePWCgLAVKTySRLGMfGxlJaWioFfcUuVEZGBrt372bPnj1ERUVht9vp7+/nzJkznDlzhhs3bixaF0GkSIiKPvM5mx4nRBqVb1nL0dFR6urqaG1tva9OH1GxamhoSIo7h4SEkJyczLVr12TbiEoK0dHRPP3007z44ouyYsnIyAglJSUcPnyYq1ev0tfXN+sZi4VdQUEBvb29lJWVLUpUVuxYRUREsGfPHtasWcPq1atJTk4GpheBLS0t8lhWq5WoqCiSkpLo6+ujpKRkUYKjopRwdHQ0O3fuZOPGjWzYsIHg4GBZFretrU3uYHq9Xtrb26muriYmJobIyEj8/PzIy8uTaWxerxeXyyXT9W4/n4hKGR4eloK/p06d4syZM3KRKKpVuN1uWlpaaGtrW1Tbi2i5VatWsXr1agoKCli7di0Gg0FGdPX390sRTD8/PwoLC+nr66OmpobBwcFFGaRCP2D79u2sXLmSgoICsrKypLZJa2vrnBWuRIRMdnY2+fn5JCcn4+fnR19fn9xpT0hIkFGCwcHBrF27VqYEdXR0zJuGIQQjhXi1iBZJSkri+vXr0nknnEoBAQHs3r2bJ598ktzcXJly1tnZya9//WuuXr3K1atXF3SQiEXFYne4RXly8X2hSxQcHCy1lYTjyuVysWbNGkZHR2lqaqKzs3NRfUCklKxdu5ZVq1ZJnR/RB9rb2xkcHHzoaUZi0fvMM8/g8XikppLQv/EVWYXpxc7w8DBtbW1cuXKFoqIiamtr8Xg8Mv2xo6OD4eFh+vr65hxXRNssZtwXaYy+qX3+/v4EBwfjcrlkxI44VmBgILt27eLTn/40SUlJTE5Ocv78ed58802qq6sZHx/HYrEwPj7OwMCAFEz3rTL3uGO1WomOjmbjxo0EBQXhdru5cOECBw8elJFwy0HoN+Xl5ZGXlyfTVITzHJBVGS0WC2FhYaxZs0ZqWnV2ds4a3202G88++yybNm3C4XBQUlLC0aNHuXjxIkajkXXr1vHUU0+xefNmMjMzCQsLk1U8f/zjH3PmzJllb6qIFC+h4SOKEYyPj8sUXovFQkpKitRIy8nJkQ5lr9dLZ2fnos7l8Xhwu92LFtMeHx9nfHxc3pfZbCYoKEiW/TYYDHOO0b4OBGG3Cb0co9FITEyMrNLq8Xhobm6WzuRHHcVmNBrvSPOanJykrq5OVtF60HagwWAgIiKCtWvXkpCQgMlkorW1lTfeeINLly4tWQxdHG/37t0MDAzI/paVlUVcXBypqamzIka9Xq/UfDx79iylpaU0NDTI9H+Rljc4OCirg87XbiKddevWrezevRuj0Sg33t577z2OHDmypDa32WzExsYSFxcnqy4u1lYTm1k7duxgw4YNbNq0icDAQLxer5wrHmW0mUKhUDxqHnnEz9TUlMz5Fovh0NBQYmJiZFluMRHExMRQWFjIjh07yM7OliWlm5ubuXjxIidOnKC+vn5JA7vQExI6LI+740cIW8IH2hOtra1UVlYuS3dgIcSzHRwcZGJiAqvVSkBAAPHx8bJthENFVNPZvXs3OTk5sm26urq4ceMG77//PlVVVXe0jcPhICMjg1dffZXOzk7eeOMNmpqaFrwXsTBPSEhg7dq17Nu3j8zMTOmcGh8fp7GxcZbBIMrbP/HEE3R2dsp+t5ATQwhxJiUlsXLlSp5++mkpUGwwGOjt7ZU7o8KwEVEbZWVlREREyHKwYnEkIneEcPTtjh+xc2oymZicnGRqakpWv6qrq5OLhcTERD7xiU/g9Xq5fv26rCy2EGazmZSUFPLz89myZQurVq0iPj5epiG1tLRQUVFBd3c3Xq8Xi8VCUlISr7zyCj09PRw+fJjKysoFdWSEIzAxMVEuprKzs2UpeY/HI9tmLseP2MEXZYVFSfuWlhZu3bolq62YTCasVitOp5P8/Hx6e3txu90MDw/Pq/MhdHTa2toYHR2V+ixC40KIy4sSuUIgfN26dcTExGA0GpmamqKmpoZjx45RUlJCe3v7gkbp2NiYrLC2GIeZcIZPTk7i9Xpl+kdMTAzp6ekMDAzQ19dHd3c3iYmJvPjii7jdbi5duiQjzxZCLDBXrlzJtm3bKCgoICYmRvaB5uZmysvL75pmcL8QfVw899TUVL7whS/g9XqxWq0kJSVJcWuxUBOLlsbGRsrLy7l58yanTp2irKxMOlZhdqTm7U4Zce7GxkZZdWoxlWampqZm9S+hf5GamkpmZibd3d20trbKzzIyMsjLy8PPz4+BgQFOnTpFeXk5Xq9XlhX3LU8v0jvvJs77OCDE1zdv3kxSUhImk4nOzk6uX7/O5cuXl102WaS7irTmhIQEWVK7qamJ0tJSdF0nKCiIsLAwuXkgKveMjIxIx6WImgsICODpp58mPj5ejieVlZX09fWRlJTESy+9xDPPPENsbCxWq1WmT//85z/nwIED9xRxIyIvQkNDycrKIjo6GpvNRn19vdTRElXphL5OWlqaXIRPTk7S29t7V0egiHpsbGyko6NjUf1HpEKK8UYIwCckJJCVlUVrays9PT0MDw/LClChoaEEBQVJsX2bzUZ4eDhRUVHABwUoRBqR0HtazD08DG53XIlIwYqKijnnpPuN0WgkOjqaLVu2kJ6ejp+fnxzPjh07tuioaNF2Yp6Ij4/nlVdeYWJiAqPRSHBwMGlpabJwCnwwhvX391NWVsbVq1c5fPgw5eXld1QRXOwGj9PpJDExkQ0bNpCdnc3Q0BClpaUcOnSI999/n4qKiiU9n7CwMOm06ejowOPxLMpWCwsLIyUlhVWrVrF7927y8vJkymJ3dzd1dXVUVVU9csejQqFQPEoeuePH4/HQ2tpKX18fwcHB2Gw2AgICSEhIIC4ujomJCcLCwli9ejUpKSnk5OSQnJwsdy+6u7u5evWqFC1eaFE6FxMTE3KyF1WwHleDW0RDCINLhAZfunRp3pK094JwYogdHxGJItJ2xsfHCQ4OJjMzU5bxTU9Pl23T39/PrVu3uHLlCtXV1fT19d1xP4GBgaxcuZJnn31WpukUFRUtWAVJRPqsW7eOLVu2kJCQIKuOicX9lStXuHz5slyUx8TEsGHDBl544QVGR0cZHx+nqKhILg7mwm63k5aWJqOJYmNj5b15vV4ZaXDjxo1Zi82uri5KS0tlRIYQTgwJCZEpYmI3db7Qa9EPdV2fVVZWOIFycnLYu3cvTqeT1NRUQkJCqKysnPdeRFrP1q1b2bhxI4mJibJEOky/h2LB1t7eLhfieXl5PPfcc7jdbvz8/GZ9PhdCx2Lr1q3s2LFDVkAS9zkxMcHVq1e5cuXKLLFHEckWFBREWloaaWlpREVFyepA5eXlnD59GrfbTWBgIGazmbCwMCwWCytWrMDtdmMwGGQJY5Fqd/t1Dg8P09HRQV9fnxSLjY6OJi4uTkajhYaGsnHjRtLS0sjLyyM0NFQ6fXx3SBeKLhJ9YXh4mLKyslnOwYWYmppibGyMoaEhJiYmMJlM+Pv7k5GRIZ3jxcXF9Pf3k5ubyzPPPIPZbCY+Pp7w8HBqamru2ge2b9/Opk2bZOSUbx+4du0aV65ceWjRj21tbdTV1REREUFYWBjh4eE89dRTs77j9XqZmppifHxcVt5rb2/n/PnznDlzhps3b0oh3MUi0nzLy8upqKhY1GaBEBoV1fWE8HBycrKsAiTKWItFtMVikeL24+Pj9PX1ER0dTWxsLNnZ2axevZrMzEyCgoKAaUehSOl7XOchQPa5nTt38qlPfYrg4GAmJiaora2ltLSUlpaWZS2wDAaDHAfS09NJTU2VlSF7enooKyvjzJkzuN1uWeEtMDAQh8NBZmamFEMWDrixsTGZblpQUIDJZJLvF0B6ejp79uzhxRdflFqBoiT61atXOXr06D05fSwWCy6XS6adpKamyuqLDQ0NXL16lYaGBlwuF0lJSaSkpOB0OomPj5djsIgG6e3tlQv9uRAbNWVlZYsqbQ8fVB0UER3CiZaXl8fevXu5efOmnN8CAgLIysoiOztbVnoSNklcXByJiYlyI8NX10yM30tNX3pQiBRBTdPkxsqFCxe4du3akiNtlorYtNq0aRMvv/yy7MNdXV1ynlisc6y/v5+GhgYaGhpITEwkKCiIJ554YtZ3hCaR2OAcGRmhr6+P6upqWaK9vr5+2Q45IUa+adMmCgoKsNvtXLhwgTfeeIPjx49TW1u7pDQvg8FAfHw8GzduZN++fXIevHnz5oJC53a7nYyMDNasWcPKlSvlxjF88F7cbqspFArFx5HHwvHT0dFBcXExfn5+REVFkZiYyHPPPUdgYCCjo6OsWLGClStXSseQyWTC4/EwNjbGkSNH+P73v09xcfGSnT6i/LTQtoiOjpa7iY8jFouFjIwMAgICpHDehQsX+PGPf/zAqhS0t7dTWloq01yCg4N56qmnZIpZcnIy2dnZREdHy6ogHo+H8fFxTp8+zU9/+lNOnjw5ZzSKMBrj4+PlYv6rX/0qQ0NDCxpgBoMBm81GcHDwHaKqk5OT9PT0cOXKFdra2uSOb0hICNHR0QQHBxMWFsY3vvGNWWXe50JUVJpLWHdsbIz6+npu3rx5Rxh+X1+fFLOMjo4mPDycwMBAKca4FNFMXddlqllycjJNTU00NzdLQy8kJIRdu3ZRWFh4V00WkeJze8UWETkmFiEjIyMylS4xMVFGUn3mM5/hueeeW9DZIf5ORPj44vF4ZPn11tbWWW1sNpuJjY1lw4YN7Nq1i7y8PLnLPzAwwKVLlzh27Bi9vb2YTCbGx8dZtWqVXESHhYWRk5ODzWbjxIkTVFVV0dnZece1joyMSNHHwMBAIiIi2LhxIyaTidraWgwGAykpKRQWFsrdd5EK0NPTw8GDB/nud79LU1PToha2YpxabDShKBve1tbGyMiILEmekJAgUysHBwe5du0aiYmJBAYG4u/vz969e9m8efOClVNEJMV8fWB4eJgrV67Q2Nj40DQZDh48SHd3N6+++iqf+MQn8PPzkykjorqVEOEfHBzk3LlzXL58mevXr9Pe3n5PUY66rsu2WewieXh4WEaoWq1WbDYb0dHR8lkODg7e8Vxh2iEaGhrK17/+dcrKytB1XTpzfdvC7XbT19f32Ef8hISEUFhYyKc+9Sk2bNiA0WikpqaGX//611y7dm3ZGmE2m03qdu3Zs4eMjAz8/PyYmpqip6eHCxcucOzYMXp6eggICGB0dJTc3FwiIiKIj48nIiKC7OxsvF4v586dk+lFJpNJapyMjIzQ3d1NXFwcX/jCF3jqqafkxsHw8DAnT57kjTfe4P33379n/a6IiAiysrJYtWoVmzdvlmk9Y2NjlJSUcPr0acrLyzGZTAQHB/P888+TkpIiq5ilpaWRm5vL8PAwFy9elCmyom/cHsUmNAsX66waGxujvb2dnp4exsbG8PPzk5sJIyMjMh3IZDKxbt06/vAP/5C4uDj8/f1nbVzMt4kh0qyFzfKoMZlMrFixQqayjY2NUVlZyb/8y79QX1//wN85EcX42muvsWXLFiwWCx0dHZw/f5633nrrrlG7vty8eZOenh5aW1v5kz/5E4KCgqRQvdA5E/qAYt4tKiri1q1bVFdXL6m0+lxomsbmzZv5whe+wObNm3E6nQwNDfHtb3+bo0ePLmsOEWljUVFRsqLnYm01f3//WRVoBWNjY9TV1VFcXLyk56tQKBQfRe7q+NE0LQ74ERAB6MC/6rr+HU3T/hvw24AYSf9U1/WDS70AIbr2i1/8gp6eHrZt20ZKSgq5ubmyxK/BYJDaFh6Ph/7+furq6igqKuLb3/42tbW1yy6vGhISQlJSklzgz5XT/jggFmyf/OQnZQSCx+NhaGhIpi49CPr6+njrrbfo6+uTuzpJSUl89atfBT5oG5he5I6MjFBdXU1xcTH/8i//sqBDTkTnVFVVMTAwIEPIxe73UhBhz9XV1bz77rscPHhQLsy9Xi8dHR0yh104TEJCQpZ1nvHxcS5evMg777zDmTNn5nQAiH566dIlsrOzZcqKv78/Fotl0eXcxTOqq6ujpKREVhupqKigt7eXgIAAWZno9ipjizm2iDDZv38/b731ltS5gekQ/YqKCtk2/v7++Pv7L+kcgExX6Orq4tChQ7z11lt3RFjY7XaysrJkCprT6WRqakpqKFVXVzM4OMjo6ChVVVUy/cdsNhMTEyNLc69evZrx8fFZaaC+uN1u6urq+PnPf05/fz/PPPMMoaGhPPPMM7OqBYmIq4mJCdrb26mvr+fq1at897vfpaGhYV4j1Ov13pFqJKrALAa32013dzcNDQ10dHTgdDpxOBy4XC78/f1lxJ/H45EpWU6nU/63VEQfGBkZ4cCBA7z55pv09/c/NKfDxMQEFy5coLu7m/Pnz5OTk8MXvvAFNE3j2rVrHDlyhOvXr9Pc3MzExARdXV243e5ljdGibXwXzUupcigEUOvq6mhvb8flckltk7kWHb5C7zDt3ExISJDRHALR72A6JbWgoIBbt27dd822+4XBYGDlypVSW81kMjE1NcW7777L/v37aWxsXNZ8JDTFcnJy2LJlCytXrsRsNjMxMcHQ0JDUiRHjQHl5OREREVKvJTIyEoPBQGhoKOvXr2dqagqLxUJdXZ08h67rhIeH8wd/8AfyXgTd3d38zd/8DW+++SaVlZX3/Jw0TSMpKYm1a9dSWFhIRkYGML0Q7ejooLa2lo6ODoaGhjAYDBQVFZGYmIjdbpcpZ8KxuH37dpliKMSHxf349mePx7Ok8WZ4eFhuJvT19WGz2bBarfj7++Pn5yejfKOiosjLyyM3N3dBgfW5EAULHjWaphEUFMS+ffuIjY2V+lrC+fWg09A0TSM0NJS9e/eyfft2mfp85coV3nnnHU6ePLmk6LKpqSkaGxt5/fXXaW9vJz8/n89//vM4HA4aGxu5cOECR44cobKyErfbLcfOhSJnlkJQUBAvv/wy69evx+l0Mjo6yoULF3j//feXvXHg9XppaWmhqamJ4eFhAgMD79lWO3v2LPv37+fChQuP5XiqUCgUD5PFzOBTwB/pun5N0zQ/4KqmaUdmPvtfuq7/zb1ehMfj4fjx41y/fp0TJ06wa9cutm7dSkBAAFarFbfbzeDgIF1dXdJzf+HCBdrb2+VCeDnouk5PTw/19fUkJiayadMmjh079lAXPovFZDIRFBQky6PD9MJ8dHT0gU5mYuf01q1bvP/+++zYsYMXXniBwMBAbDYbExMTDA8P09vbS3NzMzdv3uTEiRO0t7fT3t6+YAqFiOYoKSmhqalJlhxdzM6gqDDW39/P0NAQ165do7W1lZKSEi5cuEBTU9Os8zQ3N1NRUUFra6tMvVpM5I1I7RgcHGR4eJizZ8/S2dnJmTNnKC0tnXcHSdyb0ILx9/dnxYoVxMTEEBQUtKhyu4AUJbxy5QrXrl2TGkHFxcU0NDQQFhYmd1MXcz/9/f0MDAzIyIWysjLa2tp4++23qampmRWFI9LhGhsb5SJgMW0j7r23t5eRkRHKysqor6+nvr6e48eP09TUNOv9EpEowcHBBAQE4Ha7ZURQd3c3RUVFMlVAiHCKBeH4+DhTU1Nyl9NutxMfHy8rA97u+NF1nb6+Pg4dOsTly5e5fPkyL7/8MnFxcdjtdoxGIxMTEwwMDNDU1MStW7e4evUqVVVVdHV1LaidIdolKiqKiYkJnE6nrGqy2N1VEVl09epV/uEf/oGtW7eyatUqJicnOXbsGMeOHePWrVtMTExQXFxMY2OjFBdeSh8QOjL19fVUVlbS1tbGO++8c09h/8tlamqKyspKamtr+c1vfsOPf/xjuVstqsyIhexynfK6rkvdLRHd2dXVJdPmFqupMTQ0RFlZGX/3d3/H9u3b5UK4uLiYt99+m6tXr8rxuLe3l6NHj2I2m3nuuedwuVzyWEL/TFS2e/XVV6W2lxAsflwR82ZnZyejo6PYbDbGx8eldta9zEcWi4WgoCACAgIYHx+npaUFt9tNe3s7V65coby8nKGhIaampqiqqsJsNuN2uxkZGSEnJ0eOA35+fiQmJsr5YXh4mMbGxlnVp3zvZ3h4WDqla2tr7/URAR9U4QwMDMRisTA8PExDQwPDw8OUl5dTXFxMW1sbY2NjaJomo569Xi/5+fmy6tTExIRMqWlvb6e7u1vaRDdv3iQyMlJGrxUXF1NfX7/oinxut5uGhgbefPNNenp6WL16NTk5OYyMjPCDH/yAy5cv09/fL6sZ3o6u67PeHd/y6OL/wkZ41DaVaI/MzEwZGTM5OSnnlQeNSPcUEYNOp5OJiQl6e3tlGt9S8Xq99Pf388477/Duu+/y+uuvy8hEkSbluwF2PwkMDCQ6Olr22eHhYSoqKu45CrOxsZGKigrpXF+srSZSOAcHBxkaGuLcuXN0dHRI/TdVzUuhUCgW4fjRdb0NaJv5eUjTtDIg5n5fiNDkKC4uxmKxMDY2JiNAhJhpW1sb9fX1VFVV0dzcLBcFy0Vo2FRVVbFp06ZZ4cuP2ki5HbE77VvtpaamhsrKynsO2b0bY2NjTE5OUllZidlsxmq1Eh4eTlBQkKz60NXVJYU3RV73YqpjjI+PU1tby7/927/JkrJxcXF3pES5XC6cTidut1vqYJw6dUruLgljanh4eM7KUwMDA1y5coXvf//7ZGVlkZKSQmJi4iyjwrd63MjICGNjY5SWlnL+/HkuX77M2NgYDQ0NjI2N0d/fz9jY2ILGlKjQI4z1wcFBKioqZLriYhFCo2LBA9MpeD/96U8pLi4mMTGR2NhYoqKiZi1qbDYbdrsds9nMyMgIIyMjHDp0iJMnT9LT0yPfq7GxMVktzJepqSna2tr43ve+JyvrCMeVb9uIqBQhkD4wMMCRI0c4fPgwo6OjdHR0yOc1V2UcEdV05swZamtrcTqdUlNnbGyMnp4eGfEhNJREJbuTJ08SGRk5K0JndHSU/v7+eZ1yohrb5OQkFy9eJCgoiLi4OOnMHBgYoLOzU4pQNzQ0SPHohRa1Xq+XiooKqUdis9loamqitrZ2SaXRhfjm5cuXZarFxMQEly5dks5GXdfp6OjgRz/6EdevXychIYHY2FgiIiJm9QG73S77m9B4ePfddzlx4gT9/f309vbKPtDT0/PIxFeFYPPExASVlZV4vd77tjMtjl9bW4vVaqWvr4/w8HB6e3upqKhY0qJU9HGhH9bS0oLRaJTly30FjScnJ7l16xa9vb2cOXNmljNHpFeOjIwQEBBAYWEh8fHx9+VeHzS6rksnrr+/P6tXr6a2tpbjx48vqM22mOP29PRw8uRJKisrZXSbWMgKG0CMA21tbQwPD1NVVcXRo0cJDQ2V44BwBolF9eDgIN/4xjfmdbh7PB7pzLpf74DX6+XGjRu0tbUREBAgIz0nJibo6emhtraWoaEhOaY0Nzdz5MgRioqKZDqmOI5IAezo6GBsbEz2n/LycqxWKwMDA4yNjXH9+nVaWlqWFHExMTFBXV0dRqORnp4empqaZB9vaGjA6/Vis9morKykoqICf39/+YxbWlpkBJIQOofplEe73Y6/vz+NjY2cPHnyoThX7oavDWUwGGhra6O4uPgO/cEHhdAf/OUvf8mOHTtobm7m2LFjVFRULNthKlKRJycnqa2tXXKU6XIJDw/HbDbT3d3NlStXeP3117l48eI9n7e/v58LFy5gtVrJzMwkOTl5TlvN5XLhcrkYHh5mdHSU4uJizp8/z/Xr12fZaqJM/eMYya9QKBQPG20pRpqmaYnAKSAH+CbwRWAQuMJ0VNCCs6emaQueTNM07HY7YWFhREZGzhrYxX9C80HoMtzrwiA6Oppdu3bxO7/zO7z99tt897vffSx2p25HpHp97Wtfo6CgAIArV67IkrQPY8EmRDdjY2Px8/PD39+fkZEROfEKJ9DIyMii20ZowsTGxhIZGUl0dDQRERHY7fZZ3xFOh76+PhnJcfPmTYqKiqSOilgoznVeUXo5MjKSsLAw6SjxdcCYTCbi4uKIi4ujpaWFrq4uqqurKSkpoaamRooG+6bzLBZxn2azedE7WAKxKPYtO200GqW2jRDFDQsLm2UYhYaGEhkZidPppLW1lY6ODi5evEhJSYl0fIi0mYXEmhMTEwkLCyMqKorw8HD8/PxmnUc8S+GkELvzN27ckOcQURsLCQ+LSAffMrsej0dG9tz+fZPJhMViuUNLSDgNxDObD5FaIoSunU6n3JkXO4c9PT1S62K+vuWLKO8dEhKCyWRiaGhILqSWYtiLal6hoaGEhYVJYWmx2+/xeDAajcTFxREaGkpERATh4eGEhITMapvw8HD5PrW1tdHe3s7Fixe5deuWdM6KFJLHbcy737hcLplK6nA4pNN5ZGRkSW0j+k1oaCjBwcEYDAb6+/ulmLDvsUQpb5vNdkekiXgnXC4XX/ziFyksLMRisXDmzBmOHj36WAuRms1moqKiWLFiBampqbS3t3Py5MlFR0/NhxB3vn0cENXUbn+fRZSU2JDwRYiCizHobmPug+j/vvci2l+M56KYgS9Go1GOabf3F98xTVRy8vPzIyQkRI4RbW1t0km9lHaw2Wz4+/sTGBhIcHCwrF4oNMNcLhexsbFs2bIFh8MhneydnZ10dHQwMTGBzWaT48/g4CA2mw0/Pz96eno4c+bMA9+guhsi1esP//APycnJwWq1Ultby/vvv8/Bgwcfig1lMBhwOBzk5+eTl5dHd3c3N2/epLGx8b5XZX3QpKen8wd/8AdYrVYuXbrEwYMHZRWue8FgMEhbLTQ0VFb09X0frFarLMrQ3NxMZ2cnlZWVUthc2Gr3c/NAoVAoPkRc1XV9zVwfLNrxo2maCzgJ/KWu67/WNC0C6GZa9+cvgChd139rjr/7CvCVmX+uXuS5pHaMKBt+uz7D/UKU3N29ezenT5/m0qVLj8XO1O2Iqkc5OTkkJSWhaRotLS3U1dVJEeOHhcFgwGg0YjabmZqamuVwWe51iDZ3OBwy5cb3s/j4eKKiomQkR19fn0xXWc55RJSK72LAbDZLY6K1tZXu7m4p1PywxG6XgihLa7FYZGSH72fCIeBwOGhvb6ejo0M6MpayKBDPzGaz3ZGGomka0dHR0vHT1dVFT0+PLAG8nPu5nYX61UJ/4/v/hRBjjVic3d6nl8rt13QvC2HfY811PeJzoQdyex8Qjh+r1Up7ezudnZ2ybT6uBrHvAuJBts1iEU7c/Px8rFYrTU1N1NfXL7ok96NCVC3z8/NjfHz8vvWpRzUOPAh8nbC+LOde5vs73+/fq6NwvmMJB2ZAQIDcLBEaKiKawmg0Sufb1NSUtBFEOtXjgMlkIj8/n/j4eMxmM319fdTW1spImYeF2WwmMDBQRjA/jjbn3XC5XKxfvx5d12loaLjvacKi+IrD4bjDVrNYLERFRclNOl9b7cPmQFMoFIoHwL05fjRNMwPvAId0Xf/bOT5PBN7RdT3nLsd5bK3Yx1XU+XZ8NQru1dnyYULc9+2aAg/qPB+FCAhhxAvdiwd1P/drAay4/zysPqC4d3wjXD4Mc5FC8WHk42pDPQhuf44Pk4+SraZQKBT3mXkdP4up6qUB3wPKfJ0+mqZFzej/AHwCuHU/rvRR8WExtEX6y8eNh3XfH6Xn+7CMMWU4P76otvnw8FEZdxSKx5mP0hz/qHmUdrNqR4VCoVg6d4340TRtM3AaKAbEKP+nwKtAAdOpXvXA7/g4guY7VhcwwnSKmEKheHwJRb2nCsXjjnpPFYoPB+pdVSgef9R7qvgokKDrethcHyxJ3Pl+oGnalfnCjxQKxeOBek8Viscf9Z4qFB8O1LuqUDz+qPdU8VHHcPevKBQKhUKhUCgUCoVCoVAoPowox49CoVAoFAqFQqFQKBQKxUeUR+H4+ddHcE6FQrE01HuqUDz+qPdUofhwoN5VheLxR72nio80D13jR6FQKBQKhUKhUCgUCoVC8XBQqV4KhUKhUCgUCoVCoVAoFB9RHprjR9O0pzRNq9A0rVrTtP/ysM6rUChmo2lanKZpxzVNK9U0rUTTtK/P/D5Y07QjmqZVzfw/aOb3mqZpfzfz7hZpmrbq0d6BQvHxQtM0o6Zp1zVNe2fm30mapl2ceSd/rmmaZeb31pl/V898nvhIL1yh+JigaVqgpmm/0jStXNO0Mk3TNqg5VaF4/NA07f+esX1vaZr2M03TbGpOVXxceCiOH03TjMA/AnuBLOBVTdOyHsa5FQrFHUwBf6TrehawHvi9mffxvwDv67qeBrw/82+Yfm/TZv77CvBPD/+SFYqPNV8Hynz+/T+A/6XreirQB3x55vdfBvpmfv+/Zr6nUCgePN8B3tN1PQPIZ/p9VXOqQvEYoWlaDPCHwBpd13MAI/AKak5VfEx4WBE/hUC1ruu1uq5PAK8DLzykcysUCh90XW/Tdf3azM9DTBuoMUy/kz+c+doPgX0zP78A/Eif5gIQqGla1MO9aoXi44mmabHAM8C/zfxbA3YCv5r5yu3vqniHfwU8MfN9hULxgNA0LQDYCnwPQNf1CV3X+1FzqkLxOGIC7JqmmQAH0IaaUxUfEx6W4ycGaPL5d/PM7xQKxSNkJmx1JXARiNB1vW3mo3YgYuZn9f4qFI+O/w38MeCd+XcI0K/r+tTMv33fR/muznw+MPN9hULx4EgCuoAfzKRk/pumaU7UnKpQPFbout4C/A3QyLTDZwC4ippTFR8TlLizQvExRdM0F/AG8A1d1wd9P9Ony/2pkn8KxSNE07RngU5d168+6mtRKBTzYgJWAf+k6/pKYIQP0roANacqFI8DMzpbLzDtrI0GnMBTj/SiFIqHyMNy/LQAcT7/jp35nUKheARommZm2unzE13Xfz3z6w4Rbj7z/86Z36v3V6F4NGwCntc0rZ7pFOmdTGuJBM6EqcPs91G+qzOfBwA9D/OCFYqPIc1As67rF2f+/SumHUFqTlUoHi92AXW6rnfpuj4J/JrpeVbNqYqPBQ/L8XMZSJtRTbcwLaT19kM6t0Kh8GEmP/l7QJmu63/r89HbwBdmfv4C8JbP7z8/U4lkPTDgE76uUCgeELqu/4mu67G6ricyPW8e03X9NeA48KmZr93+rop3+FMz31dRBgrFA0TX9XagSdO0FTO/egIoRc2pCsXjRiOwXtM0x4wtLN5VNacqPhZoD6v/apr2NNNaBUbg+7qu/+VDObFCoZiFpmmbgdNAMR/ohvwp0zo/vwDigQbgJV3Xe2cmx39gOhx2FPiSrutXHvqFKxQfYzRN2w78J13Xn9U0LZnpCKBg4DrwWV3X3Zqm2YD/YFq3qxd4Rdf12kd0yQrFxwZN0wqYFmC3ALXAl5jeXFVzqkLxGKFp2n8HXma6wu114P9iWstHzamKjzwPzfGjUCgUCoVCoVAoFAqFQqF4uChxZ4VCoVAoFAqFQqFQKBSKjyjK8aNQKBQKhUKhUCgUCoVC8RFFOX4UCoVCoVAoFAqFQqFQKD6iKMePQqFQKBQKhUKhUCgUCsVHFOX4USgUCoVCoVAoFAqFQqH4iKIcPwqFQqFQKBQKhUKhUCgUH1GU40ehUCgUCoVCoVAoFAqF4iOKcvwoFAqFQqFQKBQKhUKhUHxE+f8Bwzd4xuM9HHMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgT0lEQVR4nO3deXDc533f8ffz2wvAAouDuA+CIAiCpC5IpAhSpJTE9BGbHsmeaFLbiuORUzsZN3XaSdtJ81c6ncy00zhOPMlk4ippnKNNHFmxE0uRYluUQ9GyCJE0CYAkAIILEASIG1gAewC72Kd/YHdNyqIMAgR2BX5eMxju78Dud0H85sf98Hm+j7HWIiIiIiIiIiIiW4+T7QJERERERERERGRjKPgREREREREREdmiFPyIiIiIiIiIiGxRCn5ERERERERERLYoBT8iIiIiIiIiIluUgh8RERERERERkS1KwY+IiMh7gDHmcWNMz03bA8aY96ce/44x5q+zV52IiIiI5CoFPyIiIjnm5lAnzVp70lrbmq2aREREROS9ScGPiIiIiIiIiMgWpeBHRETkPcAY87PGmOurOO9FY8y/f9u+C8aYj5sVXzbGjBtj5owxncaY+zeuahERERHJNgU/IiIiW8vXgF9KbxhjHgLqgBeBDwJPALuBYuAXgaks1CgiIiIim0TBj4iIyNbyj8BuY0xLavvTwN9Za5eAOFAE7AGMtfaStfZGluoUERERkU2g4EdERGQLsdbGgL8DfskY4wCfBP4qdexV4I+APwbGjTFfNcYEslasiIiIiGw4BT8iIiJbz9eAZ4BjQMRa+0b6gLX2K9ba/cA+VqZ8/efslCgiIiIim8Gd7QJERETkHXmMMXk3ba/6nm2tfcMYkwS+RGq0D4Ax5lFW/tPnLBAGYkDy7pQrIiIiIrlII35ERERy00tA9Kav37nD7/9L4AHgr2/aFwD+NzADDLLS2Pl/rbdQEREREcldxlqb7RpERETkLjPG/DLweWvt0WzXIiIiIiLZoxE/IiIiW4wxpgD4AvDVbNciIiIiItmlHj8iIiJbiDHmQ8ALwHeB/7vK7+kGGt/h0ARQof3an+X9v2qt/Zt32C8iIiKrsK6pXsaYnwf+EHABz1lr/8fdKkxERERERERERNZnzcGPMcYF9AIfAK4DHcAnrbUX7155IiIiIiIiIiKyVuvp8XMQuGKtvWqtXQL+Fnjq7pQlIiIiIiIiIiLrtZ4eP3XA0E3b14H2d/sGY4yWEBMRERERERERubsmrbXv1Ctv45s7G2M+D3x+lecC8F5bYt7lcmUeJ5PJ91z9IiIiIiIiIvKeNni7A+sJfoaBhpu261P7bmGt/Sqp5WTfbcSPMYadO3dijGFmZoapqal1lLY53G435eXltLe3k5+fz+LiIkNDQ4yPjxMOhwmFQiQSiWyXeU8yxlBYWEheXh6Li4tEo1Hi8Xi2yxIRERERERHZVOsJfjqAFmNMEyuBzyeAT631yYqLizlw4AChUIje3l5mZmZIJpPrKG9jGWMoKiqivb2dT3/60/j9/kzwMzIywujoKCdPnqS/v39DRgA5joPP58uEG+FwmNnZ2U39mblcLvLz8ykqKsIYQyQSYW5ubs01OI6D3+/HGMPS0hJLS0trei6Xy0VpaSk/8zM/Q3V1NT09PXR1dTE6OrqmumDl79vlcuHxePB4PDjO7dtjWWtZXl4mHo+TSCRYXl5e8+uKiIiIiIiIrMeagx9rbcIY8+vAK6ws5/7n1trutTyXx+PhwQcf5NixYwwODrKwsMCNGzeIRqNrLW/Dud1uKioq+OAHP8iHP/xhvF4vy8vLhMNh5ufnM+/j6tWrGxL8eL1eysvL2b59O5WVlYyNjXH27Flisdhdf613q6Gqqopdu3bh9XoZHh6mu7ubxcXFNT1ffn4+Dz30EPn5+UxMTDA0NMT09PQd/fwcxyEQCPDII4/wmc98hu3bt/NP//RPTExMMD4+vqYgyXEcPB4Pfr+f0tJSioqK8Pl8t0zxS0smkyQSCaLRKHNzc8zMzBCJRHI6xBQREREREZGta109fqy1LwEvrec5jDGUlpby7LPP8qEPfYiJiQmSyST9/f05Hfz4fD5qamo4ePAg+fn5wEoY5PP5KCkpwev1smvXLhzH2ZAP/QUFBTQ0NPDoo4+yb98+gsEgPT09xOPxTRthUlhYSHNzM0ePHqWkpISLFy8yMDBAPB5f03uuqKjgi1/8InV1dfzoRz/i29/+NidOnLijMMvn89HU1MSzzz7L+9//fhzH4Qc/+AEej+eO6zHG4Ha7ycvLIxAI0NDQwI4dO6ivr6eoqAi3+50vn2g0yuTkJIODg/T29jIyMkIsFlPvJxEREREREdl0G97c+adxHIeSkhIOHDjAtm3bcLlc1NbWEggEuHHjRrbLu61EIkEoFGJoaIi2trZbRn8YYzDGvOt0oPWqrKzkoYce4gMf+ACHDx8mGAzy93//98zNzW1a8FNXV8fBgwc5fvw4tbW1dHR08C//8i9rnu7ldrtpaGhg7969bN++nUAgwLVr17h8+fKq35Pf72fnzp20t7eTl5dHIpFYU+DiOA5er5dAIEB1dTUtLS0cOnSIpqYm6uvr8fv9eDyeTEPyNGst0WiUsbExLl++TCAQ4M0332R0dJTFxUWFPyIiIiIiIrKpsh78pKVDkuLiYlpbW2lra+PKlSs52x8l3c/nm9/8JkeOHKG8vBxjDMvLyywvL5NIJDZseo/jODQ0NLBz504qKytxu93vOO1oI7lcLnbs2EFTUxPFxcV3rYZ0MFJRUcETTzxBMpnk61//OidOnGBxcfFdfx8cx6G+vp729naqqqqw1hIKhbhy5QozMzOrDl3cbjdFRUVUVFTQ2NjI3r17OXDgAO3t7QQCgZ8Ifay1WGszv8PxeJyqqirKysrweDzMzc0RDoc3dTSWiIiIiIiICORQ8JPmcrkoKiqivLwct9udsx+UrbXMz89z+vRpXnvtNfbv3088HicYDDIyMsLk5CTnzp276+GPx+OhsrKSY8eOcfToUerr64nH48zPz2/KCmLGGLxeLxUVFXzkIx/h4MGDFBcXE41GCYfD66ohkUgQiURYWloiPz+fsrIyHn30UaanpwkGg0xMTDA/P3/bkTMul4vCwkK2bduGx+MhmUwSDoe5ceMG8/Pzqwp+0k27W1pa2Lt3L3v27KG1tZXW1lZqa2txu92ZgMdaSzwezzSiLisrw+Vy4TgO1lrKy8upq6ujsrISn8/3E6ODRERERERERDZazgQ/6YDEcRwqKipoaWkhEAgwMTGR5cpuLx6Pc/36df7iL/6C1157jUQiwejoKBMTE8RiMcbGxu5q8OM4DrW1tRw+fJgjR47Q1NRENBrl/PnzvPnmm8zOzm54UOb1eqmvr+fgwYMcOXKE6upqRkZGuHz5MqdOnSIUCq25htnZWU6cOEEkEuH++++ntraW+vr6TK+eoaEhBgYGuHLlCgMDAz8xpaygoID6+nqam5txHIeFhQWuXbu26kbhjuNQWFhIa2srP/dzP8f+/ftpamqioqKCQCBAJBLJhHrRaDSzTHwoFALg6aefxufzMTs7y/DwMMFgkK6uLvr6+giHw2rwLCIiIiIiIpsu68GPtZalpaVMaOHxeCguLqa2tpaCgoJsl/eurLWEw2FOnjzJmTNnsNYSiURYXFwkmUze9X4uHo+HpqYmDh48yM6dO/H7/QwODvKDH/yAU6dOsbCwsKHhgjGGgoICmpubOXToENu3bwegv7+f119/nY6ODhYWFtb8vhcWFvjud7/L+Pg4CwsLHD58mOrqanbv3k0gEMg0TD5//jxnzpzh6tWrjI6OEolESCQSlJeXs2PHDrZv344xhpmZGXp6ehgbG1tVg+j0iKFdu3Zx4MAB2traqKysJD8/n+XlZYLBIG+++SY9PT3Mzc0RiUSIxWJEo1FKSkp43/veh8vlIhgM0t3dTWdnJz09PVy9enXD/25ERERERERE3klOBD/z8/MEg0EeeOAB8vLycLlct10uO9dYa1lYWGBhYWFDX8flcuH3+2lra2Pfvn0UFBRkRhydPXuW3t7eDZ/q5Xa7KSsro62tjb179+LxeJifn6evr4/z588TDAbXPdXr3LlzDAwMMDMzQzQa5eDBg9TX11NTU0NtbS379u3jwQcf5OGHH6azs5PTp08zODjIwsICe/fupaWlhdLSUpaXlxkaGuLChQtMT0+vqq50Q+dt27ZRUVGRWbbdcRwWFxcZHBzkzJkzdHZ2Mjs7SywWI5lM4vV6aW1tZWpqinA4TFdXF2fPnqW7u5vh4WHm5uY2ZRqeiIiIiIiIyNvlRPAzNzfHlStXtOrRbRhj8Pl81NbW8swzz7Bnzx68Xi+Tk5MMDQ3R2dm54SugOY6D3++npaWFT3ziE7S2tuI4Tib4uXz5MpOTk+t+naWlJcbGxvjnf/5nLly4wP79+3nyySc5evQogUCAvLy8zKieY8eOMT4+nnn/1dXV7Nu3j8LCQqLRKKdPn+b06dOr7u+TPifdrPnm70kmk8zMzDA9Pc3s7CxTU1NEIhGstfj9fubn5zl79ixjY2P09fXR19fH0NDQpq6yJiIiIiIiIvJ2WQ9+YOWDtqbB3F56aXiv10tRURFer5fl5WUikQjRaJR4PL7hgZkxBpfLRV5eHkVFRXg8HhKJBOFwmFgstuZl028nHA7T19dHMBjk1Vdf5bHHHmPPnj089thjtLa2Ul5eTlFRETt27KCxsRFrLcaYW1baCoVChEKhVf9uJZNJIpEIQ0NDXLt2jZqaGgoKCnC5XLjdbhobG3n00UfJy8sjGAwyNjbG3Nwc8XicwcFBvvWtbzE9Pc3U1BShUIhoNKrQR0RERERERLIqJ4Kf9xq3243H4wFYVdPg9SosLGT79u3s37+f0tJSXC4Xk5OTdHV10dXVxfT09IYHDGVlZbS0tPDAAw9QXFyM4zhMTEzw1ltv0d/fvyEjW9KrZk1MTPDyyy/z2muv8cILL9DY2Mju3bt58MEHOXz4MLt27cLj8WSmBiYSCWZnZ+np6bmjZtPLy8uEw+FM8NPS0kJZWRn5+fl4PB727NmTCZv6+/sJBoMMDg4yMjJCKBSiq6uLaDTK0tISiURCYaaIiIiIiIhknYKfVUqPJvH7/Tz88MNUVFQwOjrKG2+8seENlUtLS9mzZw8PP/wwhYWFOI5DPB5nYWFh3Uuor7aGmpoa7rvvPvbt24ff78dxHJaWlpibmyMWi21o8JRMJolGo8RiMcLhMKOjo1y8eJGTJ09y4sQJfu3Xfo09e/ZQUlKC2+0mEokwMDDA5cuX7yj4SQdNc3NzTE5OMjs7SyQSwe/34/F4KCsrw+fzUVJSQl1dHbt27WJgYID+/n76+vro6OjI/Cw0ZVFERERERERyQU4EP9ZaxsfHCYfDlJaWZrucn+D1etm5cyfV1dWUlpZy5MgR8vPzef311/nhD3+4oa/t8/nYsWMHjz32GI888gg+nw9rLZOTk4yMjDAzM7PhI0vy8/O57777OHToEPv27cvUMDo6ysjIyLpW8roT6RXg0oHT+Pg4MzMzHDt2jOrqagoLCzHGEAqF6O7uZnJykqWlpTuqLZFIMD09TWdnJ3l5eYyPj7N9+3YqKyupqqrC7XZTWVlJSUkJ9fX1mVFQly5d4tKlS+pTJSIiIiIiIjklJ4KfZDLJtWvXcm71o3RT5fr6ej760Y+yb98+AoEAra2tjI+Pc+7cuQ19fcdxyM/Pp7Gxkf3799PS0oLL5SKRSDA0NEQwGGRycnJDg4Z0U+e9e/fS1tbGjh07MjUEg0GCwWBWlipPj865uZdOMpnMTA1LN3W+07qSySShUCizcldfXx9NTU00NzfT1tZGdXU127Zto6SkhLKyMurr62lubqaqqoo//dM/ZXZ29q73OxIRERERERFZq5wIfqy1zM7Osri4mFPNcL1eL/X19Rw/fpwvfOEL1NXVZaY4jY+Pb/gS7sYYvF4vJSUlVFZWUlBQgLWWWCzG1atXCQaDTE9Pb3jwk5eXR3l5Odu2bcPn85FMJonFYvT29maWUs8GYwxFRUXU1dVRWFiYmeZ1/fp1Tp48yfz8/JqeN90jKB6PMz09zbVr1wgGg8zNzdHW1sZ9992X6SmUbrpdUFCA2+3ONJcWERERERERyQU5Efy43W7a29upra0lLy+PeDye7ZLwer20trZy/PhxPve5z9HY2Jj5UL+wsEBfXx8/+tGPNjSoMsbg8XgoKCjA7/dnRtqMj4/z/e9/n/PnzzM1NbVhr5/m8Xjw+/3k5+dn+guNjY3xne98h8uXL2ct+PH5fBw6dIhHH32UioqKTNPr3t5eZmZm1vy8juNgjCGZTLKwsEAsFmN8fJy5ubnMCLBAIIDH48n0fnIc5y6+MxEREREREZG7IyeCHyCzTHkufID2+Xy0t7fzC7/wCzz11FM0NDRkPuAvLy9nGgePjY1taB3p5dPz8vIyK1YtLi4yMzOzacuFu91uCgoKMn836RFH09PThEIhlpaWsrJ6lcfjoaqqiqeffpqKigq8Xm9mitdLL73E7Ozsmp83EAhQUVFBeXk5Pp8vM6Vsamoqs3x7MpnMLCEvIiIiIiIikqtyIvjJpRETHo+Hxx9/nGeeeYYnnniC2traWz7ch0IhTp8+zVtvvbXmqUSrVV9fT3t7O/fffz+FhYVMT0/zwgsvcPbsWXp7ewmHwxseujQ2NvL444+zc+dOPB4Pg4ODvPLKK5w9e5aRkZGsNTN2uVyUlJSwd+9ePB4PyWSSzs5OXn311TWPxHK5XBQWFtLa2sqDDz5IQ0MDBQUFxGIxbty4weDgIIFAALfbnRkVlH7vWrpdREREREREclHWg5/0Eun19fWZqTOO4+Dz+aioqCAcDmfOXVpaIhaLZVZqSn/dLR6Ph8OHD/PZz36WQ4cOUVNTg9v94x/RtWvXeO6553j11Vfp6enZ0EbU6SXUd+3aRU1NDY7jEA6H6ejo4Ny5c3e0TPl6amhoaKC1tTWz2trU1BQdHR2cP3+eSCSStcAj3fS6rKwMY0ymqfNaey8ZY3C5XPj9fpqbmzl48CBNTU34/X4WFxeZmJjg0qVLNDY2UlhYiMvlygQ/8Xg8059KTZ1FREREREQkl+RE8FNQUEBdXR0ejwdYCWDq6uo4fvw4k5OTmXNnZmaYmJhgZmaG5eVlpqenmZqaIhKJZFZ1Wiu3201jYyMf//jHefzxxzNLd6fNzc3xr//6r/zDP/wD/f39xGKxtb/pVTDGUFdXR1NTE+Xl5ZlGwtFolOnpaeLx+IaHDI7j0NDQwM6dOykqKspMNwuHw0xNTWWtEbcxJhP8FBUVkUwmiUajjIyMMDY2tuZAzhiD2+2mtLSUhoYGduzYQVFREdZaGhoaqKqqory8nOLiYlwuVyaInJqaore3l/n5eYU/IiIiIiIiklOyHvzASsDg8Xgy073y8vJobm7m2WefzYQ5yWSS8fFxhoeHGR8fJx6P09/fz8WLF7l27Rqzs7OEw+FMCHQn0qOOHn/8cZ566qlbQh9rLUtLS/T29vKNb3yDwcFBotHo3f0B3KamqqoqamtrKSkpwePxkJeXR2FhYaaujeY4DnV1ddTW1lJQUHBLDXd7tNWd8nq91NTUUFBQQDKZZH5+nsHBQUZHR9dVl7WW5eXlzKizwsJCPB4PZWVl1NXVZab9LS4uMj8/z8TEBFeuXOHUqVPMzMxs6CgwERERERERkTuV9eAnmUxmpg+1tbWRl5eXWUK8rq7ulnO3b9/O/v37M411Q6EQIyMjnD17lgsXLtDV1UVXVxdjY2N39OHf5/NRV1fHk08+SX19fWZZbmsti4uLXL9+neeff57vfe97m7qCVfo9pEOWRCLB0tLSpo60uTngSYci2WrofDPHcW7pC7W8vJyZBrgW6fcWiUQYHh5maGiIyspK8vLyMquZpc+7eZn3vr4+uru7OX/+fGYKooiIiIiIiEiu+KnBjzGmAfhLoAqwwFettX9ojPkd4HPAROrU37bWvrSWIhYXF+no6ODJJ5+kqKgIn8+XOfZOIyjSU3LKy8spLy/nvvvuIxwO09/fzyuvvMKXvvSlVS9znpeXx+7du/nUpz7F0aNHM6EPQCwW4+LFi3zlK1/hpZde2vBmzm+3sLDA/Pw8i4uLAJkRN+kpVxvNWsvCwgILCwvE43F8Ph9utxufz7dpNdyJ9Y5CWl5eZn5+nitXrtDZ2UlhYSGxWIzCwsJM8JNMJgmHwwwMDNDd3c2FCxfo6elhdHQ0a1PfRERERERERG5nNSN+EsBvWmvPGmOKgDPGmO+kjn3ZWvt76y0imUzS1dXF0NAQdXV1+Hy+zEibl19+mXA4nPlA7/F4qKys5IknnqCurg6Xy4XL5SIQCNDc3Jxpyrza4Cc/P5/m5maOHz9OWVnZLTWFQiH6+vo4derUqp/vblleXubEiRNMTU1x/fp12tvbmZ6e5vTp00xOTm5KyJBIJHjxxRcZHx/nYx/7GA0NDVy+fJm33npr038eb7e8vMzCwgKJRCIT2MRisXWNREpP6xsbG+PMmTPMz89TUVGRGYUGPw5+hoeHGRwcZHBwkMnJyUw4JyIiIiIiIpJLfmrwY629AdxIPZ43xlwC6t79u+7c2NgYJ0+eZNu2bVRXV3Pt2jW++c1v8uKLL97SU8flclFWVsaZM2c4cOAAbW1tmVWWotEo4XCYQCBwy1Lb7ya9ipjX682EBtZaBgYGOHXqFC+99NIdTx27WyYmJuju7sbr9WZ6GI2NjW3qlKKxsTHOnTtHIBCgpqaG4eFhJiYm1jyl6m6w1jI7O8vp06fp7OxkbGyMjo4OOjs71z0VL90vqLe3l4mJCfLz829p8g0Qj8eZn58nFArdlcBJREREREREZKPcUY8fY8wO4GHgTeAI8OvGmF8G3mJlVNDMWguJRCKcOHGCWCxGcXEx169f5/XXX+fKlSu3jG5xHIfR0VFmZ2fp6upi9+7dFBQU4DgOiUSCqakphoeHVx2MpEd4vP766/T39wMro0l6enp44403OH36NJFIZK1va11isRijo6N0dHRw9epVEolEZkWzzZLuefPaa6/h9/sJh8ObspT8aurq7u7mueeeY3JyMjP65m4EUktLS0xNTTE3N5dZtv1myWSSRCKR+VLoIyIiIiIiIrnKrDYgMcYUAt8Hftda+4IxpgqYZKXvz38Haqy1n32H7/s88PnU5v53ew2/3091dTVut5tQKMTk5ORtV0kyxuDxeAgEArc0Y47H44RCoVWvruTxeKiqquKhhx66ZcWs4eFhgsEgo6OjOfHB3nGcrK6kZYzJ/IxzpYFxeun1WCzG4uLipixxLyIiIiIiIpKDzlhrD7zTgVUFP8YYD/Bt4BVr7e+/w/EdwLettff/lOfJ2U/ljuPcMrLDWpsTgY+IiIiIiIiIyE9x2+BnNat6GeDPgEs3hz7GmJpU/x+AjwNdd6PSbFHIIyIiIiIiIiJbzU8d8WOMOQqcBDqBdDry28AngTZWpnoNAL96UxB0u+eaAMKsTBETkdxVjq5TkVyn61TkvUHXqkju03UqW0GjtbbinQ6susfP3WKMeet2w49EJDfoOhXJfbpORd4bdK2K5D5dp7LVOdkuQERERERERERENoaCHxERERERERGRLSobwc9Xs/CaInJndJ2K5D5dpyLvDbpWRXKfrlPZ0ja9x4+IiIiIiIiIiGwOTfUSEREREREREdmiNi34Mcb8vDGmxxhzxRjzW5v1uiJyK2NMgzHmhDHmojGm2xjzG6n9ZcaY7xhj+lJ/lqb2G2PMV1LX7gVjzCPZfQci9xZjjMsYc84Y8+3UdpMx5s3UNfl3xhhvar8vtX0ldXxHVgsXuUcYY0qMMc8bYy4bYy4ZYw7rniqSe4wx/zH1b98uY8z/M8bk6Z4q94pNCX6MMS7gj4EPA/uATxpj9m3Ga4vIT0gAv2mt3QccAv5d6nr8LeB71toW4HupbVi5bltSX58H/mTzSxa5p/0GcOmm7f8JfNlauwuYAX4ltf9XgJnU/i+nzhORjfeHwMvW2j3AQ6xcr7qniuQQY0wd8EXggLX2fsAFfALdU+UesVkjfg4CV6y1V621S8DfAk9t0muLyE2stTestWdTj+dZ+QdqHSvX5NdSp30N+Fjq8VPAX9oVPwRKjDE1m1u1yL3JGFMPHAeeS20b4H3A86lT3n6tpq/h54FjqfNFZIMYY4qBJ4A/A7DWLllrZ9E9VSQXuYF8Y4wbKABuoHuq3CM2K/ipA4Zu2r6e2iciWZQatvow8CZQZa29kTo0ClSlHuv6FcmePwD+C5BMbW8DZq21idT2zddj5lpNHQ+lzheRjdMETAD/JzUl8zljjB/dU0VyirV2GPg94BorgU8IOIPuqXKPUHNnkXuUMaYQ+AbwH6y1czcfsyvL/WnJP5EsMsZ8FBi31p7Jdi0icltu4BHgT6y1DwNhfjytC9A9VSQXpPpsPcVKWFsL+IGfz2pRIptos4KfYaDhpu361D4RyQJjjIeV0OdvrLUvpHaPpYebp/4cT+3X9SuSHUeAJ40xA6xMkX4fK71ESlLD1OHW6zFzraaOFwNTm1mwyD3oOnDdWvtmavt5VoIg3VNFcsv7gaC1dsJaGwdeYOU+q3uq3BM2K/jpAFpSXdO9rDTS+sdNem0RuUlqfvKfAZestb9/06F/BD6TevwZ4Fs37f/l1Eokh4DQTcPXRWSDWGv/q7W23lq7g5X75qvW2meAE8DTqdPefq2mr+GnU+drlIHIBrLWjgJDxpjW1K5jwEV0TxXJNdeAQ8aYgtS/hdPXqu6pck8wm/X7a4z5CCu9ClzAn1trf3dTXlhEbmGMOQqcBDr5cd+Q32alz8/Xge3AIPCL1trp1M3xj1gZDhsBnrXWvrXphYvcw4wxPwv8J2vtR40xO1kZAVQGnAN+yVq7aIzJA/6Klb5d08AnrLVXs1SyyD3DGNPGSgN2L3AVeJaV/1zVPVUkhxhj/hvwb1hZ4fYc8G9Z6eWje6pseZsW/IiIiIiIiIiIyOZSc2cRERERERERkS1KwY+IiIiIiIiIyBal4EdEREREREREZItS8CMiIiIiIiIiskUp+BERERERERER2aIU/IiIiIiIiIiIbFEKfkREREREREREtigFPyIiIiIiIiIiW9T/B1U8sUdxgynhAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYmUlEQVR4nO3de2yc15nf8e8zMxwO7xeR4l0kRdG0KEGWHEtyZUlobCd2EtupE7uN2mAX221dBI13t8il2yAB3BYOWiDZJHUKI66zxXqz6LaxDXtjJHbWih0HgiJZsSWLEqOLKVLiiBJv4mVIzgxn5vSPGU5oW4ltcWY4pH4fgBDf9x3O+wykg5f++ZznmHMOERERERERERFZfTzLXYCIiIiIiIiIiGSHgh8RERERERERkVVKwY+IiIiIiIiIyCql4EdEREREREREZJVS8CMiIiIiIiIiskop+BERERERERERWaUU/IiIiIiIiIiIrFIKfkRERPKMmfWb2Z1m9jUze3LR+fvN7IKZhcxs23LWKCIiIiIrg2+5CxAREZGrc859812nvgV80Tn3/HLUIyIiIiIrj2b8iIiIrBytwInlLkJEREREVg4FPyIiInnKzB4xsx+ZWaGZhQAvcMzM3k5dbzSzZ8xsxMzOmdmfLW/FIiIiIpJvFPyIiIjkOedcxDlXmjq8yTnXYWYe4CfAMaAJuAP4CzO7a7nqFBEREZH8o+BHRERkZdoO1Drn/otzLuqc6wP+F/C5Za5LRERERPKImjuLiIisTK1Ao5lNLDrnBX61POWIiIiISD5S8CMiIrIyXQDOOec6l7sQEREREclfWuolIiKyMh0Gps3sP5pZkZl5zWyzmW1f7sJEREREJH8o+BEREVmBnHNx4B5gK3AOGAWeBCqWsSwRERERyTPmnFvuGkREREREREREJAs040dEREREREREZJVaUnNnM7sb+B7JXUSedM79t4xUJSIiItfMzH4G7LnKpRJgRud1foWd/6Zz7ptXOS8iIiIfwDUv9TIzL3Aa+BgwCLwO7HPOncxceSIiIiIiIiIicq2WstRrB3DWOdfnnIsCfw98OjNliYiIiIiIiIjIUi1lqVcTcGHR8SCw8w/9gJmpk7SIiIiIiIiISGaNOudqr3ZhST1+Pggzewh4KNv3ySav1wtAPB5f9joSiQTaiU1EREREREREFhn4fReWEvwEgZZFx82pc+/gnHsCeAI+3IyfgoICqqurqa+vp7e3l2g0uoRSr43H42HNmjXs2rULgEOHDjEyMpL1AMjj8VBaWkpnZyeNjY1UVFRQVVXFDTfcwODgIAMDA1y8eJH+/n5GRkaYm5tb8r2KioqAZLgVi8WIx+OEw2Hm5+cz9bFEREREREREJMeWEvy8DnSaWTvJwOdzwL/MRFEFBQU0NTXxqU99is2bN/OjH/2Io0ePMjNztY0essfr9dLU1MS+ffsIBAIUFBTw85//nKmpqazd0+fzsX79em6++WZ27txJS0sLZWVllJeXs27dOoaHhxkaGmJwcJCenh4OHz7MG2+88aGDMTPD6/USCARYv349DQ0NOOeYm5tjbm6O2dlZRkdHcxJ0iYiIiIiIiEh2XHPw45yLmdkXgZdIbuf+1865Exkpyuejvr6eu+++m49//OOcP3+es2fPMjs7m9NlTh6Ph8rKSvbu3UttbS3j4+McPHgwa8GPx+OhoqKCT37yk9xzzz10d3fj9XqJRqNEIhEikQhlZWWUlJTQ0NBATU0Ns7OznDx58kMFP36/n9LSUmpqaqiurmb37t20t7eTSCSYmZkhFAoRCoUYGBjg8OHDDA8Pa+aPiIiIiIiIyAq0pB4/zrmfAj/NUC1p0WiUS5cu8eabb3L77bdTWVlJQUEBZpbT4Gd+fp5QKMTU1BR1dXVs3bqVkpKSrNTh9XopLy9ny5YtPPzww9TX1zM9Pc2xY8fo7e3l4sWL77lnIpFgaGjoQ9Xi9/tpbm7mpptuYvfu3XR2dnLrrbdSXl5OIpFgfn4+/TUyMsJjjz3GT37yE8bGxojFYuovJCIiIiIiIrKCZL2587WIx+OMjIzw8ssv8/nPf57u7m5aW1uZmJggFArlrI5EIkEoFOK3v/0tHR0dlJWV4fF4Mn4fj8dDZ2cn9957L1/4wheor6/nueee49vf/jZnz54lFAplZLlVSUlJeunaAw88QEdHB36/H4/Hk55VFIvFKCgooKqqirVr1/LVr36VaDTKwYMHCQaDOV9uJyIiIiIiIiLXLi+DH0iGP1NTU8RiMfbu3cvx48eZnJzk5MmTJBKJnNXR39/P17/+dd566y3KysqYmprK+KyX2tpa9uzZwz333ENNTQ3PP/88jz76KGfOnMlYU2ufz0drayubNm2iu7ubxsZGAoFA+vrIyAh9fX3MzMxQXV3NTTfdhN/vp76+no6ODs6ePcvo6KiCHxEREREREZEVJG+DH+ccsViMmZkZiouL+ehHP8qxY8cYHBxkYmIiZ3VEIhHOnDnDk08+SSAQYGxsLOP32LFjB3fddRcbN27k3LlzPPLII/T392ck9DEz/H4/LS0tfOlLX+LGG2+kvb2d8vJyzAxIhmwHDhzg5Zdf5sKFC9TX17Nv3z42bdpEXV0dW7ZsSYc+C2GciIiIiIiIiOS/vA1+4vE4V65cobe3l82bN1NbW0tFRQUFBQU5rcM5RyQSIRgM4vF4shJ6lJaWUllZSSAQYHZ2lnPnzmV0pk9DQwO33XYbu3btoqGhgaKiIjweD4lEIr10zev1Eo/HCQaD9Pf3U1RURCgU4t5772XLli14PB6mp6cZGBhgcnIyp7OuREREREREROTaZL5hTYbE4/H0zlLOOXw+H16vNz1LJVfMjIKCAuLxOPPz81lvbpxIJDK2fbqZEQgE6Ojo4Oabb6ahoYGSkhLi8Tizs7NEo1ESiQRmxtq1a2lqaiIQCDA8PMwbb7xBb28viUSC+vp6Nm7cSFtbG0VFRTn/OxARERERERGRa5O3wY9zjng8TjgcxjmHx+PB7/fndMaPmVFcXExTUxM+X/YmR83PzxOJRIjH45hZxoIVj8dDeXk5W7duZePGjfj9fmKxGBcvXuTMmTMMDw8TDocxMxobG+nq6qK1tZWSkhLC4TDT09PEYjG8Xi+BQAC/34/X681IbSIiIiIiIiKSfXm71OvdSktLWbduHfX19Vfd2jwbAoEAnZ2dPPjggzz22GNcvnw5K/ft7+/n7bffpqurC5/Plw5olioQCNDW1sa+ffvS7z0yMsLzzz/PsWPH2LVrF3feeSfr16+npaWF4uJiEokEfr+f0dFRzIxoNIrf7wfQTB8RERERERGRFWZFBD9mRllZGe3t7TQ3N3Ps2LGcNBguLCykvb2dBx98kFOnTvH0008zNzeX8fCnp6eHl156ibq6Onbs2MH69es5ceLEku+zMEuqvLycwsJCAGKxGKOjo5w8eZJoNEogEEj3/WloaOAzn/kMH/vYx4hEIpSUlFBZWUk8Hsc5l5OwTUREREREREQyJ6+DH+cciUQC5xxer5fGxsb0UqTJycms3tvj8bB+/Xp2795Na2sr3/jGN5icnGT//v2EQqFres/i4mIaGxvp7u6mrq6O119/nW3btlFdXc0NN9zAhg0bWLt2LY8++igHDx5kfn6eYDBIX18fAwMDXL58OSOfzTnH1NQUPT09FBUVsWfPHlpaWvD5fBQXF1NYWJheXmdmzM/PMzs7y9zcnHb0EhEREREREVlB8jr4icfj9Pf3pxsQ19XV0dTUlJPgp6Kigg0bNrBx40Z8Pl961sy1LncyM3bs2MF9993H9u3bKS8vp6+vj5aWFoqKiigtLaWiooJAIMDu3bvp7u4mFotx5coVLly4wIEDB/j+97+fkd20nHPMzs5y8eJFQqEQjY2NfPazn6WmpobS0lKKi4vTvXzC4TCvv/46R44c4fDhw0xOTmas+bSIiIiIiIiIZFdeBz+xWIy+vj5isRiFhYUEAgGKioqy2mgZkiFNe3s727Zto6urC0gGICMjI0sKPQoLCykuLsY5x9DQEMeOHeP06dN4vV4KCgqora1l69atdHV1MTw8zKuvvsrExASTk5NcuHAhI0utFpZ/eb1eZmZmiEQivPDCC0xPT7NmzRqamppoaGhILw2bnZ3lpZde4sSJE5w9e5ZwOLzkGkREREREREQkN/I6+EkkEgSDQaLRKCUlJRnd8eoP8Xg8tLS00NXVRWNjI865dPCzlKVOwWCQAwcOcPbsWS5dusQvf/nL9FI2v99PW1sb999/Pxs2bODo0aM8/vjjjI2NkUgk0rubLcXC9u4NDQ00Nzdz+fJlIpEIJ0+eZGhoiOLiYpqbm2lsbHxH8HPkyBFGR0cJh8MZmXEkIiIiIiIiIrmR18GPc47p6Wmmp6cpLy/HzPD5fDnZ0n1hhtHC7KKlNjd2znHixAnOnDmD3+8nGo0SiUTe8Zrx8XH8fj8PPfQQAwMDDA4OMj4+vqTPAaSbM/t8PioqKti5cyeXL18mGAxy6dIlwuEww8PDAAwMDODxeN7z8yIiIiIiIiKy8nje/yXLZ6EJ8UJfmaKiIurr62lra8t5HdPT08zPzy85/IlEIkxPT78n9IHk0rapqSnMjK6urvSsm2uVSCSIRqOEQiGi0SgAPp+PdevWsXXrVm688UYqKyvfEfQ454jH4+/4EhEREREREZGVKa+DH0jONjlx4gRzc3MUFRXR1NRER0dHVu+5eHcrSPb3ee2117h06VJWd7VKJBLEYjHi8ThbtmyhpKTkPbNvPoy5uTnOnDnDD37wA37xi1+k+/NUVVWxc+dOHn74Yb785S/ziU98gsrKSnw+X06W0omIiIiIiIhIbuT1Ui9IhiELTYVLS0sBsh5OVFVVsWnTJtra2vB4PDjnCIVCS57x837m5+cZHR1lbGyM2tpaampqCAaDzM3NXdP7JRIJJiYmeOWVVwiHwzQ1NdHY2EhFRQU1NTXs2bOH7du3c9ttt/Hcc89x+vRpBgYGCAaDTExMpJeILfT1yeZnFxEREREREZHMy/vgByASiaTDB5/Pt+QlUH+ImdHa2kprayuVlZXA75Y/ZTv4WOhhtPAZA4HAkmb8QDJMGh4epqenh4MHD9LV1ZVuWl1aWkpJSQk+n4877riD9vZ2Tp06RW9vL2fOnCEcDjM/P08kEiEWi6W/FodBIiIiIiIiIpK/VkTwE41G071mysvLaWpqwuv1ZqX/zELwU1dXR1FRUbovz9jYWNaDH6/Xmw5jPB5PRnYxc84xNzfH+fPnefHFF+nr6yMSiVBUVERVVRUej4fS0lI2b95MQ0MDHR0ddHd38/bbbxMOh5mbm2N8fJxwOEwoFGJ6eppoNMq5c+eYnp7O0CcXERERERERkWxYEcHP0NAQ4+PjrFmzhpqaGrq7uykrK2NiYiLj9zIz6urqqKiowO/3E4/HmZqaoq+vL+uNjr1eL8XFxRQXF6cbK2cibIrFYoyPj7N//356enqIRqN4vV66uroIBAKsWbOGuro66urq6OrqYufOnUxOTpJIJJidneXy5cvMzMwwOTnJ2NgYExMTPPPMM7z11lua+SMiIiIiIiKSx1ZE8PPiiy9yyy23UFZWRmtrKx0dHXR1dfHmm2+md6vKJDNLz7hJJBJMTk7mJPhZbHJykqmpKebn5zP2nuFwmMHBQZ599llOnDjBtm3bqKur4/7772fdunX4/X58Ph+lpaXpfkoAN9xwQ3o7+3g8zsTEBOPj4/T29l51dzIRERERERERyQ/vG/yYWQvwFFAHOOAJ59z3zOwR4N8CI6mXfs0599NsFHnlyhWOHj3KRz7yEZqbm2lsbOQrX/kKTz31FPv372d2djbry7ByFfqYGc45gsEg4+PjGQ1+IPk5RkZGmJubY3BwkOrqatauXUsgEKCqqorCwsL37O61eMmZx+OhsLCQkpIS7QAmIiIiIiIikuc+yIyfGPAl59wbZlYG/MbM/jF17TvOuW9lr7ykeDzOkSNH2Lt3L11dXaxZs4a77rqL2tpaTp8+TV9fX0Zn/iQSCRKJRHqWS7aZGevWrWPXrl08+OCDXLlyhe9+97uMj49n5f6xWCw9o6i/v59HHnmEn/3sZzQ3N9PZ2UlXV1d6BlBVVRWJRAKv10sikWBqaorBwUF6enqyurW9iIiIiIiIiCzd+wY/zrkhYCj1/bSZ9QJN2S7s3fr7+3nqqaeYnJzkvvvuo7S0lMHBQebm5jLaZ8Y5R39/P8FgkNbWVnw+H6FQKKshh5nR0NDAzp07ueWWWzhw4AC//vWvCYfDWbvnQqiVSCS4ePEi+/fvJxAIUF5eTk1NDdXV1RQXF7Np0ybi8TjFxcWEw2EuX77M+fPnOXToUE6XvomIiIiIiIjIh/ehevyYWRuwDTgE3AZ80cz+CDhCclbQlYxXmDIzM8Px48cpLCwkGo0SCAR49dVXGR8fz2jwk0gkOH78OM899xwXLlzA7/fz2muvZW32zQKv1wvA2NgYP/7xj7l48WLOgpWF5s9mxujoKMFgkMLCQgoLCxkcHCQWixEIBJifn+fKlSuMjY3lZJczEREREREREVka+6D/8W5mpcAvgUedc8+aWR0wSrLvz38FGpxz//oqP/cQ8FDq8CNLKdbj8VBbW0tLSwsej4dTp04xNTWV8QDCzGhpaaGlpQWv18vRo0eZmprK6D3efb/Ozk62b9/O+vXreeKJJxgeHl62YGWhufXC9vLOufRSr2g0SiQSyXjvIRERERERERG5Zr9xzt1ytQsfKPgxswLgBeAl59xfXeV6G/CCc27z+7xPRpKMhabC2QxGFjc0ztWW5Qv31BbpIiIiIiIiIvIh/N7gx/N+P2nJ9OOHQO/i0MfMGha97H6gZ6lVflC5aLq80P8mlyHMwj1FRERERERERDLhfWf8mNlu4FfAcWAhlfgasA/YSnKpVz/w71KNoP/Qe40AMySXiIlI/qpB41Qk32mciqwMGqsi+U/jVFaDVudc7dUufOAeP5liZkd+3/QjEckPGqci+U/jVGRl0FgVyX8ap7Lave9SLxERERERERERWZkU/IiIiIiIiIiIrFLLEfw8sQz3FJEPR+NUJP9pnIqsDBqrIvlP41RWtZz3+BERERERERERkdzQUi8RERERERERkVUqZ8GPmd1tZqfM7KyZ/WWu7isi72RmLWb2ipmdNLMTZvbnqfPVZvaPZnYm9WdV6ryZ2f9Ijd23zOzm5f0EItcXM/Oa2Ztm9kLquN3MDqXG5P81M3/qfGHq+GzqetuyFi5ynTCzSjN72sx+a2a9ZvZP9EwVyT9m9h9Sv/v2mNn/MbOAnqlyvchJ8GNmXuB/Ap8AuoF9Ztadi3uLyHvEgC8557qBW4F/nxqPfwnsd851AvtTx5Act52pr4eAx3Nfssh17c+B3kXH/x34jnNuA3AF+NPU+T8FrqTOfyf1OhHJvu8BLzrnbgRuIjle9UwVySNm1gT8GXCLc24z4AU+h56pcp3I1YyfHcBZ51yfcy4K/D3w6RzdW0QWcc4NOefeSH0/TfIX1CaSY/JvUi/7G+Cfpb7/NPCUS/o1UGlmDbmtWuT6ZGbNwKeAJ1PHBtwOPJ16ybvH6sIYfhq4I/V6EckSM6sA9gI/BHDORZ1zE+iZKpKPfECRmfmAYmAIPVPlOpGr4KcJuLDoeDB1TkSWUWra6jbgEFDnnBtKXboE1KW+1/gVWT7fBb4KJFLHa4AJ51wsdbx4PKbHaur6ZOr1IpI97cAI8L9TSzKfNLMS9EwVySvOuSDwLeA8ycBnEvgNeqbKdULNnUWuU2ZWCjwD/IVzbmrxNZfc7k9b/oksIzO7Bxh2zv1muWsRkd/LB9wMPO6c2wbM8LtlXYCeqSL5INVn69Mkw9pGoAS4e1mLEsmhXAU/QaBl0XFz6pyILAMzKyAZ+vydc+7Z1OnLC9PNU38Op85r/Iosj9uA+8ysn+QS6dtJ9hKpTE1Th3eOx/RYTV2vAMZyWbDIdWgQGHTOHUodP00yCNIzVSS/3Amcc86NOOfmgWdJPmf1TJXrQq6Cn9eBzlTXdD/JRlr/kKN7i8giqfXJPwR6nXN/tejSPwB/nPr+j4HnF53/o9ROJLcCk4umr4tIljjn/pNzrtk510byufkL59y/Al4BHki97N1jdWEMP5B6vWYZiGSRc+4ScMHMulKn7gBOomeqSL45D9xqZsWp34UXxqqeqXJdsFz9+zWzT5LsVeAF/to592hObiwi72Bmu4FfAcf5Xd+Qr5Hs8/P/gHXAAPDPnXPjqYfj90lOh50F/sQ5dyTnhYtcx8zsnwJfds7dY2brSc4AqgbeBD7vnIuYWQD4W5J9u8aBzznn+papZJHrhpltJdmA3Q/0AX9C8n+u6pkqkkfM7D8D/4LkDrdvAv+GZC8fPVNl1ctZ8CMiIiIiIiIiIrml5s4iIiIiIiIiIquUgh8RERERERERkVVKwY+IiIiIiIiIyCql4EdEREREREREZJVS8CMiIiIiIiIiskop+BERERERERERWaUU/IiIiIiIiIiIrFIKfkREREREREREVqn/DxOOCc/tgNCJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAABMWElEQVR4nO3dd3hc93ng++9vesEMeu8AAQJgASkWiSJFSVR3FMslSuw4iZPYUbJ748TZbG7WyXOfJ3vtvWsnm03iOE+ysZN7Y69iy3ZsUc2WKEuiKImiKDawoPdeBhgMZgbAtHP/AM4voAg2AKx6P8+jR8Rg5syZM+fMwXnnLcowDIQQQgghhBBCCCHE7cdyo1dACCGEEEIIIYQQQlwbEvgRQgghhBBCCCGEuE1J4EcIIYQQQgghhBDiNiWBHyGEEEIIIYQQQojblAR+hBBCCCGEEEIIIW5TEvgRQgghhBBCCCGEuE1J4EcIIYS4CSilziql7lvjZf6JUupbK3xsj1LqwbVcn7WklPr/lFJfucjv/kEp9X9d73USQgghhLgZ2W70CgghhBACDMPYcA2W+f+s9TJvBYZh/M6NXgchhBBCiJuFZPwIIYQQH0JKKfnyRwghhBDiQ0ACP0IIIcRNYGlplVLqz5RS31dKfVspNbNYBrb9Eo/doJQ6oJSaVEqNKqX+ZMly/vfivyuUUoZS6nNKqT7gtcXbf0sp1bz4POeUUncss3yLUuq/KKU6lVKBxXXLWvydSyn1vxdvDyqljiql8i/xGv9IKdWklIoopf5JKZWvlPrJ4vO/qpTKXHL/HyilRpRS00qpN5VSy2ZFKaV8SqnXlVJfVwt0GZhS6j6l1IBS6g+VUmNKqWGl1G8seWy2Uup5pVRocd2/opR667JvmBBCCCHELUICP0IIIcTN6aPA94AM4DngG8vdSSnlA14FfgoUAeuAn11iufcC9cAjSqkngT8Dfg3wLz5nYJnHfAH42OJji4Ap4O8Wf/dZIB0oBbKB3wFmL/H8nwQeAmqBnwd+AvwJkMvC3yW/t+S+PwFqgDzgOPD0BxemlMpefL1vG4bxe4ZhGMs8Z8HiOhYDnwP+bkmA6e+AyOJ9Prv4nxBCCCHEbUPSvIUQQoib01uGYbwEoJT6DvDFi9zvcWDEMIy/XPx5DjhyieX+mWEYkcXlfh74c8Mwji7+ruMij/kd4HcNwxhYfNyfAX1KqV8F4iwEfNYZhtEEHLvM6/pbwzBGF5dzCBgzDOPE4s8/Bh4w72gYxj+b/158zimlVLphGNOLNxcBB4F/MQzjLy7xnHHg/zYMIwG8pJQKA+uVUkdZCERtNAwjCpxTSv0LcN9lXoMQQgghxC1DMn6EEEKIm9PIkn9HAddF+vKUAp1Xsdz+FTy2HPjxYilXEGgGkkA+8B3gZeB7SqkhpdSfK6Xsl1jW6JJ/zy7zcxqAUsqqlPrqYnlZCOhZvE/Okvv/HOAG/uEy6x9YDPqYoovPk8vCl2BLt8nSfwshhBBC3PIk8COEEELc2vqBqqu4/9JSqH6g+gqf4zHDMDKW/OcyDGPQMIy4YRj/1TCMBuBuFjKQfu0q1udifhl4AniQhTKtisXb1ZL7fJOFEreXlFLeFTzHOJAASpbcVrqC5QghhBBC3LQk8COEEELc2l4ACpVSX1RKORcbHd95hY/9FvCflVLbFpsir1NKlS9zv38A/pv5O6VUrlLqicV/36+U2qSUsgIhFsqqUqt/WfiAeRZ6DnmAi42m/12gFXheKeW+micwDCMJ/Aj4M6WURylVx9oErYQQQgghbhoS+BFCCCFuYYZhzLDQLPnnWSgPawfuv8LH/gD4b8C/AjPAs0DWMnf9GxYaTL+ilJoB3gXM4FIB8EMWgj7NLPTc+c7KXs15vg30AoPAucXnXO41GMBTwACwXynlusrn+V0WMopGWFjv77IQcBJCCCGEuC2o5YdfCCGEEEJ8+CilvgYUGIYh072EEEIIcVuQjB8hhBBCfGgppeqUUpsXS912sjDu/cc3er2EEEIIIdaKjHMXQgghxIeZj4XyriIWJoz9JQslY/cAP1nm/m4Wpo/J7TfmdgzDSFvudiGEEEIsb1WlXkqpR1mo+7cC3zIM46trtWJCCCGEEEIIIYQQYnVWHPhZnN7RxkJDyQHgKPBpwzDOrd3qCSGEEEIIIYQQQoiVWk2Pn51Ah2EYXYZhxIDvAU+szWoJIYQQQgghhBBCiNVaTY+fYqB/yc8D/Pto12UppWSEmBBCCCGEEEIIIcTamjAMI3e5X1zz5s5KqaeAp1azDJvNRn5+PlarlZmZGaamptZo7cT1oJTC5XKRn59PIpFgaGiIVCp1o1dLCHGdWCwWlFKkUilW01fuUmw2G0VFRRiGQTAYZGZm5po8z81EKYXFspC4ey23rRBCCCGEuCX0XuwXqwn8DAKlS34uWbztPIZh/CPwj7DyjJ/s7Gy+8IUvkJmZybvvvssPfvADwuHwSha1IkoplFIAGIbxofnj2rygWO1rdjqd1NTU8Ad/8AfMzs7y5S9/mbGxMZLJ5Fqt6i3B3I/MbXmt9iNzX72Wz3EjLX19cHu+xmvJPK5N1/IzzWKxkJOTwy/+4i9SXFxMc3Mz3/nOd67J8+Xk5PDHf/zHWK1WXnjhBV577TWi0eiaP8/FXM/zhFIKp9PJli1bKCsrIx6P09fXR29vLxMTE9fseYUQQgghxK1pNYGfo0CNUqqShYDPp4BfXpO1WsJqtbJv3z4ee+wxsrKyyMnJYXx8nFdffZW5ubkVLXPpxfelWCwWrFYrDocDu90OQDweZ35+nkQisaLnvllZrVbsdjt2ux2Hw4HT6aSoqAiAUCjE8PAw4XD4qi9mlFKUlJTw8MMP85GPfIS5uTlOnjzJSy+9xPDw8HUJ/pjvo8ViwTAMEonENb8wM5/TbrfjdDpxOBwUFBRgt9uJxWIEg0EGBwevyet3u91YrVZSqRSJRIJ4PL7mGVYfDL6YrvXFrsViweFwYLPZUEoRj8eJxWIfuiDiSlmtVnw+n87ASSQSxGKxa7YNy8rKuOeee/jEJz5Bfn4+Xq+Xp59+es2fy+Fw8NBDD/GRj3wEm23htBaJRHjnnXeYn59f0TKv5jxhs9n05ydALBZjbm5uTY87pRRut5u8vDwqKyupra3lzjvvJDc3l0gkwtjYGCdOnOBnP/sZ/f39EhAVQgghhBDaigM/hmEklFK/C7zMwjj3fzYM4+yardkir9fLpz71KSorK0kmk1RVVfHggw9y5MiRqw78WK1WMjIycDqdRCIRZmdnicfj5/2BbLfbsdlsuFwuvF4v6enp+Hw+MjIyMAyDqakpenp6CAQCt8XFplIKu92O1+vF5/ORmZlJeno6GRkZ3HnnnaRSKXp6ejh48CBzc3PE4/GrWr7T6aSuro4nnniC3NxchoeH+chHPkJTUxOBQIDZ2dlr9MoWWCwWXC4XHo8Hp9NJKpViZmZGB0USicSaX5xZrVacTiderxe/309eXh4+n4877riDtLQ0pqenaWtrY3x8fM1fv8ViIS8vD6/Xy/z8POFwmFAotOrMB5vNhtVqRSmFzWbD7Xbj9Xr171OpFPF4nLm5OWZnZzEMg1gstuqLTzPAZJYLOp1O/H4/aWlpKKUIhUJMTk4SjUalfPASLBYLdrudjIwMGhsbcTqdKKWIRqNMTk4yOTnJwMDAmga0HQ4HDz/8MJ/4xCdobGwklUqRlpa2Zss3WSwW/H4/n/nMZygqKiIUCrF582YGBgZoamq66sCP3W7H7/fjcrmYmZkhGo2STCYvOE/Y7XZcLhc+nw+fz4ff78fv92MYBoFAgPb2dv1ZsxYyMjKorKxkx44d3HfffWzfvh2/38/U1BRjY2M0NDRQXl5OOBxmYmLiumY7CSGEEEKIm9uqevwYhvES8NIarcsFzIvY+++/H7fbzaFDh2hrayMYDOJ0Oq96WT6fj71791JWVsaxY8fo7OxkcnJSXxhYrVZycnLIz8+npKSEmpoa1q9fT3FxMcXFxaRSKVpbW/n2t7/NO++8s6IMmJuBWZJgtVp1cKukpITCwkJKS0spKioiPT2d7du3k0wmaWlpobOzk5GREZ0tc6V8Ph/r16/nrrvuIhaL8fzzz2MYhv6W/FrzeDxkZ2dTWFhIeno6qVSK4eFh5ubmiEQizMzMMDc3t+oLXjODwuv1kpaWRlZWFgUFBRQXF1NfX4/X62XLli243W4mJydJT0/nrbfeYn5+fs0uDM3gyLZt2ygoKCAcDjM4OEhXVxc9PT0rfh6lFFlZWWRkZOBwOPD7/VRXV1NbW6vLhmZnZwkEAgwMDNDV1cX8/DyDg4PMzc1d1f5iZvU4nU69Tc3gZHFxMX6/n8LCQvLy8rBarfT19XHu3DkGBgZ0wEmczywLysnJYfv27XzpS1/C7/djsViYmJigs7OT06dP88///M9MTk6uyf5osVjIysrij//4jykrK8NqtTI+Pn5NguU2m42CggL27duHUoq33nqL0dFRwuHwVZ8nzHPA7t27KS4u5t1336Wzs5Pp6Wkd9LbZbOTm5lJQUEB5eTl1dXWsW7eOwsJCCgoKSKVSnDlzhm984xucO3duTfZLp9PJ7t27eeyxx7j77rupra0lkUjw0ksvcfjwYVpaWti9ezeNjY08+uijnDt3jubmZgmGCiGEEEII4Do0d14LS8tKTp06xXPPPcfo6OhVPd5ut5OTk8MjjzxCVVUVo6OjjIyMEAqFiMfj2Gw2/H4/d911F3V1dVRXV1NTU0NZWRlerxev10symcRut1NYWIjb7dbfBN8qzGBLRkYGmZmZ5Obm8uCDD9LQ0MCmTZtIT08nLS0Nt9utL7jn5uaw2+3k5eXhcDiIRqOruohRSvH1r3+d3t7ea5rto5TC4XBQUVFBXV0ddXV1FBUVYbFYGB4eJhQK0dXVRWdnJwMDA4RCoau+SDKDZ2YZl9/v54EHHtAXghUVFXi9XjIyMnRAIx6PMz4+zszMDF6vd80alVssFjweD1VVVXzpS1+irKyM+fl5uru7eeONN/jrv/5rgsHgVb9GM3tp69atNDQ04Pf7SU9Pv2Tgp7Ozk5mZGZ577jn6+vquKEvMDE6YGVJmCYtZZun1etm7dy/p6el4vV5cLhfz8/N0dXXx05/+lP3799Pc3HzVGWkfBjabjbS0NIqLi2lsbKS2tha32w1AXl4eeXl5ZGRk8P3vf5/p6ek1C/xkZGRQXFyM1WrFMAzGxsbo6+u7ZsGIpdlhr7/+OgcPHryqfjfmPlhcXMzDDz9MRUUFPT09DA0NEQ6HSaVS2O120tPT2bVrFw0NDdTU1FBbW0thYSEejwePx0MikUApRU5ODk6n86qDnx9ks9m4++67+dKXvsTGjRtxuVxMTk7yxhtv8Kd/+qe6rEspRVVVFY8++iiJRII//dM/JRAISDBUCCGEEELc/IGfRCLBxMQE6enpbN68mdHRUY4cOcLg4AV9pC/KDPyYyygsLCQ7OxuXy6X7sGRlZVFXV8cnPvEJampqyM3NJTMzk7S0NCwWCxaLhUQioYMmPp+PUCh0SwV+MjMzycnJoaGhQV+s7N27l4KCAjIzM7HZbDrLAhbKd8LhMP39/UxNTa2odCeVSulyEqfTycc//nGeffZZBgYGrukFoNPpJD8/n5/7uZ9jw4YNVFZWkpeXh91u15k+ra2tvP/++xw5coSOjg4ikchVBQ7cbrcOoN13333k5+ezZ88eioqKLth3YKH/zfz8PFNTUwwMDBCJRNbkoswMcmVkZFBbW0tRUREZGRm69KqwsBCXy3VVyzTLIu+++242btzIk08+SVlZmQ4KWq1WfUFvThNa+v9YLEZjYyNf//rX6ezsJBwOL3usmMvyeDxUVFRQVVVFfX09e/fuJT8/H7vdroNr+fn5OBwOvT3NPlT19fU0NTXR0dFxywR+lk5jWm67mD2i0tPT8fv9umTvaspbrVYrNpuNnJwcKisr2bRpE42Njbjdbt2Lxjzep6enycjIYGxs7Kqz+i71+szPklgsRk9PD83NzWseiDAMg3g8zsTEBC6Xi927d9Pe3s7p06cZGRm5qnV2OBxkZ2ezadMm/blo7nNm1lRdXR2f/OQnqamp0UEzt9t93nkiMzOTzMxMvF4v0Wh0RX2GlFKkpaVx77338tu//dts2rQJl8ulg51///d/T3d3t96eJ06coKqqiu3bt1NbW4vX62VyclICP0IIIYQQ4uYO/KRSKYaGhvjMZz6D0+nEZrMxPj5OV1fXVS9rafAnKyuLdevW0dPTAyz0EbrnnnvYunUrDz30kP42PBaLMTo6qvvE+P1+srKyuO+++0gmk7z33nu0trbe1OPlzSBIbm4uv/7rv05DQwNVVVXk5+fr12Q2yk2lUszNzRGLxXRmSnNzM6+//jqdnZ0rKlkIBoM8++yznD59WvfFOHHixJr0nzCzksyLS7Pxr8/no6SkhD179vAbv/EbZGVl6Ytds6FtMpmksrKS7du3c9ddd/HOO+9w4sQJmpubCYVCl3ydTqeT9PR07rzzTh544AFqamqoq6vT23NpcCKRSBCNRkkkEkxOTtLX18fp06c5dOjQirKMPsjcNzMzMykvL6e+vh6fz4fVatX9dmZmZojFYle0PDOjp7y8nN27d/P4449TXFxMfn4+VquVWCzG7Ows0WiUaDTK8PAwPT09JBIJbDYbeXl5bNu2jaysLB566CHOnj2LUoqOjg6mp6fPey6r1ap7pBQXF7N3714aGhpYt24d69at0+VI5us0+9IsfbxZypeVlYXVal3VtlwLZgPxi+0/ZvZcdXU1lZWVKKV49tlnCQaD+vcFBQX6OF2/fj3V1dW0t7fz8ssvc/ToUSYnJy/6/GYgOzs7mz179pCXl6f3z4KCAvLz81FKkUwm9bHjdrspKipi586dTE5OMjo6uur+TA6Hg5qaGv3+nTp1itdee43jx4+veJkXE4/H6enp4cknn9Q92vr7++nv77/qZZnHU0ZGBllZWaxfv57e3l6d6XnXXXexZcsW9u3bh8vlwmKxEIlECIVC5+3POTk5PPbYY7hcLk6dOqXLxa6EUoqysjJ27NjB/fffz/33309RUZFuFu3xeCgrK6OkpITW1lb9uEAgwLPPPsvx48dJJBIMDw9LqZcQQgghhABu8sAPLARfjh8/rr89TiaTV3wR+0HmRCeLxUJpaSm1tbX4/X5ycnK4//77qa6uJjMzU2e69Pb20tPTg1KKvLw8NmzYgMPhoLKyks2bNxMMBhkbG7tpAz/mN9gFBQWsX7+ee+65h3Xr1pGdnY3X69VTa5LJJDMzM8TjcaamppiYmCASidDZ2UlzczMnTpxgcnJyRdlNyWRSbyPzG/HZ2dlVZ0qZpU1m1lYqldIZEkVFRdTV1bFjxw6Ki4t1lor5/s/NzenSPo/Hw9zcHFNTUwwPD9Pd3c3MzMxFL3otFgu5ubmUl5ezfft29uzZQ3FxMTk5Ofqi3wygmf8NDAwQjUbp6emhu7ubtrY2Wlpa1iQ7xcxCqKioYNOmTWzYsAGXy4VhGEQiEcbHxxkZGbmiCUM2m42ysjIqKyvZuHEj9913Hw0NDXoK1PT0NGNjYwwNDTE4OKiPkdbWVuLxOC6XSwcVvV6vzoZKS0u7oJ+TUkr3Ctq4cSNbt25l586d5Obm6obqZiDH3EcnJyeZm5sjGo3qC/xgMEhnZyf9/f03NNvH7GnT2NhIIBCgt7f3vLIpm81Gfn4+mzZtYtu2bWzYsIHS0lLi8Ti9vb0cPnwYj8dDXV0dd955J3fffTfl5eVkZ2eTmZmpy7NsNhuvv/76soFTm82mt3ttbS0PP/wwhYWFOnDndDp142HDMHSgwmyanZWVpYMZq5Gens6WLVv49Kc/jcViIRwO88ILL3DgwAGGh4cvuL/L5cJms5FMJldc/jk/P8/777+vP2PMaW9Xy9zXzPOE2cMnLy+PdevWsXfvXiorK8nMzCSZTBIKhejo6GBkZET3/mloaMDhcFBXV0cgEGBmZoZAIHBFgR9zCuK+ffv4+Mc/zqZNm8jLyyMQCPDjH/+YkpIS1q1bR01NDQ8//DAnT54kEAgAC5+1o6OjOjC40vOkEEIIIYS4/dz0gR9gxWPbTeYf8/Pz8wSDQRKJBKWlpWzevJnS0lJd/pSVlYVhGESjUUZGRmhqauL48eP6G1izYW9GRgbl5eVUVFTQ1ta2ogyka83MkMjPz+eRRx6hoaGB9evXk5WVhdPp1Jko/f39RCIR+vv7icViTExM6N5HPT09jI6OMjQ0tKoMnWQyeU3GNxcUFFBQUIDT6dTLz87OpqamhoaGBurq6nSWiBnwCYVCDA0N4fF4dLNi87EXG1FuslqtZGZmcu+991JXV8fOnTupqKjQk4oikQiDg4PMzMwwOTlJIBAgHo/T3t5OKBRiYGCAsbExxsfHGRsbW5MSDDNbY9OmTdx9991s2rRJT7vq7e3l7NmztLa2XrbUxGxMfeedd3LHHXewfv16nT1k9kU6c+YM7e3tdHd3MzY2ht1up7+/n8HBQTweD5mZmYTDYcLhsL5wNstcPhh0slgseL1eKioq2LZtG/fccw/19fU6+8w8Zs0L+NnZWVpbWwkGgwSDQT1JaXp6mrNnz+qsoxvF6XTS2NjIr/3arzExMcHhw4c5efIko6Ojep/csmWL7pVUUlKCz+cjFovx5JNP6mzCO+64Q2//9PR0XTKVlpbGrl27GBoa4ujRo8sejy6Xi+LiYiorK9m6dSvbtm3TJa3mezE5Ocnw8DCGYWC328nPz6e4uBhAZ6pd7ji4nIyMDHbu3Ml9990HwMDAAEeOHKG9vf28/dBsuL9+/XoyMzOZnp7m9OnTRCKRFT3vas8TgA4+meeJ8vJyPRXP7BdmTniMRCIMDAxw7Ngx2tvbsVqtOliXn5+vA7IDAwN0d3fT29t72ed3Op1s3ryZffv2sWvXLhwOB83Nzbz33nt8//vfp6Kign379rFz50727t3LK6+8wqFDh3SQJ5VKrXh8vRBCCCGEuH3dEoGf1TIzPcwpRzU1NZSUlOByuZibmyMtLY2CggLd/2VgYIDTp0/z9ttvc/jwYQBKSkqorq7WY94LCgqorq6mvLyco0eP3lS9fszyruzsbDZv3sznPvc5KioqyMrK0g2bp6en6evr48UXX2RsbIwzZ87ozJ9AIEA0GiUSiei+LTcbj8dDTU0NjY2NZGZmEovFiMViZGZmUlNTw7p168jLy9Pf/puvq7+/n1OnTpGTk0NJSQlut5ve3l76+voYHx9nfn5+2ddrTkCrqqriV37lV6ivryc7OxuPx4NhGIRCIQYHB/nJT37C4OAgfX19DA0NoZTSwbVIJKLHQq/VNvV4PBQXF7N582buuusuysvLicfjDA4OcuLECd555x1OnTp12WwYs6fPAw88wJ49e8jNzdUTkcxsiv3799PU1MT4+DhWq5X6+nqmpqZwuVw6EFpVVaVLtGZmZujt7T1vct4Hn9PpdJKWlobP59OleLBQImeW0ASDQQKBAK+//joTExMEg0Fyc3PJyckhGo3qgNCNKmsxy6X27NnDL/3SL2EYBnfccQdPP/00R48eZc+ePXz84x9n165duFyu8wIrdrud3/zN32THjh3k5OSQk5OD1+vVfWtCoZDuv1VUVERlZaXuxbOUGZRsbGxk+/btbN68mbKyMux2O8FgkOHhYUZHR+np6aG9vR3DMHC5XGzcuFG/9+ZEOpfLRSwWW1EgzWyObAadotEoR48eZXh4WDfHN4N+ubm5VFVV8cgjj1BWVkZfXx9zc3OcPHlytW/JipjbfGZmhuHhYd2g3e12E4/Hyc7OJi8vD5vNRjQapa+vj+PHj3Po0CHOnTuHzWbT5wlzW5o/d3R0cPLkycueJwoKCti7dy+NjY0kk0mampr44Q9/yMsvv0x3dzctLS26LPD+++/niSeeYGBggN7e3ot+dgkhhBBCCPGhCPzAQh+IYDBIR0cHd9xxB1VVVRQWFp53H8Mw6Orq4pVXXuH111+nqalJX7y3t7ezfft2Peq8pKSEWCzG4OAgzz333DWdUHW1zLKNiooKGhoaKC8vJzMzE/j3vkVdXV00NTXx4osvMjk5qcsDEokEsVhMByhuRkopXRazb98+CgsLdQaTy+UiLy9Pl62kUikikQh9fX20tLRw6tQpjhw5QlZWFiUlJXg8HkZGRujs7KSnp2fZqWVm0KeoqEg3ijYnTqVSKWZnZ+no6KCpqYmf/OQnDA0NMT09TSQS0ZkWyWTymgQmXC4XaWlpeDwenbERDofp6+ujra2Nnp6eKy4xMadnmSVF8O8NqU+dOsWZM2cYGBjAarVSVlbGvffeq7N96urqKCsr0yOtPR4Pvb299Pf3Mzk5edGyEzOj5YP9eebn55mcnKS3t5eOjg7d0HZmZob5+XndgyUWizEwMMDMzMwN72di9swxy3y2bduG1+vlqaeeYv369ec1+V76GKfTybZt2/RtZtZhX18fL730Ep/5zGfIzc3F5XKRn59PZWUlHR0d+vWaZY91dXX88i//Mtu3byc7O1s3PD5w4AAvvPAC7e3tjI2NEQwGMQwDh8PBnj17SKVS7Nq1i/r6enbs2IHD4aC9vf2qyzuVUqxbt47HHnuMj33sY1itVtra2vinf/onxsbGyMnJwe/34/P5ePDBB/n0pz9NVVUVHo8HpRRDQ0MAfPGLX1yDd+Pqmft6IBCgq6uLxsZGPaZ9qWQySWdnJ88//zwHDhygubmZQCCgzxM7duygoqKCiooKysvLmZ2dpb+/n1deeeWS5wmr1cpDDz3Egw8+iM1m45lnnuF//a//RVtbmw7Czc/P8/LLL9Pe3k40GuXzn/88mZmZ/MVf/AVtbW1rkvUkhBBCCCFuP7dM4CctLU3391lpdo3Zf+ViYrEYTU1NnDx5kp6eHkKhkH7c0nIl8+LObKiblpa2qvVaSxaLhTvvvJO9e/eyc+dONm3aRE5ODgC9vb2cOXOG559/njfffJOJiYnrNvXFLFcxm0evls1mIysri+LiYsrKyvQ0HbPBszm1aG5ujtHRUc6ePcvhw4c5evQobW1tOJ1OPB4PNpuNubk5IpEI0Wj0gswYpRS5ubnce++9PProo+zevZvy8nJsNhvT09P09PRw7NgxvvGNbzAyMkIgELhuJUdWq5WCggIqKyspKSnRJWcjIyO0tLTQ1tZ2RWV6FouFsrIy7rrrLoqLi/F4POeV/LhcLnbt2oXf72dmZga/3099fT27du0imUzidDr19C1AB8Oee+45zp49y+Tk5LLH3dKsHjNws3Ril8/nw+/3Y7VaGRwcpLW1VY/GHhgY0Ot3MwQoDcMgHA4Ti8Ww2+3k5OTw5JNPEovFdP8nWAgadHd3E4lE8Pl8Oitn6SS9wcFB3n77bZ5++mkOHTrEnXfeic/n0019t2zZwsGDB/VFvt1uJyMjg5KSEqqqqkhPT8disehMvnfffZdjx44xMTFx3ueUGWCanZ3FYrGwceNGDMOgqKhIT+NbLhB6MXa7nXXr1rFx40YcDgeJRIJvfetbJBIJPvOZz7Br1y5KSkpIJpNs2bIFr9erHxuJRBgbG6O7u3tV74PP59PlgSsJBJrZeBd7rGEYzM3NcerUKZqamvR0PvN3HwzwulwusrOzKSsrw+v1Llv2uJxgMEhXVxe9vb0XfJ4szRhzuVzs3LmTgoICenp6JPAjhBBCCCGWdUsEfiwWC7/6q79KKBTixIkTnDt3bk2Wu/TCMZlMEg6HOXz4MGfPnmVsbOyif0Sb2RF+v19njQSDwZsi8GNO09m0aRO1tbVkZ2ejlCIWi3Hq1CnefPNNjh8/rnv6XI+LZjN48tRTT/Huu+/yxhtvrEkjXnNctcPh0L1hTKlUimAwyNNPP83p06dpaWmht7eXiYkJ5ubmmJmZ0Rka5sXexUq8MjIy2Lhxox7xbDaiHRwc5MiRI7z55pt0dXUxOzt7XYI+FotFj25/8skn2bNnDxUVFXi9XoLBIN/85jd55513dIPhSwXarFYrOTk5fPGLX2TXrl3U1tZeUI7kcDjYu3cvd911F4ZhYLFYdHPlVCpFMpkkEAjoCWKdnZ20tbXxzDPPEAgElr3QNYMOw8PDtLe360whsxG01WrF7/froF4ymeTtt99mdHSU+fn5myojzXwthw8f1iPFzdIrc3vBQhDyyJEjvPjii3R2dlJeXs4f/uEfUlJSopdj9gf69re/zcGDB5mdneXdd9+luroaj8dDYWEhd999N/v376elpQWAzMxMqqqqqK2tJScnB7vdTiKRoKmpibfffpvTp09fsowRFo7R/Px83fTc7Od0NZP8tm/fzkc/+lF2794NLARnv/jFL+LxePD5fDidTqxWq+4vlEwmmZ6eprm5mZdeeon9+/fT19e34vfBYrHwH/7Df6C9vZ3jx49fUU+dK7H0PJFIJAgGg7zzzjs6qHmxzzIzky0zM1MHVC9VkphMJjl8+DD33HMP27Zt45FHHqG7u5tXX32V+fl5PS2srq6OvXv38vDDD+tBBCsNdAkhhBBCiA+HWyLwU1ZWxhNPPEFPTw9jY2NrFvgxmd/ijoyM6KBIOBy+IJAzOztLJBLRmSVOp5OMjAx8Ph82m41EInFDL0btdjtFRUXs2rWLzZs3U1hYiNvtJplMMj4+zo9+9CNOnDjBwMDAFU15Witer5f6+np+8Rd/kXA4zKFDh1YV+DHLg5YGJ5YGccwGp2NjYxw6dIiWlhbGx8cJhULnXfxe7r2y2WxkZmayfv169u7dS0VFhe7pMz09zbFjx/jRj35ES0uL7od0rZl9cfLy8ti0aRObNm3S2QSJRILx8XFOnz5Nf38/oVDostvZbLC7ceNGysrKdNDng1kPNpsNm8123rabmZnRQbTW1lY9vc1seD44OHjRQJiZFTQ8PExTU5O+QC4tLSUrKwu/34/NZsPn81FSUkI8Hmfz5s20tLQwOTlJKBS6qbIbkskkwWBQB9k+uD+OjY3xyiuv8Pzzz+ueS1ar9bygXDgc5uDBg/z4xz/m/fff10GX6elp/VmUlpZGTU0NO3bsoL29HYvFohsp33333aSnp2MYBuPj4zz77LMcO3aM/v7+8/Z7q9Wqm5tXVVVRWlqKz+fT2SnRaJS0tDSsVusVN3pWSrFz5042btyom1IbhqEzmszgVyqV0kHZV199lXPnznHy5EnOnDmj13MllFJUVFTwyU9+kjfeeIO+vr41C/yYzH12ZGSEY8eOMTg4qMs4l1raH83hcOB2u8nIyMDv9zM6OnrJ4HB/fz+HDx+muLiYTZs28Vu/9VuUlpYSDocpLy+nqqqKiooKSkpKyMzM5K233mL//v10d3dLU2chhBBCCHFRt0TgZ9u2bVRXVxOJRHC73Wu+fHOSy8jICKOjo0QikQsumM2LqeHhYSorK0lPT9fjk3NzcxkaGrrh5V7mhKeKigry8vJwu91YLBbm5uYIBoO0t7froNb1/HY4OzubrVu3Ul5eri8KV0MppTN9ll6cmhfZsViMYDBIb28v7e3tDA0N6ff0al63w+HQZRrl5eW67Gh+fl43Cu/s7GR0dPS6BX28Xi8ZGRlUVlbS0NBAUVERXq9XX0z39PQwNDTEzMwM8Xj8ssEth8NBaWkpxcXF500nm5iY0FlhyzEbSI+PjxMMBunu7mZqaopoNMrExARTU1OX3c/MKXKxWEw3cS4tLaW6uprdu3eTn5+Pw+HA7/dTVVXFk08+SVdXF319fZw4cYK2tjai0egNnea1VCKRuKAZuhmMe+mll/jBD37AqVOnmJqawuv1XvD+TE1NceLECU6ePHleCebS7CYzGFZQUIDFYsHlclFbW8umTZsoLy/Hbrfr7Wke76FQ6Lzn8Xg8ulH0hg0bKC8v13127Hb7shl0l2Oz2Vi/fj1FRUW6zNJc3uTkJD09PboU0hxtfuTIEYaGhhgZGWF6enpVwWCLxcL27dupqqqiqalJr8NaMksTzfPE7OzsBZ/3ZpBvaGhIDwOw2WykpaWRm5t72UxLMzBusVi4++678fv97Nu3D7fbTXFxMbm5uaSlpRGPxzl+/Djf/OY3dcP1m+U4EEIIIYQQN59bIvBTW1urm86ak4ZW4oO9esw/vs10ebNfw3LBm1QqRWdnJydPntTNfc3AT0VFBd3d3czMzNywwI85jru0tFSPcLZarSQSCcbGxnSz1ivtMbGW0tPTqaqqwm63k5aWturAj9Vq1QGBpf1Rlk5CGhgY4OzZs4yOjjIzM7OibCyXy0VOTo5u6G32sAkEAnR3dzMwMEAoFLpuF1xmpk9VVRVbtmyhrq4Ov99PIpFgZmaGvr4+zpw5o5spX+59NqdRrVu3juzsbOx2O7Ozs7o3zMGDBy86Wjsej58XZDKzqcyMjivZ1mbj7Ugkwvj4ON3d3WRnZ+uR2TabjezsbNxuN1lZWTz22GN627vdbsLhMENDQ9c9kHk1QqEQR44c4ZlnnuGtt97SmTeZmZm6x5QZsOzr66Ojo4ORkZGLfo4sDXqaTc5LSkooKCjQAUAz2y0UCukgg5kl53A4qK2tpaGhgQ0bNrBt2zYKCwtxuVzAwvsaDoeZm5u7qnI6MzMrIyPjvOPbLIF78803dc8ps+/UlTQdv1JKKerq6nA6nXi93lWdJ8zyxQ+eJ8zPlsHBwYtm+CWTSdrb2zlx4gT19fV4vV4drCsvL6ejo4OZmZmLbtdkMsnZs2eZmpqitbVVNwmvqamhtrYWp9NJKpViYGCAQ4cO8cMf/vCm3feFEEIIIcTN45YI/CQSCZRSFBQUkJ+fr8sIrpbZgDUSiZz3+Hg8zvT0NF1dXRcN3hiGQVNTE9FolPr6eqqrq3X6fkNDA+fOnWNsbGxNeteslNfrpby8nIyMDBwOB4Aep7x//36Gh4dvyMjfVCpFIpHAZrNRU1Ozqm/jbTYbHo+H3Nxc3V/JvNA0J7f19vZy7NgxDh8+rAMzK3nNbreb3NxcnVWjlNIjll977TWOHj163caIm6VQW7ZsYfv27WzZsoXq6mrm5+cZHx9naGiI5uZm3nnnHR3oupJlpqWlUVtbi9vtxjAMhoeHaW5u5u233+bAgQOEw+FlH2uWekWjUR3oWc12SCQSunwrkUhw6tQpnYGUnZ2Nx+PB7/fjcrlwuVz09fXR19dHIpEgkUhcVS+a68HsGTU4OMh3vvMd3nrrLV2appQiMzOTiooK/Rrn5+d57733aG9vv+g2Nx9rMseil5SUkJ+fr6fYzczM0NXVpQNiZq8Zt9tNQUEBTz75JFu3bqW6upr8/HzS0tL0+xcOh+nt7dU9zq5km5pTzAoKCnQAyTQ5Ocl3vvMd3nzzTd3v6Vq9T/F4HKWULoNa6XnCDEh+sCl6PB5ncnKS7u7uiwYbk8kkJ0+eZG5uTmet+Xw+MjIyqK+vp6mpieHh4UseK4ZhMDQ0xNjYGO+//z6HDh3iqaeeorS0FIfDQTKZJBqNMjIyIkEfIYQQQghxRW6JwE9rayvz8/MUFBRQWFiom71eDTPbZ2pqSo8pNgMQ5gVPOBy+5IWC+U2weR/zW/ScnByysrKuSXnBahiGQSwWo7e3V4/6vREXx6FQiO7ubpRSrF+/Xo8Kv1pm6VVNTQ333Xcf27ZtIysrS18Mj46Ocvz4cd544w1+9rOf0dnZecnxyVfqg9tscHCQjo6Oy/brWCvm1KatW7fy+c9/njvuuIO0tDQmJiZ4+umnefPNN+nu7mZiYkJneVyOORVtw4YNPPLII9jtdt0M+7XXXtOZJ1eybgUFBTidTiwWC7FYjJmZGcLh8FX3HEkmk7rX1uHDh1FKMTc3R11dHXl5eXi9XlwuF7m5uTQ2NhIKhXRvLTOoeTNJJpNMTExw7Nix8/oR2e12iouLdT8cQPej6u/vv+QUp8tRSuFyucjLy6O0tJREIsH8/LzOFtu4cSMPPfQQRUVF+P1+nRljBknMhttTU1NXFCR2Op1s376dr371q9TV1enmzSav10txcbEOWFwrqVSKlpYWUqkU5eXl5OTkrDjwYwZ4zECVmelnlnpdLAvOZAbRlj63zWYjJyeH7OxsnYl5KeYUxOrqau6//37q6up0MH92dpaBgQHee++9q35tQgghhBDiw+mWCPycO3eOaDSK2+3W/SfW8iJidnaWnp4eenp6Lrlcs5mz1+vVFwM3k+npad3I2MyScDgcVFVVUV9fT1tbm25afT0DQGZ/IbPZqdns9Wq+rTZL2SorK9m2bRt33HEHfr//vDHYw8PDtLa20tLSwujo6KrHxofDYfr7++nq6mJ6epqsrCxgodn4+vXrGRoaYnx8/JpO1DGzOsrKyti4cSPr16/H6/USDodpbm7mvffe4+TJk7qx8JUeF+np6dTV1XHPPfdQXV0NLOw/TU1NtLS0MDU1ddll2Gw2ioqK+MpXvkJdXR0ul4tQKMTJkyd588032b9//0WDB2aZpJkhMj8/r0e6z8/Pc/DgQU6fPk1JSQnr169n8+bNfPaznyU9PR2Hw8GmTZsoKiqisbGR/fv389xzz9Hf33/DJ+st3Q8CgQBdXV2Mjo6edx9z22/dulV/jgSDQV2KuZRSSpcMLZ1AZz5PIpEgGo3qZu0Oh4O0tDQ2bNjAY489RnNzM+FwmLS0NNatW8eGDRtYt26dDtSZyzKXbfY7u5J+WE6nk40bN/KVr3yFLVu24PF49GPdbjd2u52srCy+8IUvMDk5yc9+9jPGxsauSbDUMAzOnj1LLBbDZrPpqXOr/QxYuvxQKERvby99fX2X3DYOh4PMzEzcbveKzhM+n49HHnmEz372s9xzzz14PB6dzRSPx3G5XGzcuJE/+qM/4r//9/9OZ2fnDQvqCyGEEEKIW8MtEfgx/6D1+XxkZ2eTkZFxwcXUlVBKkZ6eTnp6up4yY5Z/dXR06ODExczPzzM9PX3eJBcz4LAWgYbVMF+H2US1rKwMp9OJ0+lk/fr17N69m9OnTzM0NMT09PSaZMJczbqZfUZycnLIycnRfWiulMViwe12U1hYSFVVlW5kazKbDbe3tzMwMLDsVLarNTc3x/j4OP39/QQCAdLS0nA4HFRWVrJjxw6dFRAIBK4oULISDoeDrKwsysrKKC0txWaz6R5GZ86c0U2Vr7aEz2q14nK5zuszYzInUl3JMpxOp24o7vF4iEajug/Ja6+9dtFGtmZvrMLCQhwOh24QHYlEmJ2d1aO/Z2dnGRoawuPxXDCZyu124/f7dR+V1faOWo1UKkUoFKKtrY2SkhKi0ShvvPEGL7zwwgX7ubnuHo8HWMgMOnr0KENDQxdMKrNYLFRWVurMnHg8ztTUFJ2dncTjcSYmJjhy5AgZGRk0Njbq7JqSkhI++9nP6gwwu92ue98MDg4yPDzM+Pg4Ho+H8vJyysvLSUtLIy0tjYqKCnJzc3G5XESj0QveP6vVSklJCfv27eMLX/gC69evx+VyMTY2xk9+8hOOHTtGXl4ev/7rv05paSllZWV8+ctf5hd+4Rf46U9/yne/+12CweA1eQ8A/H4/OTk5+Hw+AoHAVS/HarXi9/svOE+YE+s6Ozsv27R8ampK90mChQDd0NAQo6Ojl/1y4b777uMTn/gEe/bswePxMDIywvPPP68DeGaz+c2bN/O1r32NAwcOcODAAXp6ei6bjSSEEEIIIT6cbonAj3lBNzc3t2zvhSuVSqWYmppiamrqvD++zUlQl+sFY34bPj8/f17WjNVqvWC8+I0wPz/P4OAgZ86cIT8/XzdTLikp4b777sNisdDR0cGxY8doa2vTryMej+vyq/n5eZ09sHR092q+TV4aSIhEIituxmtevKanp+sMCFi4qJqentYjnCcnJ9ek11I8HicQCNDZ2cnp06fx+/3k5uZSUFCgm0vX1tbS0dHBK6+8wuzsLIlEQu9bZkZFKBS6oPTjcttUKUVeXh7r1q1jy5YtbNiwgYKCAt544w0GBgbo7Oykra3tslOCLiaVShGPx3Vmh7ltt27dSjwep7+/n/Hx8WXfJ7M3UF1dHaWlpRQWFuqggs1mo6ysjEgkgs/nY2pqatllOJ1OCgoKqK+vJzc3l9nZWfLz8xkeHmZsbIzMzExyc3PJysoiPT2dgoKC84I7Zpml1WrFZrPpC/Qbxfxs+Yd/+AdeffVVIpEIXV1dtLW1XfDemNvefN9isZgeDf7BbZVKpXjhhReIRqOUl5cTj8c5duwYTU1NJJNJYrEYXV1dNDc3k5GRQXp6Om63WzfGTk9PP69J8fT0NO+++y7t7e0MDw9TUFBAKpXSgRKPx0NBQYHOWFkavDB5vV4aGhp44oknqK+vx+l0kkgkePXVV3nuuec4ffo0GRkZuN1ufu/3fk8HojweD16vl2QyyU9/+lP6+vrW9D0wP4Pn5uZ0g+qVSCQSBINBve+aWTvm9r7cZ4t5njAzAZdOZLvUecJms7FlyxYefvhhtm3bhtPpZGhoiGeeeYZ/+7d/00HVnJwcCgsLyc7O5uGHH+aTn/wk2dnZvPzyyzQ1NREKhVb0uoUQQgghxO3rlgj8lJeX43A4mJqaYnx8fFV/0I+MjDAyMnJeuYE57cbj8WC1Wi/6jaw5Ncr8498skcjOziY3Nxen03lDm8ymUimmp6fp7e1lZGSE/Px8PB4PPp9PT0SrqanRwZNIJKKDaWaT5PHxcT1i2ywDMV/zSkvEvF4vRUVFGIaxqmwcpRRWq1WXccDCe2L2hTGnTK1Ftg8sbM/Z2VkmJibo7u6moaFBT2NyuVykpaVRVFREe3s7wWBQX2ya2VRmX5OOjg498cosp4nH45fM0rFarVRXV7Nr1y527txJWVkZwWCQ1157jdOnT9PT06OfcyVBNLNEyCwRM0uEtm/fjsfj0WPTl1u23W4nMzOTXbt2kZ+fT05Ojp6uZmazpKenXzILJ5FIMDc3h9Vq1QGe2tpaJiYmmJiYICMjg+zsbPx+P263G6/Xi8fj0QEes2H40mPxRpe6zM3NcejQIY4dO0YsFmNubm7ZrLa5uTk9gc3r9dLV1cXZs2eXnRRlGAYvvvgio6OjVFRUkEqlaG5upr+/H1gIMvT393PmzBnS0tLIyMggJydHT88zDENvJ7M3zKFDh3RPqHXr1lFeXs7MzAwFBQW6n1RWVhZpaWlEo9ELAu2FhYVs2bKFrVu34nQ6dUPjF198kaNHjzI6OsrIyAg/+tGP9ASx4uJisrKy2LJlCxaLhezsbJ555hmGhobWpFRSKUV5eTkWi4WRkZFly+auhGEYzM/P6/PE0sCPmeHmdrsvWapqlivOz8/rLxOsVivZ2dnk5eXR2tq6bPAoLS2Nffv2sWvXLnJychgZGeGNN97gxz/+MadOnSIej2OxWHA6nbrZudVq5VOf+hQPPPAAqVSKubk5jh07dsOPBSGEEEIIcXO5JQI/mzZtwu12Mz4+zvT09Ip7RJjp9r29vczPz+usEafTSUlJCbW1tbS1tV0w9ctkXhQEg0Gmp6fJzMzEbrdTVVVFY2Oj7qdxIyd7JZNJhoeH6e7uJj09HcMw9AVdXl4eTqcTwzAoLS3VQZ+pqSndL2dgYIC+vj7dM8LsvTIxMUE4HF72QvByMjMzqaurA2BkZIR4PL7qDCL49wus0dFRzp07R1tbGyMjI2safFs66aizsxOHw6GnF/l8Pux2O263W0+4ikajzMzM6FHp8Xic48eP68bhZsAjFAoxNjam7//BUiun08nmzZvZsWMH9fX1eDwexsbG6OjooKOjg0AgQDweX3GAKxaLEQgE6O/vZ2xsTGfsbNy4kZycHGpray86NchqteLz+di8eTN+vx+fz6eDovPz83q5ZrBrOWb/pJycHHJzc6mqqmLv3r16n3M6nbhcLhwOh86SMIM+5hSv6elpJicnmZ6evqFllktdyfERiUQ4ffo0+/fvJxKJ8NZbb/Huu+9etEzn3Llz9Pb24vV69ePN+5qT2CwWi94fysrKyM7O1kGZ2dlZwuGwnvZ1+PBhAoEAc3NzOBwOurq6dENkM6hQWVlJfX09LpeLjo6O8z5zS0tLaWhoID8/X7/m/fv3c+jQIQYHB4GF9+jIkSP81V/9FY8//jgf/ehHqaioIDMzk3vvvZfNmzcTDod5/fXXGR0dJRQKrao5t8ViobGxEbvdztTUFKFQaMXHxvz8vD5PmD2DYCGAXVpaSk1NDe3t7Rf9nDH34ampKWZmZvB6vdjtdqqrq2lsbOTEiRPL9uPKyMjg3nvvpbq6Wk9j/Nd//VdOnDiht40Z8IxEIkxMTPC9732P2tpaHnnkER577DGmpqZoamq6aY4HIYQQQghxc7glAj9mk0yzlGElU71gISgyOjrKqVOnmJycxOfz4XA4yM3N5dFHH6W6upr333//ouUzyWSSYDBIa2srra2tZGRkkJ+fz44dO0hPT+fo0aP6j/0bNWY3mUxy5MgRRkdHOXr0KJs3b+ZjH/sYhYWFeDwe8vLyyM3NZffu3Tr7xLwAVEoRiUT0SHtzrPHg4CBNTU2cO3eO5uZmTpw4cVWBFZvNhsvlwmq1UlRUtOKpXiYzA2lmZkZPgDpw4ABnzpxhampqTb/tNgyDsbExfvrTn9Lb28umTZt48sknKS0txefz6b4oZWVlOrBjBv7MJuRmkMYMVC0dOX/q1Cnefvvt8y7UzFKqHTt2sHHjRrKzs4lEIgQCAXp6enQ2w2pe5+zsLIODg7z//vscPHiQrKwsXC4XhYWFOjvrYss39xtzVLhZGhMOhxkbG+PYsWMcOnTokv1MzMlJHR0dOqPCHEtuHu8Wi+W8Hitmadrs7Czj4+P09fXR3NxMT0/Psr1oblbJZJKuri5GRkZ47bXXGBsbu2TQwxzRPjMzs+zvA4EAk5OTtLW18frrr5OdnU1hYSFut5tYLMbk5KQuf4xGo0xOTupt1d7eTjQapaOjg0gkwsaNG8nKyuLxxx9nw4YNHD58mL/7u787r2TPbrfrgFwymWRwcJCDBw9e0LfHMAwOHTpET08PPp+PBx54gIKCArxeL1lZWfyn//Sf2Lx5M2+99RZHjhyhpaVlVdvVzAjLzs7G5/OteKpXLBZjeHiYU6dOEQwG9UCB0tJSfv7nf16fJwYGBpb9EsKcHnnmzBndOykrK4udO3fi9/s5cOCADhB+cPKXOTigtbWVZ599ljfffHPZLxLM8tmpqSlOnTrFPffcQ21tLY2NjaSnpzM+Pn7Vr1sIIYQQQty+LnsFrpQqBb4N5AMG8I+GYfyNUurPgN8CzL8w/8QwjJeuxUqa5Swulwu3273iXjpLGyAHg0Hy8vL0H9A+n4+srKzLNolNJpNEo1EikQjz8/M6/d7lculpVTdaIBBgdnaW4eFhBgcHyc/PZ/Pmzaxbt05fxJgX2zabTY8JNksSvF6vviBJJpMUFhaSlZWF3+8nGo1y8uTJq7qgisViOgvCvCC72osyM6hiZh/19fUxMTFBc3Mzr732mg7mXYuLf7MHy8zMDH19fRQUFNDY2EhlZSV5eXnnbU+zHMRcj1QqRV5e3nk/x2IxiouLSU9PZ35+niNHjpwX+DHLOczRz8FgkP7+flpbW5mYmFh10AcWtufs7CxtbW189atfpbm5mfz8fLZt20Zubq4OBC73uJmZGTo6OmhrayOVSpFKpejr62NgYIDh4WFGRkb08XGp5w+Hw7o5dSAQ0D1/fD7fef17zG1rZroMDQ3R3t5Oa2srvb29NDc339Bg60qYmWThcHhNlmeWPMbjcaanpxkaGsJqtepg49LSzaX7TjQapa+vj5mZGfx+P6FQiJqaGtLS0khPT9cB46VBnf7+fpqbm9m6dSuJRIIvf/nLnDp1atlMp1QqRW9vL7//+7/Phg0b+NjHPsZ//I//kaysLMrLy/nc5z7H448/zre+9S3+8i//clVNn819wMxeW+l5wgy09fb2EgqFSE9PBxYCXld6njA/q8zjIJFI6PPEpR67dGqb0+mksrJSZzXG43H9+ez3+3G5XNx11138zu/8DmVlZYRCIQKBgPT4EUIIIYQQF7iS1IsE8IeGYRxXSvmAY0qpA4u/+yvDMP7HtVu9BYcPHyYcDpOXl0d6ejppaWkrukAwswbMC2mzrMEck2v+cX2pi2rDMIhEIoyPjzM4OKi/jR0ZGbmgKfKNEo/HCYVCzMzMMDo6SldXF4WFhezdu5f8/Hxqa2upqKjQI51h4aJ6dHRUN/Vd2tgZFkZ9DwwM0Nvbe9Wvb2JiguPHj5NKpfRUtWAweNUle2agwGq10tfXh9VqpbOzk7Nnz+rtfy2YvTPMMqY///M/Jzc3l/Xr19PQ0EBeXh67du3S+5K5P4VCIYaGhnSAxGQGsQKBAC0tLRdsB3Nf/MpXvkJBQQGwsA0HBweZnJxc0wCHOQ3thRdeID09ne7ubnJzcy8axDQvijs7O2ltbdUXqmYQw2x+fiXrmEgkCIVCOlOora0Nv9+vn9vhcOD1eklLS8MwDPr6+nTGTygUIhKJkEwmSSQSt1TQ51pKJpMkk0nm5+d1c/FLZW+ZpWCJRILDhw8TCoWoqKggKytLl9d+cNu2t7fz3e9+l3PnzpFKpXj55Zd1KePFzM/Pc+bMGRKJBH6/n09/+tPk5uYCkJOTQ319PRs2bOCdd95Z0ednMpnknXfeIRaL6R5mHo/nollSl2I23A4Gg7rPlTlVbXZ2ltHR0csOAjCPibGxMfr7+3XfL7PUdbn9NRgMcuLECd1DqbKyUmfSvfXWW4TDYRwOB2VlZdTW1upMooKCApLJJG1tbbS1td3QUmMhhBBCCHFzumzgxzCMYWB48d8zSqlmoPhar9hSZr8Gt9uNz+fD6/Wu+JvhZDLJ+Pg4f/M3f4PP58NqtaKUIpVKEY1GLxv8SSaTNDU16fIfl8sFLAROzp07d9H+QNebebFnNiqdnp5mbm5O99uprKzE5XLpb57D4TAjIyP09vYyNjZ2wYVJPB4nHA6vKKsmFovpzIb09HS93a8m8GO+P319fUxPT9Pa2gosXCyZGU5r0dD5UswSp/HxcUKhkC7Zys7OZmpqSjfUBXTmxcDAAC0tLResm/neTExMXLAdzAvP9vZ2hoaGgIWGwMtNfVqL1zQ3N0dPT48OqF0uc83ssbM0w8Ms/VpJ4HNpr6ZAIKCDZ2Yjb/Oie3p6mlQqpYM91/r9vpWZ++qV3jcej9Pb26vHwzscDhwOB6lUisnJyfOWFYvF6OnpYWxsTAc4ruQ9N/fpv/3bv+WNN97gr//6r88rK1ztVMTp6WkMwyAtLU03BV9p4McMvn7ta1/TpYewsJ+bgf9Lbd9kMsm7775Ld3c3mZmZeh+ORCK6x9wHt1kwGORv//ZveeWVV9i9eze7d++mpKSE8vJyKisrdXN98zhLpVK0trby3HPPcerUKVpaWi47al4IIYQQQnw4XVWzFaVUBbAVOALsBn5XKfVrwPssZAVNrfkagu5TkZGRob85XSmzxKWpqUkHfUxmGdfl/nAOBALMzMzQ09Nz3pShSCSy4sbT14oZREgkEnR1deFwOBgaGtJTl0xmOdb09PSy/VI+2L/maphBm4mJiVW9FjOYMjs7q9c9FovpsfTXSzwe19siGAzicrkYHR3VJXPw71lC4XCYQCCw7IWxWfa13P5mXlCbWUxmJse1YAahgCs+vtY6uGnup+b+ZQZ/zAAQcF5A9mYIrt5OzH1gfn7+vO1uZq9d7L5Xa3Z2lu7ubiYnJ9m/fz8PPfQQc3NzNDU1rSibcKlYLMbExIRuMr6aQJJ5njhx4oTe/0xmltTl1nVsbIypqSk9xt187MWmDpqf0ePj44yMjNDe3k5FRQUbNmzA4/Ho1zg6OsrAwADRaJTBwUG6u7vp7+8nGAyu+vwohBBCCCFuT1cc+FFKpQH/BnzRMIyQUurvgS+z0Pfny8BfAr+5zOOeAp5azUpGo1EOHjxIS0sLJ06cWHVJj1mustyFwZV8W2pe+H/w8TfrN63mt/9m7wczq2K5+12LC+pEIsH4+DgvvbTQAioYDK5oWy0NDpjrf63W+XLrYWbKmPvi2NjYJe+7Etcy2HMxNzqgslxg52YLpt7ulvaZuRZSqRTBYJAf/OAHTE5OEo1GOXLkCMPDwyteplmCe+DAATweD62trWtyngiFQhd8Vl7pMR2LxYjFYld1nkilUkxPT3P69Gl6enrIzMxkw4YNOrM0FosxPj7OwMCAzgI0Sx6FEEIIIYS4GHUlf8AqpezAC8DLhmH8z2V+XwG8YBjGxsssZ0VXlTabjfz8fOx2O5FI5ILSA3FzU0rhcrn0+OehoaFVj3QXQtz6lmZMrpbNZqOoqAiLxcL09LQuDbzVfTDj6FoG5YQQQgghxC3tmGEY25f7xWUDP2rh68p/ASYNw/jiktsLF/v/oJT6A+BOwzA+dZllyZW+EEIIIYQQQgghxNpaVeBnD3AIOA2YXzP+CfBpYAsLpV49wG+bgaBLLGsciACra/YihLjWcpDjVIibnRynQtwa5FgV4uYnx6m4HZQbhpG73C+uqNRrLSml3r9YFEoIcXOQ41SIm58cp0LcGuRYFeLmJ8epuN1dfGazEEIIIYQQQgghhLilSeBHCCGEEEIIIYQQ4jZ1IwI//3gDnlMIcXXkOBXi5ifHqRC3BjlWhbj5yXEqbmvXvcePEEIIIYQQQgghhLg+pNRLCCGEEEIIIYQQ4jZ13QI/SqlHlVKtSqkOpdR/uV7PK4Q4n1KqVCn1ulLqnFLqrFLq9xdvz1JKHVBKtS/+P3PxdqWU+vrisduklLrjxr4CIT5clFJWpdQJpdQLiz9XKqWOLB6TzyilHIu3Oxd/7lj8fcUNXXEhPiSUUhlKqR8qpVqUUs1KqV1yThXi5qOU+oPFv33PKKW+q5RyyTlVfFhcl8CPUsoK/B3wGNAAfFop1XA9nlsIcYEE8IeGYTQAdwH/x+Lx+F+AnxmGUQP8bPFnWDhuaxb/ewr4++u/ykJ8qP0+0Lzk568Bf2UYxjpgCvjc4u2fA6YWb/+rxfsJIa69vwF+ahhGHdDIwvEq51QhbiJKqWLg94DthmFsBKzAp5BzqviQuF4ZPzuBDsMwugzDiAHfA564Ts8thFjCMIxhwzCOL/57hoU/UItZOCb/ZfFu/wJ8bPHfTwDfNha8C2QopQqv71oL8eGklCoBfg741uLPCtgH/HDxLh88Vs1j+IfAA4v3F0JcI0qpdGAv8E8AhmHEDMMIIudUIW5GNsCtlLIBHmAYOaeKD4nrFfgpBvqX/DyweJsQ4gZaTFvdChwB8g3DGF781QiQv/hvOX6FuHH+Gvg/gdTiz9lA0DCMxOLPS49Hfawu/n568f5CiGunEhgH/t/FksxvKaW8yDlViJuKYRiDwP8A+lgI+EwDx5BzqviQkObOQnxIKaXSgH8DvmgYRmjp74yFcX8y8k+IG0gp9TgwZhjGsRu9LkKIi7IBdwB/bxjGViDCv5d1AXJOFeJmsNhn6wkWgrVFgBd49IaulBDX0fUK/AwCpUt+Llm8TQhxAyil7CwEfZ42DONHizePmunmi/8fW7xdjl8hbozdwEeVUj0slEjvY6GXSMZimjqcfzzqY3Xx9+lA4HqusBAfQgPAgGEYRxZ//iELgSA5pwpxc3kQ6DYMY9wwjDjwIxbOs3JOFR8K1yvwcxSoWeya7mChkdZz1+m5hRBLLNYn/xPQbBjG/1zyq+eAzy7++7PA/iW3/9riJJK7gOkl6etCiGvEMIwvGYZRYhhGBQvnzdcMw/gM8DrwC4t3++Cxah7Dv7B4f8kyEOIaMgxjBOhXSq1fvOkB4BxyThXiZtMH3KWU8iz+LWweq3JOFR8K6nrtv0qpj7DQq8AK/LNhGP/tujyxEOI8Sqk9wCHgNP/eN+RPWOjz832gDOgFftEwjMnFk+M3WEiHjQK/YRjG+9d9xYX4EFNK3Qf8Z8MwHldKVbGQAZQFnAB+xTCMeaWUC/gOC327JoFPGYbRdYNWWYgPDaXUFhYasDuALuA3WPhyVc6pQtxElFL/FfglFibcngA+z0IvHzmnitvedQv8CCGEEEIIIYQQQojrS5o7CyGEEEIIIYQQQtymJPAjhBBCCCGEEEIIcZuSwI8QQgghhBBCCCHEbUoCP0IIIYQQQgghhBC3KQn8CCGEEEIIIYQQQtymJPAjhBBCCCGEEEIIcZuSwI8QQgghhBBCCCHEbUoCP0IIIYQQQgghhBC3qf8fb1+3FqVFRvQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABQCAYAAABvXLJMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAjhElEQVR4nO3de3Bc533e8e+7F+wdwALEjSBAgAQB3nUlKVmiJcui5NpW3HpkWWmbOGlat449STrutLEzmYnbSaedyaVO0mTGVtRJYo0vkZOx5VCWNKTISKJESxRJCSAIkgAI4n5bYHexwGJvb//AYk1avIAESEDg85nhCHvO2XPeXfLMIR/93t9rrLWIiIiIiIiIiMjq41juAYiIiIiIiIiIyM2h4EdEREREREREZJVS8CMiIiIiIiIiskop+BERERERERERWaUU/IiIiIiIiIiIrFIKfkREREREREREVikFPyIiIiIiIiIiq5SCHxERkVXAGHPeGPNo/uevG2OeWe4xiYiIiMjycy33AERERGRpWWv/50KOM8YcAr5jrVVIJCIiIrJKqeJHRERERERERGSVUvAjIiKyghhj1hpjfmiMGTXGdBtjfiu//Q+MMT8wxvytMSZujGkzxtx7hXP8gTHmO/mfvcaY7xhjxo0xk8aYt40xVcaYPwT2An9hjJkyxvzFrfuUIiIiInKrKPgRERFZIYwxDuAF4CRQC3wc+B1jzOP5Q34J+B5QCvwYWEhY8wWgBKgDyoH/BMxYa38PeA34irU2aK39yhJ+FBERERFZIRT8iIiIrBy7gApr7X+31qastV3At4Gn8/tft9but9Zmgb8D7ljAOdPMBT5N1tqstfaYtTZ2U0YvIiIiIiuOmjuLiIisHOuBtcaYyYu2OZmrzOkBhi7aPg14jTEua23mKuf8O+aqfb5njCkFvgP8nrU2vZQDFxEREZGVSRU/IiIiK0cv0G2tLb3oV8ha+8kbPaG1Nm2t/Ya1divwEeDTwK/O716CMYuIiIjICqbgR0REZOX4GRA3xvw3Y4zPGOM0xmw3xuy60RMaYz5mjNlhjHECMeamfuXyu4eBDYsftoiIiIisVAp+REREVoh8755PA3cC3cAY8AxzzZlvVDXwPHOhTztwmLnpXwDfBJ40xkwYY/5sEdcQERERkRXKWKsqbxERERERERGR1UgVPyIiIiIiIiIiq9SiVvUyxnyCuTJxJ/CMtfZ/LcmoRERE5JYyxuwFXrzMLh8wo+3avszbsdYGL7ddREREru6Gp3rlm0SeAfYBfcDbwC9ba08t3fBERERERERERORGLWaq127gnLW2y1qbAr4HfGZphiUiIiIiIiIiIou1mKletUDvRa/7gD1Xe4MxRp2kRURERERERESW1pi1tuJyO256c2djzBeNMe8YY9652dcScDqdOJ1OHA4HxpjlHs5NFwgElnsIIiIiIiIiIsut50o7FlPx0w/UXfR6XX7bJay13wK+BTe34mc+5LhczyJjDF6vl1AohMPhYGpqimQySSaTuVnDuSJjDEVFRZSUlAAQjUbJZDLkcrnLjv16BINBHnzwQUKhECMjI3R1ddHX17fo816Nw+HA6/Xi8Xhwu904nc7Cvmw2SyKRYGZmhlwut6TXNcbg9/v53Oc+x3PPPUc6nV7S84uIiIiIiIisBosJft4GNhljGpkLfJ4G/vWSjOoaHA5HIWjwer14vV7cbjfGGFKpFIlEgsnJSbLZLABut5s1a9bQ0tKCx+Ph3LlzDA4OkkgkCsfcCsYYSkpKaGpq4v7778cYw9mzZ5mYmGBgYIChoSFSqdQNn7u4uJgnnniC2tpaOjs7efXVVxkbG2Nm5rKLYyyKMQan00kgEKCiooI1a9ZQUlKCx+MpHDMzM8PZs2cZHBxkdnZ2Sa8fCAS45557eOqpp9i/fz9jY2NLHi6JiIiIiIiIfNjdcPBjrc0YY74CvMTccu7PWmvblmxkVzBfMVNTU0M4HKasrIxwOFyY8pNIJBgYGODkyZNMT0+Ty+UIBoM0NTXx+OOP4/f7eemll0gkEiSTyUuCn/lzz4cX2WyWbDZLOp1ekoDI4/HQ0NDAE088wZNPPokxhtbWVnp7ezl06BCxWOyGgx8An8/Hrl27aGlpobGxkYmJCd56660lDX6MMbjdbqqqqvD5fNTX17NhwwbWrl1LeXk5Pp+vcGwkEsEYU6hqWsqQraysjMcee4wHH3yQpqYmYrEYyWRyyc4vIiIiIiIishospuIHa+1+YP8SjeWqHA5HIZQJh8Ps2bOHhoYGqqurCYfD+P1+YC74uXDhApFIhP7+fhKJBGvXruXhhx/mV37lV/D7/QwPD3P+/HkikQjZbLYwRcnpdLJ27Vrq6+vJ5XLEYjEikQiRSITZ2VmSyeSipmSVl5eza9cunnrqKZqbm7HWUltby8DAAGNjYxw7dozJyckb/o7S6TRTU1MYYygrKyuEM0vF6XTi8/morq7mySefpKamhl27drFu3TqKi4vxeDw4nc7CtLvBwUHi8Tj9/f1kMhni8fiSjMMYQ2lpKXfffTd+v59du3bR3t6u4EdERERERETkFywq+LlVfD4fFRUV7N69m82bN1NfX88jjzxCRUVFYYrXxc2Mk8kktbW1/NM//ROvv/46NTU1bNiwgbKyMqy1hWPdbjf19fXs3LmTuro6iouL2blzJxs3biSdTnP06FFee+01HA4HFRUVHDp0iJGRESYmJkgmk9cVADmdTpqamti9ezfr16/HWks0GuUf//EficVinDt3blF9aqy1jIyM8PLLL7Nu3ToikQg9PT1MTU3d8DkvFgqFqK2tZdu2bXz84x/ns5/9LOFwGJfLhbW28Gv+98DhcFBVVcVjjz2G2+3m1Vdf5fDhw0syHau4uJiNGzdy7733MjMzw0svvbRkn1NERERERERkNVnxwY/L5WLDhg1s2bKFT33qU9xxxx0UFxcTDodJJpOMjIwA4PV6CQaD+Hw+fD4f27Zto6Ojg2PHjuFwOHA4PriAWTAYZMeOHTzxxBM0NTVRUlJCOBwmGAySSqVIpVL4/X5CoRA1NTUUFxdz5swZ3nvvPXp7e5menr6u6UvzPYnmw5JYLMaBAwcYHR1lYGBg0VOykskkf//3f4/L5WJiYoKjR48Si8UWdc55paWlNDc388ADD7Bv3z7C4TBut5tMJsPExASJRKJQDeV2uwkEAhQXF1NXV8fOnTsZHBzkyJEjS9LrZ/PmzXziE58gEAjw3e9+l/Pnz6u5s4iIiIiIiMhlrNjgx+VyUVpayrp16/jqV7/Kxo0bWbt2LUVFRQwPD/Piiy/S2dnJ2bNnyWaz1NXVsXXrVnbs2EFLSwuhUIhgMIjL9cGPGA6H2bBhA7t37+ajH/0oH/3oRwvVK/NNi91uN1u2bKGxsRGn04nH42Ht2rVEIhF++tOfcuDAAd5///1C8LQQFwdQ1loymQz9/f20t7cTi8WWJLy4cOEC3/72t8lkMtcdTF2Jw+Fgy5YtPPTQQ+zdu5e6urpC6HPkyBFefPFFTp8+zezsLNZaQqEQTU1NPPXUU6xbt44dO3YQj8f50Y9+xPDw8KLH5PF4CIVCAExOTi7L6mwiIiIiIiIiHwYrMvhxOBwEg0FaWlrYtm0bd955J9XV1SSTSYaHh2ltbeXll1+mp6eHgYEBcrkcfX19heqWkpISQqHQJUuLA4UpYffffz91dXWUlZVRV1dHOBwmnU5z5syZwvng50vDO51O6urqaG5upry8nNHRUaLRKIlEgkgkcl3BgzHmkulQDoeDZDK5ZKtepdNphoeHl+Rc84wx+Hw+iouLCYVCFBUVFSqWDh06xIEDBy6puikqKqK9vZ3a2lr27dtHeXk51dXVlJaWMj4+vqjgxxhDdXU1TU1NWGtJJBJL9TFFREREREREVp0VF/w4HA78fj/r1q3jscceY9u2bZSVlRGLxXjvvfc4deoUHR0dnDhxgsnJSaanpzHGEAwGiUajTE1NXbVyxuFwsHnzZjZu3IjX6yWXyzE1NcXAwACHDh2ira3tA8GE2+3mzjvvpLa2tjB9afv27YyMjPD+++/fUMWJMQa/309tbS2nTp1assbHN4O1lpmZGaampi6ZjjYfMk1OTha+9/nvLh6Pc/r0ae69914qKysJBoOUlZXR29tLKpW6an+kmpoajDHEYjESicQlxzqdTsLhMDU1NWSzWfr6+m642baIiIiIiIjIarfigh+fz0dlZSU7duzgySefpL6+nlgsxqlTp/jBD37Am2++ycTEBNFotPAet9tNcXEx1dXVVFZWEg6Hr3qNQCBALpcjk8kwOjrKuXPnaGtr45VXXqGjo+MDQYLb7SYSibBnzx4aGxsJh8Ns2bKF8fFxDhw4sOCqE2st2WwWay1Op5PS0lJ27tzJsWPHFl0JczPNN47u7u5mw4YNtLS04PF48Hq9bNq0ifPnz+N0OpmcnCQSiZBOp0mn04yMjBSqsILBIGvXruXs2bPXbMS8c+dOSktLGRkZobe3l1gsRi6XI5FI4PP5ClVH2WyWSCRCMBhkampqxX5/IiIiIiIiIstlRQU/brebmpoaNm3axNatW6moqMDj8TA8PEx7ezudnZ0MDQ2RSqUK73G5XIRCIbZs2cKePXvYunUr5eXljI2NXTEIMMaQy+W4cOECL7/8Mvv376e9vZ0LFy5ccdWp/v7+QlPhrVu30tLSAsCrr75KX1/fNVerstYWloTPZDK4XC6KiorYsWMHNTU1XLhwgenp6Rv85m4uay1dXV3kcjnS6XShn1JxcTFf+MIX2LVrFx0dHbS2tvKTn/yE3t5ecrkcbW1tdHd3s2PHDkKhEI2NjRw7dozR0dGrVulUVVXx9NNPc8cddzA2NsbBgwcL08qqq6u57777KC8vJ5fL8eUvfxm3283BgwcZHx9Xvx8RERERERGRi6yY4Mfj8dDQ0MCXvvQlHnnkEaqrq/H5fPT09PDnf/7n/OxnP6Onp4dkMglQWI69ubmZ7du38/TTT7N3797CilxHjx7l5MmTxOPxD4QMs7OzdHd3881vfpNXXnmF3t5eMpnMVcOImZkZXnjhBZLJJF6vl507d1JZWcnWrVvZv3//goKfSCTC4OAg09PTeL1ejDHU1tZSWlqKx+NZ0uDH5XIRDAYJhUJMTU0xMTGxqPPFYjHa2tro7++ns7OT3//932fjxo2Ul5dz//33s3v3biKRCHv37uXIkSOcP3+eoaEhRkdHOX36NIlEgtbWVqLR6FW/5/nvpK6ujurqampqatixYwcAX/va1wp9mhwOB06nk4ceeogHH3yQH//4x/zxH/8xb775pqZ+iYiIiIiIiOStiODH4XAQCoVoaGigsbGxsHrX4OAg7777Lm+//Tb9/f2F0MfpdOL1elmzZg2PP/4427dvZ9OmTXi9XmZnZxkaGuLw4cO0trZ+oEcMQCKRoKenh+7ubsbGxha8mtb8tLCRkRFmZ2cLfXout1T8L7p4ulQsFqOsrAyA6upqNm/eTHt7O5OTk0sSWhhjaG5uZt++fezdu5fDhw/zzDPPLHq5+Gw2Szwe58yZMxw8eJCxsTHuvvvuQmVWOBxm9+7dVFdXc/78ed58803GxsZ45ZVXiMVinD59mqmpqat+Rmstzz77LG+99RYPP/wwn/3sZwuNoedDn/nm2POcTiePPvooL7/8Mu3t7YsOuURERERERERWi2UPfowxlJSUsGPHDj72sY+xYcMGioqK6O/v5/vf/z5vvfUWg4ODGGOoqakhHA5TVVVFc3MzDQ0N7Nu3j7KyMowxdHV10dnZydGjRwtTf1Kp1CUraQFMT08zNDREJBK5rtW0YrEYXV1djI6OkkwmC316ioqKrtmwGOaqhub71qxfv74QeNXX11NeXo4xZsmCn5qaGnbu3Mn9999PeXk5HR0dvP7668zMzCzqGul0mqGhIZ577jleeeUV7r33Xvbs2cOmTZuoqKigrKyMUCjEhg0baGho4P3336ejo4O+vj5GR0cvmaZ3JWNjY7zzzjt0dXXx0ksvUV5eTmlpKZWVlTQ1NbFnzx7uuOMO0uk0R44cYe/evSQSicI0OhERERERERGZs+zBj8PhIBwO09LSUujPAxCNRguBQTAYJBwOs379eurq6gqratXU1LBhwwastfT09NDW1sa7777Lm2++yeDgIJlMBo/HQyAQIBAIFAKg+WqhYDD4gSXfryadThcChmw2Sy6XY3p6esFNhWdnZxkfH+fChQuF8MXtduP3+ykqKrr+L+8a18pkMgQCAbZv387nPvc5zpw5Q39//4IrnC7HWksymaSzs5O+vj6GhoY4d+4cDQ0N1NfXc/fdd7Nt2zaCwSBbt24lGAxSVVVFZWUlPT09XLhwgYmJiauGT/OVRfF4nN7eXrxeL16vl+LiYjZt2oTf72fnzp2k02na2toYHBzk/fff5/jx44WqMBERERERERFZ5uDH4XDg9Xppampi27ZtrF+/vhDQ+Hw+1q9fT1FREQ6Hg8rKShobG6mtrWXNmjXU1NTgdDrp7e0lEonQ2trKiRMnaGtro7OzsxBuOBwO3G43LperEDbMTysrLy+/rt461trCOeZXBZucnFxQtQ9AJpMhHo8zPj5+ybl+cerSYllrGRsbY2BggNnZWdasWcMjjzzCc889d11T264mm80yPT1NZ2cng4ODBINBKioqaG9v5/HHH2fjxo00NTXR3NzM+vXraWpqIpFIcPToUd54440FVx7Nh2vT09OFCq3+/v7CCmmtra20tbXx3nvvMTU1dc1eSyIiIiIiIiK3k2ULfub79NTU1PDoo4/y0EMP0dDQgN/vxxhDU1MTv/mbv0k6ncblcuH1eguVMalUikgkwsDAAC+88AJnzpzh1KlT9Pb2Mj09fUmwkU6niUQijIyMkE6ncTqduFwu/H4/brd7Qf15lpK19qaHE/ONpIeGhpiZmSlMp2tpaaGjo4Pp6eklG4O1lkQiQSKRYGRkhK6uLk6dOsVDDz3E5z//eTZt2kQoFGLTpk382q/9Gi0tLYXKoxuZluV0OgtVWrOzsxw4cIDOzk41dBYRERERERG5jGULftxuN+Xl5bS0tHDXXXdRVVWF1+stNO/1er1UV1cDFEKK+eqP8fFx3nnnHU6dOsX+/fsZHh5mYmLislUk2Wy20FdnZmaGoqKi2yIkmK8omv+s4XCYT37yk5w8eZLJyclFN3q+0jVnZmbo6urC5/OxceNG/H4/DQ0NuFwuqqqq2LJlC6WlpQwPD99Q8LNu3TqqqqoASKVSS1K9JCIiIiIiIrJaLVvwM79CUygUYv369YRCIZxOJ1NTU4U+Oul0mlwux+nTp+nt7WVsbIyRkRHOnz/PiRMniMfjl12162K5XI7BwUE6OzuJxWIUFxcXtq9m2WyWZDJZmMZmjGHz5s1UVVXh8XgWFPwYYwiHw3g8HqampgrNk6+1Ktfo6Civv/463d3dvPbaa+zZs4etW7dy3333UV9fz0c+8hHGxsYYGhpacH+kefMNpCcnJzl06BB9fX23RZAnIiIiIiIiciOWLfhJp9NMTk5y7tw5urq6CIfDOJ3OQkjT399PNBrFWsupU6fo7+8nEokQi8WIx+OMjY1dM4SYl8vlyOVyhQqY+dW5xsbGrmtVrw+TRCLB+fPnOXnyJC0tLTgcDlwu12WXQ78ch8NBbW0tX/rSl6itreXs2bO0t7fT0dHB6dOnr1mtk8lk6O/v56c//Snvvfce99xzD83NzVRUVPDUU09x+vRp4vH4dfflmZiYIBqN4na7qaysXPD7RERERERERG5Hyxb8ZLNZEokEg4ODnD17lubmZgKBAIlEgv7+ft555x2OHz9OJpNhfHycRCJBOp0mm82SzWZxOBwEg0HcbjepVOqaS3lfPO1pZmaGwcHBQmPm5ZTNZpmdnb3uypdryWQyxGKxwpQqj8eDz+ejurqa4uJiJiYmrvp+t9tNY2MjDzzwADU1NdTU1BAOh3G5XIyOjhKJRAorm12OMYZcLkcikSASiTA5OUk2m8XpdFJVVUUgEMDluv4/fqWlpRQXF+N0Ogv9oERERERERETk8pYt+LHWkslkmJqaYnx8vLBEutfrJRAI4HA4GBwcZHp6mng8Ti6Xw+Px4Ha78Xg8eDweysrK8Pv9jI+PMzw8zNTU1IKunUqlCn1ubiRwmQ+fbqRHzS+anp4uhFBLOWUpl8sxOTlJT08PiUSisKz9unXrKC0tvWRJ+ctxuVzU19fT0NBAOBwu/L6UlJRQUlLC6dOnmZqaYnBwkGQyeUkA5Ha7KS4uprS0FL/fz5o1a9ixY0chqLk4hLtegUAAr9dLOp1mcHBw1U/ZExEREREREVmMZV3OfX6Fq6mpKaampkin05SXl7NlyxZSqRSjo6NMTEzQ09MDQFlZGcXFxbjdbvx+PxUVFcTjcYwxTE5OLjj4yeVyheqhGwkgZmdnSSQSAPh8Plwu14JDIGPMJVUq8Xic7u5uRkZGljT4sdYSjUbp6OhgYmKCcDiMz+ejsrKSYDBYCGCuNk63283MzAw+n4+SkhKKi4vZsGEDu3fv5vjx44yPj3PixAkmJiYKTZaNMQSDQdauXUtDQwMlJSWUlpaybt06SkpKyOVy9Pf3MzU1tajgLJFI0N7eruBHRERERERE5CqWNfiBuV4/7e3tHD9+vDC9aNu2bWzcuJG9e/cSjUZ54403sNayadMm1q5dS1FREel0mmg0yl/+5V8SjUavq1ePy+UiEAjg8XhwOBzXFR7MT1+anJwkEAjQ2NhIKBQqBEnXMt/Uel4mk2FmZuamTDlLpVJEo9HCtK75ay9ketTMzAwHDx6kurqazZs3s3nzZiorKwmFQmzZsoXNmzcXpuGlUqkPVPwEAoFCw+75sCuXyzE+Ps4Pf/hDzp49SyKRWFRwc/H3KCIiIiIiIiIfdM3gxxhTB/wtUAVY4FvW2m8aY/4A+A/AaP7Qr1tr91/vANLpNG1tbYXVtnw+H/X19Xg8Hqqrq1mzZg2lpaVYawkGg3g8HmZnZzl//jwdHR2cPHmS/v7+61qePBAIUFtbS2lpKUVFRddVeZLL5XA4HAQCAcrKyqivrycQCFyzZw7MBRVFRUX4fL5C+HIzK1aSySR9fX288cYb3HnnnQD4/f5CldLVwqZsNsvQ0BAvvPACra2tbN++ncbGRhobG7njjjsoKSkpLNF+sfnP9YshUy6XK/RWam1tJRqNLqqvUVlZGY8++ijf+MY3lmTKnYiIiIiIiMhqtJCKnwzwVWvtu8aYEHDMGPNKft+fWmv/aDEDyGaz9Pb2Mj4+zttvv80bb7xBY2MjHo+n0MB327ZtxONx+vr6GB8fZ2xsjKNHjzI4OMjAwMCCpmxZawt9eTKZTGGVr+sd69jYGO+++y4VFRU0NDTQ1dXF1NTUgs4VDAZpbGzknnvuAeaCmRMnTtDX10cymbyusSxELpcjlUoRj8ex1uJyudi+fTvNzc0cP36csbGxq75/dnaWU6dOcebMGQ4fPozf76eyspK77rqLzZs3EwwGufvuuykrK8Ptdhfe53Q68Xq9pFIpMpkMqVSKsbEx/vmf/5mTJ0/S2tp6XUHdlajiR0REREREROTqrhn8WGsHgcH8z3FjTDtQu5SDuHiFryNHjnDq1ClcLhdOp5NAIEBfXx/RaJSenh4ikQiJRIK+vj5mZmYWVO2RTCbp7Ozk+eefp6ysjMnJSdra2uju7r7u5dxTqRRHjx6lp6eHYDBINBpdcPVKJpNhcnKSzs5OioqK6O7u5tlnn6Wjo+OmBD/w8+92dnYWay2Tk5PE4/EFV8nMh0fpdLowxW1gYIDDhw9TVFREbW0tXq/3khW6/H4/4XCYaDRKMpkkmUwyMzPDhQsXiEajhWbdN6KoqKgQMqm/j4iIiIiIiMjVXVePH2NMA3AXcBR4APiKMeZXgXeYqwq69nynK5ifCjQwMMDo6GihL4zb7WZgYIBUKkUsFiusxDUzM7Pgf/inUil6e3s5cOAAPp+PRCLB8PBwYUny62GtZXR0lGg0itPpJJ1OFxobX8vs7Cznzp3ju9/9LtXV1QwNDfHuu+8yMTFxU0IMay0zMzMcP36cF198EZ/Px7Fjxzhz5sx1V9zMV0xls1mSySSRSARjDENDQ4U+PjA3xcvj8RAKhQqBUyaTKQRQN1JpdbF0Ol34s3D69OlFTRcTERERERERWe3MQv8RbowJAoeBP7TW/oMxpgoYY67vz/8Aaqy1/+4y7/si8MX8y3tuaJD5UOFGAwNjDF6vt9BsOJPJkEwmmZ6evuHg4OIGydczLpfLhd/vx+PxkEwmF93g+FqcTidr1qxhz549eDweenp66O7uZnR09NpvXoDLTbdyOp243e5C4DP//SzF57zvvvvYt28fjY2NHDx4kO985zuLPqeIiIiIiIjIh9wxa+29l9uxoODHGOMGfgK8ZK39k8vsbwB+Yq3dfo3zLN165XJdnE4nMBdSfZinSM0vFx8MBkkkEsRiseUekoiIiIiIiMhyu2Lws5BVvQzw10D7xaGPMaYm3/8H4F8BrUsxUrk5VsuUKGst8XiceDy+3EMRERERERERWfGuWfFjjHkQeA14H5gvFfk68MvAncxN9ToP/MeLgqArnWsUSDA3RUxEVq416D4VWel0n4p8OOheFVn5dJ/KarDeWltxuR0L7vGzVIwx71yp/EhEVgbdpyIrn+5TkQ8H3asiK5/uU1ntPtiZV0REREREREREVgUFPyIiIiIiIiIiq9RyBD/fWoZrisj10X0qsvLpPhX5cNC9KrLy6T6VVe2W9/gREREREREREZFbQ1O9RERERERERERWqVsW/BhjPmGM6TDGnDPG/O6tuq6IXMoYU2eMedUYc8oY02aM+e389jJjzCvGmLP5/4bz240x5s/y9+57xpi7l/cTiNxejDFOY8xxY8xP8q8bjTFH8/fk940xRfntnvzrc/n9Dcs6cJHbhDGm1BjzvDHmtDGm3Rhzv56pIiuPMeY/5//u22qM+a4xxqtnqtwubknwY4xxAv8X+BfAVuCXjTFbb8W1ReQDMsBXrbVbgfuAL+fvx98FDlhrNwEH8q9h7r7dlP/1ReCvbv2QRW5rvw20X/T6fwN/aq1tAiaA38hv/w1gIr/9T/PHicjN903gp9bazcAdzN2veqaKrCDGmFrgt4B7rbXbASfwNHqmym3iVlX87AbOWWu7rLUp4HvAZ27RtUXkItbaQWvtu/mf48z9BbWWuXvyb/KH/Q3wL/M/fwb4WzvnLaDUGFNza0ctcnsyxqwDPgU8k39tgEeA5/OH/OK9On8PPw98PH+8iNwkxpgS4KPAXwNYa1PW2kn0TBVZiVyAzxjjAvzAIHqmym3iVgU/tUDvRa/78ttEZBnly1bvAo4CVdbawfyuIaAq/7PuX5Hl83+A/wrk8q/LgUlrbSb/+uL7sXCv5vdH88eLyM3TCIwC/y8/JfMZY0wAPVNFVhRrbT/wR8AF5gKfKHAMPVPlNqHmziK3KWNMEPgh8DvW2tjF++zccn9a8k9kGRljPg2MWGuPLfdYROSKXMDdwF9Za+8CEvx8WhegZ6rISpDvs/UZ5sLatUAA+MSyDkrkFrpVwU8/UHfR63X5bSKyDIwxbuZCn+estf+Q3zw8X26e/+9IfrvuX5Hl8QDwS8aY88xNkX6EuV4ipfkydbj0fizcq/n9JcD4rRywyG2oD+iz1h7Nv36euSBIz1SRleVRoNtaO2qtTQP/wNxzVs9UuS3cquDnbWBTvmt6EXONtH58i64tIhfJz0/+a6DdWvsnF+36MfCF/M9fAH500fZfza9Ech8Qvah8XURuEmvt16y166y1Dcw9Nw9aa/8N8CrwZP6wX7xX5+/hJ/PHq8pA5Cay1g4BvcaYlvymjwOn0DNVZKW5ANxnjPHn/y48f6/qmSq3BXOr/vwaYz7JXK8CJ/CstfYPb8mFReQSxpgHgdeA9/l535CvM9fn5wdAPdADPGWtjeQfjn/BXDnsNPDr1tp3bvnARW5jxpiHgf9irf20MWYDcxVAZcBx4N9aa2eNMV7g75jr2xUBnrbWdi3TkEVuG8aYO5lrwF4EdAG/ztz/XNUzVWQFMcZ8A/g8cyvcHgf+PXO9fPRMlVXvlgU/IiIiIiIiIiJya6m5s4iIiIiIiIjIKqXgR0RERERERERklVLwIyIiIiIiIiKySin4ERERERERERFZpRT8iIiIiIiIiIisUgp+RERERERERERWKQU/IiIiIiIiIiKrlIIfEREREREREZFV6v8D5d0XhtC/r8wAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "num_samples_to_plot = 9\n", + "\n", + "for i in range(num_samples_to_plot):\n", + " plt.figure(figsize=(20, 20))\n", + " data, target = emnist_lines[i]\n", + " sentence = convert_y_label_to_string(target.numpy()) \n", + " print(sentence)\n", + " plt.title(sentence)\n", + " plt.imshow(data.squeeze(0), cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([1, 28, 952])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from text_recognizer.networks.misc import sliding_window" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "data, target = emnist_lines[8]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([1, 28, 952])" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([34])" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "target.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "patches = sliding_window(images=data.unsqueeze(0), patch_size=(28, 28), stride=(1, 14))" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([1, 67, 28, 28])" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "patches.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "# remove batch size\n", + "patches = patches.squeeze(0)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAADgCAYAAAB1lqE5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAoEklEQVR4nO3df3BV5b3v8c9DfhAhQAKBEDkoCvgDUdDSWr3F8eiovZ1jlc5otdM73k7neNo5TtuZzvRabzt17kxntPbHaDvjlLaO0qmcnrZS0TnVY/WKlVZHVDRBbgU1qPwIP5IQIAkk8Nw/2O1BWd8nyc7aaz977fdrhiGsT1b2k53vd+/kYWd9nfdeAAAAAAAAyJ8J5V4AAAAAAAAASoONHwAAAAAAgJxi4wcAAAAAACCn2PgBAAAAAADIKTZ+AAAAAAAAcoqNHwAAAAAAgJyqHc/JzrlPSrpXUo2kn3vv7xrh/Zkdj6rmvXdZ3A69CYwNvQnEid4E4kRvAnGyetN5X1xvOOdqJL0p6SpJ70t6SdLN3vs3AufQiKhqWTxJ0pvA2NGbQJzoTSBO9CYQJ6s3x/OrXh+TtNV7/7b3/oikf5N03Tg+HoB00JtAnOhNIE70JhAnehNIyXg2fuZIeu+Ef79fOAagvOhNIE70JhAnehOIE70JpGRc1/gZDefcrZJuLfXtABgbehOIE70JxIneBOJEbwIjG8/Gz3ZJc0/49z8Ujn2A936lpJUSv3MJZITeBOJEbwJxojeBONGbQErG86teL0la6Jw7wzlXL+kmSWvTWRaAcaA3gTjRm0Cc6E0gTvQmkJKiX/HjvR92zt0m6UkdH6/3gPd+U2orA1AUehOIE70JxIneBOJEb6JUamuL2wY5duxYUVkMih7nXtSN8dI7VLksRl8Wg95EtaM3gTjRm0Cc6E1Usjxv/JRinDsAAAAAAAAixsYPAAAAAABATrHxAwAAAAAAkFNs/AAAAAAAAOQUGz8AAAAAAAA5VfQ4d2A8nLMHAYSy0BS6LCfU1dXVmdmcOXMSj+/YsaNUy8mNSq8LqbjaCE0W6O7uNrMDBw6Y2dDQkJmhckycOFFz585NzKgNANVq4sSJZtbW1lbUx+zq6jKz0OPm8PBwUbeH0nDOqb6+PjHLsjaoi/KbPn26mX3uc58zs+bmZjN7/vnnzWzdunWJx2OZ9sUrfgAAAAAAAHKKjR8AAAAAAICcYuMHAAAAAAAgp9j4AQAAAAAAyCk2fgAAAAAAAHKKjR8AAAAAAICcYpw7JIVHZc+YMcPMGhsbzaypqcnMZs2aZWaTJk0ys/7+fjMLjUvfsmVL4vEjR46Y54TGgE+bNs3Mrr322sTjv/71r81zYpZlbcRSF1K2tRG6r/785z+bWXt7u5mFRn1nLVRDxQjd/3nT3NysG264ITGr9NpIuy6k6qqNPLFGc4ceh1EdrNr4zGc+Y57z1a9+1cwmTLD/z/u5554zs87OTjN7+OGHzSyWx9tq0tzcrGuuuSYxy7I2qIvyC41z//KXv2xmZ555ppk99thjZtbR0ZF4fM+ePeY5WeIVPwAAAAAAADnFxg8AAAAAAEBOsfEDAAAAAACQU2z8AAAAAAAA5BQbPwAAAAAAADnFxg8AAAAAAEBOMc69itTW2l9ua1ymJF1yySVmtmDBAjM79dRTzWzmzJlmFhrbfejQITN7++23zeyXv/xl4vFdu3aZ54TGyC5fvtzMbr/99sTj69atM8+JgVUfWdZGLHUhZVsbU6dONc/53ve+Z2bbt283s9Co0NDI0lAWGr89Z84cM5s3b56ZDQwMJB7v6ekxzwl9bfr7+81seHjYzGLV1tamO+64IzHLsjZiqQuJ2sijs88+O/H4li1bMl4JYmPVxje+8Q3znAsuuKCo21q8eLGZbd261cyeeOIJM2Nsd/ZaW1vN+siyNqiL8gs9t4e+z6ivrzezUC1MmzYt8Tjj3AEAAAAAAFBSbPwAAAAAAADkFBs/AAAAAAAAOcXGDwAAAAAAQE6x8QMAAAAAAJBTTPWqUKEJR7Nnz048vmLFijGfI0nXX3+9mc2aNcvM6urqzCw0BaampsbMQg4fPmxmZ5xxRuLxNWvWmOc8+eSTZha6ontLS0vi8dBUtXJrbW3V5z//+cQsy9qIpS6kbGsj9HmHpimFhKaxXX311WYWmsbW1NRkZkuWLDEzayqLJPX29iYev++++8xzQlpbW83smWeeSTwe8+Qg55z5tcyyNmKpCynb2ghNCdu7d6+ZHTt2bPQLqxKh58Arr7wy8Xjo/i+32tpaTZ8+PTGjNsammNo466yzzHO892YWemxZvXq1mYW+lwhN+kT2GhoazPrIsjaoi/ILPYesXbvWzBYuXGhmHR0dZrZ///7RLaxMxvWTqHOuU9IBSUclDXvvl6WxKADjQ28CcaI3gTjRm0Cc6E0gHWm8BOEfvff2f20AKBd6E4gTvQnEid4E4kRvAuPENX4AAAAAAAByarwbP17SfzrnXnbO3Zr0Ds65W51zG5xzG8Z5WwBGb0y92d/fn/HygKo1pt4MXSsEQKrG1JtcqwfIDM+bQArG+6ten/Deb3fOzZL0lHPu/3nvnzvxHbz3KyWtlCTnnH1FLQBpGlNvzp49m94EsjGm3vzIRz5CbwLZGFNv1tXV0ZtANsbUmxdddBG9CSQY1yt+vPfbC3/vlrRG0sfSWBSA8aE3gTjRm0Cc6E0gTvQmkI6iX/HjnJssaYL3/kDh7asl/Z/UVobgOPTQmLmlS5cmHr/pppvMc0LjeGfMmGFmAwMDZlbsGNbm5mYzmzJlipmdcsopZmaN2G5vbzfPeeqpp8wsNEY5NJo7C8X05vTp0836iKU2sqwLqTJqI3Rbofvr2muvNbPQ+O1QLRT79enr60s8fs0115jnTJs2zczmzJkz5vNWrlxpnpOmLJ83066NWOpCyrY2QmNb161bZ2ahka5DQ0NmVq0aGxsTj9fU1GRy+8X0ZmNjo5YvX56YURvpsWojNAI+NLI79Njy+OOPm9ng4KCZHThwwMwwPsX0pnPOrI8sa4O6KL9Q365atcrMQt/XPPPMM2bW3d09qnWVy3h+1atV0prCDzK1kh723j+RyqoAjAe9CcSJ3gTiRG8CcaI3gZQUvfHjvX9bkv1fgADKgt4E4kRvAnGiN4E40ZtAehjnDgAAAAAAkFNs/AAAAAAAAOQUGz8AAAAAAAA5xcYPAAAAAABATo1nqhdGKTTCedasWWa2YMECM7vrrrvMbP78+YnHQ6Nzu7q6zOy+++4zs9Co29A47JBLL73UzK666ioz+/jHP25mU6dOHdPxatPQ0KBzzjknMYulNrKsi5GyLLW0tJjZ+eefb2ZLly41s+uvv97MQuO3Q49lx44dM7MQa2TmZz/72aLWERr/fN555yUeX7t2rXlOzLKsjVjqQsq2NkKjt++++24ze/TRR82ss7PTzKrVhAmV9/+Qp512mn784x8nZtRGeqzaCPV6aGT30NCQmb3zzjtmtmXLlqJuD+Vh1UeWtUFdxC30ePv1r3/dzCr561p5z7QAAAAAAAAYFTZ+AAAAAAAAcoqNHwAAAAAAgJxi4wcAAAAAACCn2PgBAAAAAADIKTZ+AAAAAAAAcopx7hmor683s9Co6WXLlplZaNR7Y2Nj4vGtW7ea52zcuNHM1qxZY2Y7d+40s56eHjMLCY3oDI2knz17tpm1tbUVtZZqMTg4aNZHLLWR57qorbUfim+++WYzC41lnzFjhpmF7st9+/aZ2fr1682so6PDzIod6W0JjX4OjSq/6qqrUl1HFpxzZn1kWRuVUBdS+rUxc+ZM85wrrrjCzHp7e80s9Nh4+PBhM0NcamtrzfqgNsor9BxXV1dnZqHvJSp5hDP+C7WB0cjr15RX/AAAAAAAAOQUGz8AAAAAAAA5xcYPAAAAAABATrHxAwAAAAAAkFNs/AAAAAAAAOQUGz8AAAAAAAA5xTj3lFgj1KXw6PXvfOc7RZ3X399vZk8//XTi8TvvvNM8Z8eOHWa2Z88eMyt23F1oZGJLS4uZhUZzh8buhsY3Qurs7NQXvvCFxCzL2qAuTtbU1GRm06ZNM7PQ57Zt2zYze/31181s9erVZtbe3m5mR48eNbNi1NTUmNk777xjZosXL048PjQ0NO41lUOWtVEJdSGlXxunnnqqec55551nZt3d3Wb2hz/8wcx2795tZojP8PBw4nFqo7xCjwOtra1mdvnll5vZa6+9ZmZWHSA+WdYGdYHY8IofAAAAAACAnGLjBwAAAAAAIKfY+AEAAAAAAMgpNn4AAAAAAAByio0fAAAAAACAnGLjBwAAAAAAIKdGHOfunHtA0j9J2u29X1w4Nl3SryXNk9Qp6UbvfU/plhmH0Kjp+fPnm9myZcvMLDQqtqGhwczeeustM3v11VcTj2/dutU8Z2BgwMyKHdkeGpkYGjV85ZVXmtlHP/pRMwuNYdy3b1/i8WPHjpnnxC7N3jx8+LBZH1nWRix1IcVTGxMm2PvzoTHkmzdvNrN77rnHzF588UUzC43DLsVo7mK89957ZjZv3rzE46E6KEZWz5tZ1kal14VUXG2sWLHCPGfRokVm1tjYaGZr1641s0cffdTMYnlMKoW+vr7E42nXT5q9OTg4qDfffDMxy7I28lwXkl0boce42lr7x5uJEyea2SWXXGJmq1atMrM9e/aYGUYnzd703pv1kWVtUBeIzWhe8fOgpE9+6Njtkp723i+U9HTh3wCy9aDoTSBGD4reBGL0oOhNIEYPit4ESmrEjR/v/XOSuj90+DpJDxXefkjS9ekuC8BI6E0gTvQmECd6E4gTvQmUXrHX+Gn13u8svL1Lkv27FACyRG8CcaI3gTjRm0Cc6E0gReO+uLM/fpEP80IfzrlbnXMbnHMbxntbAEZvLL1Z7LV6AIzdWHqTawQA2RlLb/b05P7SlkA0xtKbe/fuzXBlQOUoduOnyznXJkmFv3db7+i9X+m9X+a9t69wDCAtRfWmcy6zBQJVqqjenDlzZmYLBKpUUb3Z3Nyc2QKBKlVUb7a0tGS2QKCSFLvxs1bSLYW3b5Fkj6EAkCV6E4gTvQnEid4E4kRvAikazTj31ZIul9TinHtf0nck3SXp351zX5S0TdKNpVxklkIj1BcsWGBmP/nJT4o6b/LkyWa2bds2M/v+979vZuvXr088fvDgQfOckNCrQerr683s3HPPNbPQiPsvfelLZjZ9+nQzGx4eNrPHH3888fjGjRvNc2IfkZpmbx47dqyo+ki7NmKpCyme2hgcHDSzLVu2mNltt91mZi+99JKZHTlyxMwq4VcC+/v7zeyRRx5JPN7b25vqGrJ63syyNiq9LqTiaiP0uYWe20OvBrngggvMLPSYFPtz0khC6+/s7Ew8Hqq7YqTZmz09PWbdZFkblV4XUnG1Efqe5ZRTTjGzCRPs//OeN2+emU2ZMsXM+JXc8cvqe9osa4O6yKeJEyeaWVtbW+Lxvr4+85zu7g9f07x0Rtz48d7fbERXprwWAGNAbwJxojeBONGbQJzoTaD0xn1xZwAAAAAAAMSJjR8AAAAAAICcYuMHAAAAAAAgp9j4AQAAAAAAyCk2fgAAAAAAAHJqxKleeVRTU2NmU6dONbOzzz7bzObPn29moVHT7777rpm98MILRWVdXV1mZgmNMAyNPmxtbTWz6667zswuvPBCM5s2bZqZhUZz79ixw8yeeuqpxOPt7e3mOXkYkZqGLGsjlrqQ4qmN0MjarVu3FpUdPnx4XGuqVLt27Uo8PjQ0lPFK0kFtpMeqjU2bNpnnhO7/0ONVY2OjmYW+P6nUOv2b0OOmdT8PDAyUajnjNjg4aK47y9qo9LqQiquNnp4e85yZM2cWtY65c+ea2ZIlS8zMGjkv8b1kOQwPD5v1kWVtUBeVK/Szz9VXX21m3/zmNxOPP/bYY+Y59957r5n19/ebWTF4xQ8AAAAAAEBOsfEDAAAAAACQU2z8AAAAAAAA5BQbPwAAAAAAADnFxg8AAAAAAEBOsfEDAAAAAACQU1U5zn3GjBlmtnz5cjO76aabivqYfX19Znb33Xeb2fPPP29m1uhZyR4Heu6555rnnH766WZ26aWXmtlZZ51lZldccYWZ1dXVmVloxP2LL75oZk888YSZ/f73v088Pjg4aJ5TW2u3R2jMXyWaNGmSzjnnnMQsy9qIpS6keGojNBZ427ZtZhZ63KlW1njXo0ePZrySdFAb6bFqo7293Tynt7fXzKZOnWpmLS0tZtbQ0GBmhw8fNjPvvZlVgkrszf7+frM+sqyNPNeFZNdGR0eHec6CBQvMrKamxsyamprMbPHixWYWGtXM2O7sDQwMmPWRZW1QF5Ur9L380qVLzeyiiy5KPN7a2mqeE/r55re//a2ZhR77Lfn66RUAAAAAAAB/x8YPAAAAAABATrHxAwAAAAAAkFNs/AAAAAAAAOQUGz8AAAAAAAA5VZVTvWbPnm1moav2L1y40Mycc2YWmg4UmvwQmu5hTWCSpNNOOy3xeGgC0xlnnGFmoauXT5kyxcxCQp/3+vXrzeyPf/yjmb3wwgtmFvoaWCZPnmxm1n0s2VeCD9VIuU2fPl0333xzYpZlbVRCXUjZ1kZoEsBll11mZrNmzTKzzs5OM8sza8JN7JNvrPqgNtJj1UCxU6VCE1tCEzwOHTpkZrHX6XhYj/0xT/WSiltf2rWR57qQ7NrYtGmTec6nP/1pMwtN6wk9F+dtmmueDQ4OmvVBbWA0Qo/ToYmC+/fvTzwe+lnq29/+tpm99NJLZvbmm2+amYVKBQAAAAAAyCk2fgAAAAAAAHKKjR8AAAAAAICcYuMHAAAAAAAgp9j4AQAAAAAAyCk2fgAAAAAAAHJqxHHuzrkHJP2TpN3e+8WFY3dK+mdJewrvdof3/j9KtciQuro6M2tubk48fsMNN5jnhMb8hca519bad2VodO4999xjZkNDQ0XdnjVquqmpyTwnpKenx8x27txpZmvWrDGz0Ci8P/3pT2ZmjcmTpCNHjphZMeNOQ6O+33777TGvIzQasBhp9uasWbP0la98ZcxrSLs2KqEupPRro6GhwTwn9Bg3ZcoUMws9RqC00n7etOqU2qhMoeeCvI/mtlifd9r3R+zf01IbJ7M+77S/p0J5pdmb3nvqA+MSqp833njDzKyfR2bOnGmeM336dDO74IILzOytt95KPH706FHznNG84udBSZ9MOP4j7/3Swp+yPEECVe5B0ZtAjB4UvQnE6EHRm0CMHhS9CZTUiBs/3vvnJHVnsBYAY0BvAnGiN4E40ZtAnOhNoPTGc42f25xzrzvnHnDOJf9OFYByoDeBONGbQJzoTSBO9CaQkmI3fu6XNF/SUkk7Jf3Aekfn3K3OuQ3OuQ1F3haA0SuqN/fu3ZvR8oCqVVRv7tmzx3o3AOkoqjdD11EAkIqierO/vz+j5QGVpaiNH+99l/f+qPf+mKSfSfpY4H1Xeu+Xee+XFbtIAKNTbG+2tLRkt0igChXbm6ELAgIYv2J7s6amJrtFAlWo2N6cNGlSdosEKkhRGz/OubYT/rlCkj2KB0Bm6E0gTvQmECd6E4gTvQmkazTj3FdLulxSi3PufUnfkXS5c26pJC+pU9K/lG6JYaGRtYsWLUo8fvHFF5vntLW1mVl9fb2ZOefMLDRyd86cOWYWUsyYwuHhYTM7cOCAmYXGaIfGb4fGue/atcvM9u3bZ2ZZvrR6aGjIzDZv3mxmBw8eTDxegnHuqfWm996sjyxroxLqQkq/NkKPLag8aT9vMpYWSEfs39MC1YreRKUI/czhvR/zxwuNc7/xxhvNbN26dYnHe3p6zHNG3Pjx3t+ccPgXI50HoLToTSBO9CYQJ3oTiBO9CZTeeKZ6AQAAAAAAIGJs/AAAAAAAAOQUGz8AAAAAAAA5xcYPAAAAAABATrHxAwAAAAAAkFMjTvWKXWiM+uTJkxOPz5s3zzwnNB4+dFuhUdOhcdhHjhwxs9AI302bNplZZ2dn4vHt27eP+RxJWr9+vZmFPreBgQEzqwShcX3t7e1m1tvbO+aPV27bt2/Xt771rcSM2jhZ2rXR1NRknhMaDcmY7/zz3ptfZ2oDAAAgO8PDw2YW+tnHMmGC/Tqc888/38ymTZuWeLyvr8++rdEvCwAAAAAAAJWEjR8AAAAAAICcYuMHAAAAAAAgp9j4AQAAAAAAyCk2fgAAAAAAAHKKjR8AAAAAAICcqvhx7gcPHjSzzZs3j+m4FB6rHMpC49Vff/11M9u7d6+ZhcbxdnR0mNm7776beDw0cv7QoUNm1t3dbWYxjygvpdDnbY1YDo1eLrfe3l6tWbMmMaM2xqaY2gixRsBL4ced/fv3j/m2UFmoDQAAgOx0dXWZ2bPPPpt4fMmSJeY5NTU1qWcWXvEDAAAAAACQU2z8AAAAAAAA5BQbPwAAAAAAADnFxg8AAAAAAEBOsfEDAAAAAACQU2z8AAAAAAAA5FTFj3M/fPiwmb333nuJxzdu3Giec84555jZ1KlTzayvr8/MXnvtNTP7zW9+Y2ZHjhwpKrPGwBcz9k2S6uvrzayxsdHMGhoazOzgwYNm1tPTM7qFITVHjhzR+++/P+bz0q4N6uJkhw4dMrPOzk4zC92XyAdqAwDSMzQ0ZGah7/ORf9QG/iZUC9u3b088Hvq5fdKkSWY2bdo0M1u0aFHi8dC4eV7xAwAAAAAAkFNs/AAAAAAAAOQUGz8AAAAAAAA5xcYPAAAAAABATrHxAwAAAAAAkFNs/AAAAAAAAOTUiOPcnXNzJa2S1CrJS1rpvb/XOTdd0q8lzZPUKelG731U85a994nHh4eHzXOsUeiS5JwzM2ukmhQe8xcaLd/d3W1mu3btMjPLrFmzzKy21i6F0Bj7008/3cwmT55sZh0dHWbW29trZtbXtBql2Zv19fU69dRTE7Msa4O6OFlobOSBAweKOg+lldXzJrVRXgcPHjSzQ4cOmVnoe4lQhvHLqjepjcoUGoP83HPPmVno5wqMTuw/bxZTG9RFPoW+rlYthOpn3rx5ZtbU1GRmixcvTjz+wgsvmOeM5hU/w5K+7r1fJOnjkv7VObdI0u2SnvbeL5T0dOHfALJDbwJxojeBONGbQJzoTaDERtz48d7v9N6/Unj7gKTNkuZIuk7SQ4V3e0jS9SVaI4AE9CYQJ3oTiBO9CcSJ3gRKb0zX+HHOzZN0oaQXJbV673cWol06/tK8pHNudc5tcM5tGM9CAdjG25tHjx7NZqFAlRlvb+7duzebhQJVhudNIE7j7c3+/v5sFgpUmFFv/DjnGiX9TtLXvPcfuGiNP36BjcSLbHjvV3rvl3nvl41rpQASpdGbNTU1GawUqC5p9GZLS0sGKwWqC8+bQJzS6M1JkyZlsFKg8oxq48c5V6fjTfgr7/0jhcNdzrm2Qt4maXdplgjAQm8CcaI3gTjRm0Cc6E2gtEbc+HHHxwj8QtJm7/0PT4jWSrql8PYtkh5Nf3kALPQmECd6E4gTvQnEid4ESm/Ece6S/puk/yGp3Tm3sXDsDkl3Sfp359wXJW2TdGNJVjgO1mj20Aj1M844w8xCL+s988wzzcwaky1JF198sZmFxleHxkpali9fbmah0euh32MPjaq/9957zaynx57EmOfR3ClLrTfnz5+vVatWJWZZ1gZ1cbK6ujozmzJlSlHnMWK05DJ53qQ2Si/0uLNnzx4zC/2qwaJFi8wsNLp13759ZmZ9v1MprFHlJRhhnmpvWvWRZW3kuS4kuwYmTBjTZUpHZWhoyMz279+f+u3hA1LrTedc6vVBbWA0rMfj7u5u85zQOPfQc2AxNT7ixo/3/nlJ1q1eOeZbBJAKehOIE70JxIneBOJEbwKll/52OQAAAAAAAKLAxg8AAAAAAEBOsfEDAAAAAACQU2z8AAAAAAAA5BQbPwAAAAAAADk1mnHuFcsaY9ne3m6e09jYaGahEbhtbW1mVl9fX9R5M2fONLPm5mYzs8aLtrS0mOeEbNmyxcw2b95sZi+//LKZdXV1FbUWlMbEiRO1cOHCMZ+Xdm1QFyebPHmymZ122mlFnTcwMDCuNSEO1EbpHT161MwaGhrMLPQcffrpp5tZ6GsTGgdb6Wprk78dHR4eznglo+e9N+sjy9rIc11Idm2EeiU0AjnE+rkBlWXChAlmfVAbKCXr55hnn33WPGfJkiVmFqrXKVOmJB6vqakxz+EVPwAAAAAAADnFxg8AAAAAAEBOsfEDAAAAAACQU2z8AAAAAAAA5BQbPwAAAAAAADnFxg8AAAAAAEBO5Xqcu2Xbtm1mtmvXLjP7y1/+YmavvPKKmYVGxFtjKqXwqMqLLrrIzPbu3Zt4fNOmTeY5fX19Zvb000+bWej+2rNnj5lZI+fzIObxs5auri796Ec/SsyyrI0814Vk18bQ0NCYz5EYLzpWldib3nuzPqiN9Fj3Zehx7Mknnxzzx5Okt956y8wOHjxoZnl+fGxtbU08vmPHjoxXMnpDQ0NmfWRZG3muC8mujcsuu8w8JzQCeWBgwMxC3+f39vaaGeLS2Nho1ge1gVKyvl87cOCAeU7oMTy0T2DV+M9//nPzHF7xAwAAAAAAkFNs/AAAAAAAAOQUGz8AAAAAAAA5xcYPAAAAAABATrHxAwAAAAAAkFNVOdUrdPXsw4cPm9nOnTvNbM2aNWYWuiJ3TU2NmYWmev31r381s2Kmeh05csTMQlNNQtOI8jxporu728zuv//+xOO7d+8u1XLGrbu7W6tXr07MqI2xKaY2mpubzXNC0yI6OjqKWgcqx65du3TXXXclZtRG6Q0ODprZT3/6UzN7+OGHzezQoUNmtm/fPjPL8+OmNbEq5ul03nuzPrKsjTzXhWTXxquvvmqeE6qbN954w8y++93vmlmoNxGX/v5+sz6oDZRDaEJyaJrcxIkTzayzszPxeOjnNl7xAwAAAAAAkFNs/AAAAAAAAOQUGz8AAAAAAAA5xcYPAAAAAABATrHxAwAAAAAAkFNs/AAAAAAAAOSUG2kMpHNurqRVkloleUkrvff3OufulPTPkvYU3vUO7/1/jPCx8j1zMkOhMfDW1zTmsaiVpq6uzszmzJmTeHzHjh06fPiwS2sN9GaciqmN2tpa85zh4WEzC42HZGT32Hjvo+zNhoYGP3fu3MSM2iivCRPs/ztzzi6n0Pdd1fo8bd1f3vtoezP0vEltpMe6v2bMmGGe09jYaGbWeHgpPJZ7pJ+XqlGsvVlXV+ebmpoSM2oD5TBv3jwzW7FihZmF6vX5559PPL5hwwb19fUl9qb908Z/GZb0de/9K865KZJeds49Vch+5L3//ig+BoD00ZtAnOhNIE70JhAnehMosRE3frz3OyXtLLx9wDm3WVLyf1sDyAy9CcSJ3gTiRG8CcaI3gdIb0zV+nHPzJF0o6cXCoducc6875x5wzjWnvTgAo0NvAnGiN4E40ZtAnOhNoDRGvfHjnGuU9DtJX/Pe90m6X9J8SUt1fIf2B8Z5tzrnNjjnNox/uQA+jN4E4pRGbx49ejSr5QJVg+dNIE5p9Ga1Xg8LGMmoNn6cc3U63oS/8t4/Ikne+y7v/VHv/TFJP5P0saRzvfcrvffLvPfL0lo0gOPoTSBOafVm6EL+AMaO500gTmn1Zuji6kA1G7Ez3PHL6f9C0mbv/Q9PON52wrutkNSR/vIAWOhNIE70JhAnehOIE70JlN5oxrl/QtKfJLVL+ttr5+6QdLOOv+zOS+qU9C+FC3OFPhbz7lDVUh59SW8CKaE3gTjRm0Cc6E1g/GprRzNk/WTWrzQeO3bM7M0RN37SRCOi2qX5JJkmehPVjt4E4kRvAnGiN4Hxy3Ljh1+CBAAAAAAAyCk2fgAAAAAAAHKKjR8AAAAAAICcYuMHAAAAAAAgp9j4AQAAAAAAyKniLiMNAAAAAACAogwPD2d2W7ziBwAAAAAAIKfY+AEAAAAAAMgpNn4AAAAAAAByio0fAAAAAACAnGLjBwAAAAAAIKfY+AEAAAAAAMiprMe575W0rfB2S+HfMYhlLazjZLGsJY11nJ7GQkqE3gxjHSeLZS30ZnnEshbWcbJY1kJvZi+WdUjxrCWWdUjxrIXezF4s65DiWQvrOFlJe9N578f5sYvjnNvgvV9Wlhv/kFjWwjpOFstaYllHFmL6XGNZC+s4WSxriWUdWYjpc41lLazjZLGsJZZ1ZCGWzzWWdUjxrCWWdUjxrCWWdWQhls81lnVI8ayFdZys1GvhV70AAAAAAAByio0fAAAAAACAnCrnxs/KMt72h8WyFtZxsljWEss6shDT5xrLWljHyWJZSyzryEJMn2ssa2EdJ4tlLbGsIwuxfK6xrEOKZy2xrEOKZy2xrCMLsXyusaxDimctrONkJV1L2a7xAwAAAAAAgNLiV70AAAAAAAByqiwbP865Tzrn/uqc2+qcu70cayiso9M51+6c2+ic25DxbT/gnNvtnOs44dh059xTzrkthb+by7SOO51z2wv3y0bn3KcyWMdc59z/dc694Zzb5Jz7auF4Oe4Tay2Z3y9ZozfpzYR1RNGb1dyXEr1ZuG1684ProDcjQG/SmwnroDfLLJa+LKyF3qQ3R7uOkt4nmf+ql3OuRtKbkq6S9L6klyTd7L1/I9OFHF9Lp6Rl3vu9ZbjtyyQdlLTKe7+4cOx7krq993cVHqSavff/qwzruFPSQe/990t52x9aR5ukNu/9K865KZJelnS9pP+p7O8Tay03KuP7JUv05t9vm9784Dqi6M1q7UuJ3jzhtunND66D3iwzevPvt01vfnAd9GYZxdSXhfV0it6kN0e3jpL2Zjle8fMxSVu99297749I+jdJ15VhHWXlvX9OUveHDl8n6aHC2w/peAGUYx2Z897v9N6/Unj7gKTNkuaoPPeJtZa8ozdFbyasI4rerOK+lOhNSfRmwjrozfKjN0VvJqyD3iwv+rKA3jxpHVXdm+XY+Jkj6b0T/v2+yvcg5CX9p3PuZefcrWVaw4lavfc7C2/vktRaxrXc5px7vfDSvJK/BPBEzrl5ki6U9KLKfJ98aC1SGe+XDNCbNnpT8fRmlfWlRG+G0JuiN8uI3rTRm6I3yySmvpTozRB6M8PerPaLO3/Ce3+RpP8u6V8LL0OLgj/+O3jlGrl2v6T5kpZK2inpB1ndsHOuUdLvJH3Ne993Ypb1fZKwlrLdL1WI3kxW9b1JX5YdvZmM3qQ3y43eTEZv0pvlRm8mozcz7s1ybPxslzT3hH//Q+FY5rz32wt/75a0RsdfGlhOXYXf+fvb7/7tLscivPdd3vuj3vtjkn6mjO4X51ydjhf/r7z3jxQOl+U+SVpLue6XDNGbNnozgt6s0r6U6M0QepPeLCd600Zv0pvlEk1fSvSmhd7MvjfLsfHzkqSFzrkznHP1km6StDbrRTjnJhcupiTn3GRJV0vqCJ9Vcmsl3VJ4+xZJj5ZjEX8r/IIVyuB+cc45Sb+QtNl7/8MToszvE2st5bhfMkZv2ujNMvdmFfelRG+G0Jv0ZjnRmzZ6k94slyj6UqI3Q+jNMvSm9z7zP5I+peNXW39L0v8u0xrOlPRa4c+mrNchabWOv4RrSMd/9/SLkmZIelrSFkl/lDS9TOv4paR2Sa/reCO0ZbCOT+j4y+pel7Sx8OdTZbpPrLVkfr9k/YfepDcT1hFFb1ZzXxY+f3qT3vzwOujNCP7Qm/RmwjrozTL/iaEvC+ugN+110JsZ92bm49wBAAAAAACQjWq/uDMAAAAAAEBusfEDAAAAAACQU2z8AAAAAAAA5BQbPwAAAAAAADnFxg8AAAAAAEBOsfEDAAAAAACQU2z8AAAAAAAA5BQbPwAAAAAAADn1/wHtbldrzMHWoAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(20, 20))\n", + "for i in range(5):\n", + " ax = fig.add_subplot(1, 5, i + 1)\n", + " ax.imshow(patches[i].squeeze(0), cmap='gray')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Testing the data loader for EmnistLines" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "from text_recognizer.datasets.util import fetch_data_loaders" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2020-08-09 22:34:07.398 | DEBUG | text_recognizer.datasets.emnist_lines_dataset:_load_data:159 - EmnistLinesDataset loading data from HDF5...\n" + ] + } + ], + "source": [ + "dls = fetch_data_loaders([\"train\"], \"EmnistLinesDataset\", {}, batch_size=16, shuffle=True, cuda=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "dl = dls[\"train\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "d, t = next(iter(dl))" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([16, 1, 28, 952])" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "d.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([16, 34])" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "t.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [], + "source": [ + "patches = sliding_window(images=d, patch_size=(28, 28), stride=(1, 14))" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "torch.Size([16, 67, 28, 28])" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "patches.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAABDCAYAAADqHsJ5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmuklEQVR4nO3deXCU953n8fevD6kPqXWfLYQkJHPK5sZgiAEbGztxnMSuZJyk7Eyyyf6xqWR3s5Wanb92KzVTlarMJtnJJlXJZHaYHY9nU3FSGWO8DMEX2NxgECCB0A3oarXubvX57B9Sd5ABG4MAIT6vKhf008fzdEtPPfTH39/3ayzLQkRERERERERE5h7b3T4AERERERERERG5PRT8iIiIiIiIiIjMUQp+RERERERERETmKAU/IiIiIiIiIiJzlIIfEREREREREZE5SsGPiIiIiIiIiMgcdUvBjzFmuzHmnDHmgjHmL2bqoERERERERERE5NYZy7Ju7onG2IHzwDbgInAEeMGyrLMzd3giIiIiIiIiInKzbqXiZy1wwbKsVsuyosC/AM/OzGGJiIiIiIiIiMitctzCc/1A1xW3LwLrPuoJxpibKy8SEREREREREZHrCViWVXStO24l+LkhxphvAd+aodcC4GaXp8nVbDYbxhgSicTdPhQRERERERERuTkd17vjVoKfS8C8K25XTG2bxrKsXwK/hFur+CkoKKCqqgqAtrY2gsHgzb7UTUsFTzA3wiev18vmzZtxOBwcO3aMvr4+otHo3T6sO84YQ2ZmJi6Xi7GxMeLx+N0+JBEREREREZEZcSvBzxGgzhhTzWTg82fAl2fkqD7E4/GwYcMG1q9fTzgcZs+ePRw6dOiOhi/GGNxuN06nk0QiQSwWIxqNzsgxGGNwOBw4nU7sdjvhcPiOhA9ZWVk899xz5OfnU1payu7du7l48eJ9FXzYbDaysrKoqqpiyZIlnD59msbGRlVAiYiIiIiIyJxw08GPZVlxY8y3gd2AHfh7y7LOzNiRTXE4HNTU1PDMM8+wadMmAoEAgUCAEydOEIlEZnp3VzHG4HQ6KS4uxu/34/P5iEQiBINBBgcHCYfDDA4O3lQA5HA48Pl8eL1ecnJyyM3NxeVy0dXVRSAQYHh4+LaFMMYYXC4XGzdupLq6GpvNRmNjI319ffdV8JORkUFhYSGrVq3is5/9LDk5ObS2thIOh2c8WEwFfKnldZZlzVh4KCIiIiIiInItt9Tjx7KsXcCuGTqWqxhjyMnJ4fnnn2fz5s1UVFTgdDqpq6sjKyvrtgc/qSVAfr+f559/nvXr11NWVsbo6CgdHR00NTXR2trK7t27GRsb+0Sv7XA4KCsrY/369dTV1VFTU0NFRQU5OTkcOXKE9957j7fffptAIHDbg5hUj59kMnnfhRBut5vi4mKqq6tZvHgxgUCAV199lUgkMmNVP6nw0OPxkJubi8/nw2azEY1GaWlpuSMBpoiIiIiIiNyfbntz51thjCEvL49nn32WyspKnE7nHdu30+nE5/NRW1vLc889x4svvkhhYWG6z088HicUCnHx4kWi0Si7d+++of44NpsNj8dDbW0t3/nOd3j88ccpKCggIyMDm80GwMqVK9m+fTs/+9nPeO2112hvbyeZTM74e0y9l0gkQkNDA93d3Z8ohEgd7+04tjvF6/VSWVnJggULKCkpobS0NP2zmIngxxhDUVERS5YsYdOmTaxevZrKykpsNhs9PT1873vf09IyERERERERuW1mffDj8/lwuVwYY4jH43R3d3Pq1CmGh4dv677z8/Oprq5m/fr1bNu2jby8PGw2W7oixuFwkJWVRVlZGbW1tezdu/djgx9jDCUlJWzevJnvfve7LF26lMzMTMbHxwkGg0QiETIyMtIVKN///vcJh8P84Q9/oLe3d0bfn9PpJCcnh5ycHKLRKIFA4IaXHTmdTvx+P0uXLiWRSHD27FkuXbp0T4YXXq8Xn8+Hx+PBZrPhdrux2+0z8tqp5XQ1NTU8/PDDPPXUU9TU1JCdnU0ymSQ7O5va2lqam5vTn50xJh2opViWdU+HayIiIiIiInL3zNrgxxhDVlYWjz76KMXFxdjtdnp7e2lsbOSDDz64bcufbDYbJSUlfPazn2Xjxo0sXbqU2tpaEokEnZ2d9PT0YLfbKSsrY968eXg8Hh566KF0gPJRx5WTk0N9fT3PPvssS5cuxe12c+DAAfbt28fZs2cZGhqioKCAr33ta2zcuJHi4mKWL1/OqVOn6O/vn9Ev/y6Xi9LSUnw+H6Ojo4RCoesee3FxMZmZmRQUFFBXV8cjjzzCpz71KbxeL5cvX+YXv/gFf/zjH+/KpLVbYYyhsLCQ8vJyCgoKsCyLwcFBIpHILS95S4WWDz/8MN/+9repqqqisrIyHTBZlpXuLdTU1EQ4HE73kqqrqyMzMxObzUYymeTy5cv09PQQCAQIBoOMjIzM0CcgIiIiIiIic92sDX68Xi/Lli3jySefxOv1Mjw8zKFDh3j33Xfp7Oy8Lft0OBx4PB4eeOABVq9ezapVqygtLcXpdNLd3c2BAwdoa2ujqKgIm83GvHnzsNvt6WDEbreTSCSuGRq43W6WL1/O008/zbp163C73QwMDPDP//zPHD58mMuXLzMxMUFBQQFr165lw4YNOJ1OampqqKqq4tSpU4RCoRl5n6neSQsXLsTpdBIKhbh06dK0hsZ2ux23201BQQFf/vKXKS4uJjc3l/Lycurq6igpKeH8+fO0t7czNDR0TzaENsZQVlZGVVUVRUVFxONxurq6GB8fv6XqpVTl0Lx583jyySdZt24dWVlZ6TAHJqt43G4327Zto7CwkFgshtPpJDc3F7/fn15ulkwm6e/vZ2hoiO7ubk6fPs0bb7xBf3//TH0MIiIiIiIiMofNyuDHZrORnZ3NihUreOihh3A4HLS0tPDOO+9w5MiR27LMKyMjI93rZfPmzTz44IMUFhaSSCRobm7m3Xff5eDBgwwNDbFq1SpisRjJZJKJiQkuXbqUvn29ShGv10t9fT0bNmygrKyM8fFxdu3axZ49e+jq6iISiaQnPQUCgfTrlJeXU1FRgdfrnbHgJ/X5VlZWYoxJj6bPzMwkNzcXt9tNSUkJFRUV1NXV8cUvfpHCwkIyMzNxOBxYlsXp06fZtWsXJ0+e5Pz580xMTMzIsd1Jxhiys7PJz88nKyuLWCxGf3//LU/aysjIIC8vj9raWtasWUNBQUG6n9KV7HY7S5YsobKyEsuysNlsZGZm4vV6p03+mpiYIBKJEAgEqKiooKmpiWAweE8urRMREREREZE7a1YGP3a7nfz8fJYvX05hYSHxeJyjR49y8OBBWltbZ/QLb2pyV0lJCZ/+9KfZuHEjK1asICMjg6GhIS5fvsy+fft4+eWXsdlslJWVkZ+fT35+PolEgqGhIfbs2cPg4OBHVr34fD4qKyuZN28eNpuNvr4+fvazn9HR0UEsFpv22FTokGoMXFZWhs/nm7Eqj9QY+bKysnQfmmXLluH1etNLkOrr61m6dCkLFy7E5/MRj8cZHx9PfyY7d+5k165d9PT03NMjyVMBSzKZJBwOMzAwcMvvJSsri4qKChYvXkxVVdW00Ccej6eX7FmWle61lHLlY1PVQR6PB7fbTWZmJrFYjDVr1tDU1MTY2Jh6/4iIiIiIiMhHmpXBj9vtpqKigtWrV2O32wkGg5w5c4aenp4ZXVJkt9vxeDz4/X62bdvGt7/9bYqKiujq6uKPf/xjuprl5MmTjIyM8M1vfpMnnniClStXUlRURCwWIxgMcvz4cSYmJq4bGBhjmDdvHqWlpbjdbgBisRijo6NXfXG3LGvaaHW3253uJ9Ta2jojAYvP52PhwoWsX78eYwx+v5+/+Zu/mfbaqUqgWCzGW2+9xcmTJzlx4gQNDQ1cvHjxnqzw+bBUI2VjDJFIhN7eXg4fPnxLv2PGGBYsWMCWLVt47LHHKCsrS98XiUTSPXqutw+73Z4e/Z6Xl4fD4cBut2Oz2fB6vTzwwAN84xvf4MCBAzQ3NzM+Pq7wR0RERERERK5r1gY/+fn55ObmYlkWFy9e5PTp0wSDwRmtLPF6vVRUVLBmzRq2b99OaWkpoVCIt956i927d6eX1IyMjOB2u/H7/fj9fnw+H3a7nVAoxNjYGPF4/COPyxhDcXExhYWFuFyu6z7Osiyi0SgnT56ko6OD6upq7HY7ubm5FBcXp5f+3IrUZLGamhp8Pl9625Wj2UOhEB0dHfzbv/0bly9f5ve//z09PT1MTEzMqZDB4XCkK2mSySQjIyMMDQ3d0mtmZGSke0QtXLhwWk+fQ4cO8corr3Dw4EHGx8ev+3yfz0dFRQVLly7lwQcfZO3atZSUlOBwOHA4HNTV1bF169b0zykcDt/SMYuIiIiIiMjcNeuCn+zsbNauXcsXvvAFioqKGBwcZMeOHZw/f37GetzA5EjyVatWsWnTJjZu3Mi6devo7+/n0KFD7Nixg+bmZkKhEE6nk+rqaj7/+c/zzDPPpCd5hUIh2tvbef/99+nv7//IQCaZTHLmzBmam5tZtWoVubm5wJ+WGV1pYmKCt99+mx/96Ec899xztLS0sH//fg4ePDgjoUtquVp1dTXZ2dnp44tGowwODnL69GkOHTrEBx98wL59+wiHw4RCoXu+n4wxZtp/DoeDZcuWsXHjRhYuXEgoFOLs2bOMjo5ed5z7jYxVd7vdlJaWUlxcjMfjSW9PJpN0dXVx4cIFWlpaiEaj13y+zWYjIyODzs5Ompqa6OzsJC8vD5fLhc/nw+l0piuCrmwWLSIiIiIiInItsyr4McYwf/581q5dy6pVq3A4HHR3d3P48OH0COvUspfUkqmbncDk9/vZvn07mzdvprKykng8zu7du3njjTdobW0lEomQlZVFTU0Nzz//PM8++yxVVVVkZGQwNjZGY2Mj77zzDocOHbqhZU9jY2OMj48Ti8XSTYWrq6tpa2ubtuzHsizGxsbYvXs3LS0tBAIB+vr6brkSJcXj8VBeXo7f78dmsxGJRDh+/DinT5/m9OnTNDY20tbWxuDgIIODg1iWdc/270nxer2UlJQwf/58Kioq0hPLNm7cyJo1aygqKiIcDrN69WpeeOGF9O9aNBpNh14ul4uRkRH6+/vp7e1lYGDgmuGN1+vF7/dTXl4+LfgB0hViExMTH/k7G41GCYfDDA0NMTIyQmZmJt3d3SxfvpxFixZNW6ImIiIiIiIi8lFmVfBTWFjIpk2b2LBhA6WlpViWRUtLC263myeeeILCwkLcbjd2uz29TKmvr4/29nba2tro6elJL736KA6Hg6qqKhYtWkRVVRUej4fe3l5OnDjB2bNnmZiYwOfzUVJSwrJly9i0aRO1tbU4nc701K2Ghgbee+89Lly4cEPBUzgcJhgMEgwGKSkpwefzsWHDBg4ePHhVc+RkMkl3dzdDQ0NEIpGPXUp2o4wxLFy4kJUrV1JTU4MxhnA4zN69e3nzzTfp6OggEAjc8jjz2cbn81FTU8OaNWtYsWIFDocDl8vF0qVLKS4uJiMjA7vdTm1tLU899VS6siwcDjM6Oko8HicrK4tgMMiFCxdoaGggHA5fM/hxOBx4PB48Hg8Oh2Pa8rxEIjGtf9P1pCqLYrEY3d3dtLS0UFVVRU1NzbQg7l4P5EREREREROT2mzXBjzGGmpoaPvWpT1FfX4/L5SISiZBIJNiyZQsPPfQQZWVlOBwOEokExcXFOBwORkdHaWho4NixY5w8eZK2tjb6+voIBoPX3E9GRgaFhYWsXbuWyspK3G43oVCI8+fP097eTjweZ/78+SxYsIAFCxZQX1/PggULcDqdTExMMDo6ytmzZzl69CgNDQ3X3c+HhcNh2tvb01/iPR4PmzdvZseOHYyNjV012SuRSDA2NnbLn+uVbDYbdXV1LF26lPLy8vR+WltbOXLkyIzvb7bIyclh3rx5LFu2jLVr16arZQoKCsjIyMBms6XDxAULFjAwMIDNZmN8fJxoNIrD4SA3N5fx8XGcTid9fX20trZ+bM+lD1fk3EyFjs/no7CwkPz8fDweD5ZlEQ6HGR4eJhaLzameSyIiIiIiIjLzZk3wY7fb0yFLbm4uxhgyMjLYvHkzGzZsIBQK0d/fT3NzM4FAgIULF5KXl0dFRQXbtm1jzZo1tLS0cPToUd5++2327t17VUWGzWbD5/OxatUqvvSlL1FbW4vdbicQCHD06FGi0Si1tbVs2rSJRx55hJqaGvLy8tLjtjs7Ozl9+jRvvPEG+/bto6ur64a/eIdCIRoaGti/fz9LliyhtraWlStXsmTJkvSyqjvxJd7lcqUrXGw2G1lZWdTW1uJyuQiFQnMySPB6veTm5pKfn09+fn660inV7wcmp6wNDAzQ1dXFBx98QGZmJqOjo7jdbkpKSrDZbGRmZhKPx9Mj2T9pxU0qYLrRAMhms1FfX88TTzzBunXr8Pv9JJNJLl68yPnz5xkcHJzRKXciIiIiIiIy98ya4MfhcFBUVITX60031zXG4PF46OrqYseOHRw4cIDOzk7C4TA5OTnk5+fz5JNPsnXrVqqrq1mxYgXLly9nwYIFNDc3pyt4ruR0OvH5fOTm5pKZmYndbqeyspIXX3yRF154AbvdTlFREW63e1oflVgsxhtvvMHOnTs5deoUgUDgE33xTyaTtLS08NZbb1FXV0dVVRVut5uXXnqJSCTC4cOHGRwcnLkP9AYYY9KB2/z58wmHw9edNnUva2lpIR6PEw6HCYfD5Ofn09bWxqOPPkp5eTlOp5Ouri5+85vf8A//8A/09fVhs9mIxWI4nU7cbjculwuHw8HQ0BBjY2PXbc58pQ/3R7rydW5kKZ3NZqO2tpbFixfj9/txuVyMj49z/PhxGhsbGR4enlNL8kRERERERGTmzZrgp7i4mPXr11NaWooxhmQyydjYGK+//jo//elPOXfu3LT+PYODg3R0dNDU1MQrr7zCsmXLePrpp/niF7/Itm3bGBwc5Ac/+AGXL1+eFv4kEglCoVC6aiPVk8XlcqW/pH+4KsOyLCKRSLqpbzgcvqn+KvF4nO7ubg4cOMBjjz1GdXU1TzzxBGNjYzidTvbv3z9jTZxvlN1u5+mnn6ayspIf/vCHvPnmm/T29t7RY7jdxsbGaGtrI5FIMDQ0RFlZWbqZcyqciUQiDAwMcOnSJSKRCDD5czfGMDY2lv59SCaTH1kVFY/HCYVC6d+xVIhpt9vZvHlzehnZqVOn0s2+UzweD1lZWbjdbpLJJIlEgpqaGgoLC3E6nQSDQY4ePcqPf/xj2tvb52R1loiIiIiIiMysWRH8GGPIz88nLy+PjIwMEokEgUCAd955h5/85Cc0NDQQiUSu+qKb6ndy8eJFkskkVVVVjI+P4/f7WblyJXl5efT19aWDn9TErLa2Ntra2sjNzSUnJ2daZU88HicQCOB0OnG5XLhcLhKJBAcPHmTPnj10dHTc0BSva0k1hn7zzTcpLCzk+9//Pnl5eTz++OPk5+dTW1vLzp076ezsvKGKkk8qFXI5nc5p2202GwsWLODLX/4yyWSSXbt2MTo6OuP7v1vi8ThjY2M0NzfT1dWFy+WiqKiIr3zlK4TDYcbGxujo6ODcuXNXNdq2LOsTVdUEg0GOHz9OWVkZq1evprq6On1faWkpzz33HPX19Zw5c4bLly+nJ7bl5OSkGziXlpYSiUQYHBykrq6OtrY2Dhw4wNmzZ9m3bx/Nzc0KfUREREREROSG3PXgxxhDVlYWTzzxBH6/H7vdzuXLlzlw4AD/9E//RGNjI+Fw+LrPT30xT30RTjXcDQaDTExMTPuCnKrs6OzsZMeOHTQ2NlJcXIzT6UxXGU1MTNDU1ERdXR319fXU1NSQkZFBY2MjHR0d6SlPVx5/aslURkYGmZmZwGQz52uFVdFolN7eXl577TVycnL4+te/Tm5uLuvWrWPevHls3LiRlpYWDh8+zOnTpxkeHmZ8fDw9Vvx6bDbbtPd5rYqknJwcamtrKSoqwmazkUgkGBkZITs7G7fbzZo1a+jv72dkZITDhw8zMDDwMT+9e0cymSQSiRCNRtPNtBsbGykoKGBgYCD9ed9qoBKLxejs7KSpqYni4mIqKirSQZvD4UhPESsqKmJwcJCBgQGCwSA5OTmUlZVRVlZGbm4usViM0dFR+vv7OXbsGGfPnqWlpYWmpqb01DERERERERGRj3PXgx+bzUZRURGPPvooBQUFJBIJ2tra2L9/PydOnPjYyhO73U5paSn19fUsXLgQt9tNLBbj/PnzjIyMXBWWpJb7vPvuu/T09FBYWIjD8aePYWJigpaWFrZs2UJRUVG6B8zg4OC08OXDYY/L5Ur3HYrH41y8eJGBgYH0sqErRSIRWlpaePXVV1myZAmrV6+muLiYZcuWsWjRIvr7+1m0aBEnTpwgEAjQ1tbGuXPn6O/vBybDhVSFkt1uJysrKx0oJJNJAoEA/f39V/XrcbvdlJaW4vP5gMlw6t133+Xhhx+moKCAwsJC1q9fTzQaJSMjI730bC71kUmNSk8tyRobG6Onp4f29nb6+vpu+fUTiQTt7e0cPnwYm81GRUUF1dXV6WDO6XSSl5eH2+2mvLycUCjE+Pg4brebrKysdEVWLBYjEonwwQcfpKt8gsEgw8PDGuMuIiIiIiIiN+yuBj+p5s2LFy9m8eLFuN1uxsfHGR0dZWRkBJfLdd3n2e12nE4nJSUlPPLII2zZsoV169bhcrno6+vj+PHj121+m0wm6evrIxKJkJmZOa1aJjW1KZFIpEd9p6qScnNzsdlsJJNJXC4XeXl55ObmpseCFxYW4vP5GBgYYGRkhOHh4WsGP6n9NDQ08Nvf/pZIJMLy5cvx+/14vV78fj9FRUWsXbuW0dFRTp06xb59+zh//jyWZTEyMoLNZsOyLNxuN36/n/r6erxeL8lkkv3793PgwAFCodC0kMBut5OZmYnD4cCyLEZHR3nllVeIRqPU19dTVlZGVVUVWVlZ6ffU0NDApUuXmJiYmFZZdS+z2WzTpnWlmj7PxIQsy7K4ePEiQ0NDBAKBdFNmj8dDdnZ2+vc2VQVUUFCQnhCWSCSIxWIMDQ2lf+67du3i4MGDBINBBT4iIiIiIiLyid3V4MflcrFgwQK++tWvUlpamq5e2bBhA/n5+Xi9Xn7961+nG+CmAp/MzEzy8vKYN28eTz75JE8//TQLFizA7XYTDAbZvXs3e/fu/chePLFYjEAgcM37SkpKKC8vp6ysLF2BsXLlSrZu3Up7ezuxWIzKykrWrl1LTU0N1dXVBAKBdKVRd3c3Q0NDH9unJ5FI8Pvf/562tja2bNnC1q1bWbVqFV6vF6fTSXFxMcXFxfj9fjZu3Mjo6CjJZJJLly7hdDpJJBJ4vV5KS0spKChIV4rA5CSrzs7OjwwLwuEwx44d48033+TRRx/lpZdeYu3atfj9fr7whS+wfft23n77bX7+85/T3NzM4OAg4+PjJJNJYrHYPRtEpIKfsrIykskk4+PjN9236Vri8TjDw8M0NTXx8ssv09vbS21tLRs2bCAvLy/d8DklGo0SCoUYHR2lt7eX5uZmzp07x2uvvUZra+tNNxMXERERERERuWvBjzGGkpISnnnmGT7zmc+kR1Xb7Xays7NZuHAhmzdv5siRI+lJVy6Xi6qqKlauXMny5ct58MEHKSkpISMjg3A4TFNTE3v37uXnP/85HR0dN/1lOTXBq7u7m7y8PMrKyli6dCnPPfccXV1dRKNR/H4/y5YtIysri0AgwMmTJ+nv76ehoYGzZ88SDAanTWy6nomJCQ4fPsz58+d566232LJlC6tXr2bx4sVkZmZSWFiIx+OhqKiI4uJiAOrq6tLv7crpYzAZJn1427WkKktSlSk7d+5kcHCQF198kWeeeQafz4fX6+Wpp56ivr6eCxcu0NjYyIULF+jr6+P999//2GBpNnM4HLjdblpaWjh58mR66tdMSTUSP3nyJENDQyxZsgSv18u8efPIyMiY9tjR0VG6u7tpb2+npaWFlpYW2trauHDhwowGUiIiIiIiInL/+djgxxgzD/hHoASwgF9alvVTY8x/A74J9E899C8ty9r1SXaeqhwZHR3Fsix27twJwKJFi1i8eDHbt29nyZIl6eoSYwxerzfdIwWgs7OTI0eO0NDQQENDA6dPn6a3t/eWAonh4WFef/11enp62Lp1K5/73OfIycnh8ccfT/eGGRkZIRAIcPjwYX71q1/R3Nycbh6cGhX/ST6HwcFBjh49ypkzZ9ITzrKysli9ejUrVqygvr6epUuXTluWlnpuJBIhGAwSjUZpbGxk3759dHd3X/UZxGIxRkZGGBoaSk+fSoVqExMTvP/++wwPD3Pq1Ck2b97MsmXLKC4upry8nNLSUtatW0c4HCYYDPLXf/3XvPLKKzcUbs02lmURj8fp6+sjNzeXyspKiouLaWxsnNGlbIlEgoGBAYaGhjh37hwHDhzA4/Fc9TOMxWKMj48zNjZGOBwmFot94t8hERERERERkWu5kYqfOPA9y7KOG2OygWPGmD1T9/3Ysqwf3cyOU6PNd+3aRSQSoby8nD179pBMJnn00UdxuVz4/X58Ph/GGIaGhmhtbaW/vz/9hTgUCvH+++9z/vx5AoEAo6OjHzv96kaP7dKlS+lR8RcuXKC2tjY9+aunp4eOjg46OzsZGBigubk5vRznZgOnVBiR+vLf29uLzWajtbWVo0eP8tBDD/Hggw9eVc0Tj8cZGBjgzJkzjI2N0d/fT3t7O4ODg1cdy8DAAO+99x7Z2dk88MAD1NTUUFhYSE9PDzAZ/pw9e5aLFy/y+uuvk5ubS0lJCTU1NVRWVuLxeAiFQrS0tLB3794Z6YlzNyQSCfr7+/nbv/1bcnNz6e/vp6Wl5bYELamf6/j4OJ2dnekpcB9+TDKZnDM9lERERERERGT2+Njgx7KsbqB76u+jxphGwD8TO09N0AqFQvh8Pjo6OjDGEI1GmZiY4IEHHuDy5cs4nc70UpiBgYF075xoNEpnZyfDw8PEYrEZ/dI8MTFBX18f4XCY8fFxGhsbp42K7+vro7+/n2g0+pHj5j+pVFCQClVS++/p6eHEiRNXPT6ZTBIOh+nu7iYajRKJRK45Rh4ml7BduHCBEydOMDY2xvj4+LRwyLIsQqEQoVCI3t5e7HY7Ho+HhoYG8vLyyMzMJBqNEgwG6enpuWeXeVmWRTgc5oMPPsDj8RCJRBgZGbnt+/y4nk8iIiIiIiIiM818ki/vxpgq4F1gGfCfga8BI8BRJquCBq/xnG8B35q6ueo6r5uuprHZbGRnZ1NaWkpFRQXd3d04nU4CgQDDw8NMTExMCzVud4WEw+HA6/Xi8XjS2yKRCOFwmEgkcktVPp/EtSpFrnQjn4Mxhvnz51NdXU1hYSHhcJi3336bsbGxT7TvO/Webzen04nD4SCRSGhplYiIiIiIiNzLjlmWtfpad9xw8GOMyQLeAf7KsqzfGWNKgACTfX9+AJRZlvX1j3mNT5QWpEany8xJhTipIGcmGxqLiIiIiIiIyF1x3eDnhqZ6GWOcwKvAy5Zl/Q7AsqzeK+7/FbBzBg50GoU+M2+uVOuIiIiIiIiIyMe7kaleBvg10GhZ1v+4YnvZVP8fgM8Dp29gfwFgfOpPEZm9CtF5KjLb6TwVuTfoXBWZ/XSeylww/3p3fOxSL2PMRmAf0ACkSnD+EngBWM7kUq924N9fEQR91OsdvV75kYjMDjpPRWY/naci9wadqyKzn85TmetuZKrXfuBaXYV3zfzhiIiIiIiIiIjITLHd7QMQEREREREREZHb424EP7+8C/sUkU9G56nI7KfzVOTeoHNVZPbTeSpz2g2PcxcRERERERERkXuLlnqJiIiIiIiIiMxRdyz4McZsN8acM8ZcMMb8xZ3ar4hMZ4yZZ4x5yxhz1hhzxhjz3ant+caYPcaY5qk/86a2G2PM/5w6d08ZY1be3Xcgcn8xxtiNMSeMMTunblcbYw5NnZP/1xiTMbU9c+r2han7q+7qgYvcJ4wxucaY3xpjmowxjcaY9bqmisw+xpj/NPVv39PGmFeMMS5dU+V+cUeCH2OMHfhfwFPAEuAFY8ySO7FvEblKHPieZVlLgIeB/zB1Pv4FsNeyrDpg79RtmDxv66b++xbwizt/yCL3te8CjVfc/iHwY8uyaoFB4BtT278BDE5t//HU40Tk9vsp8P8sy1oEPMTk+aprqsgsYozxA98BVluWtQywA3+Grqlyn7hTFT9rgQuWZbValhUF/gV49g7tW0SuYFlWt2VZx6f+PsrkP1D9TJ6TO6YetgP43NTfnwX+0Zp0EMg1xpTd2aMWuT8ZYyqATwN/N3XbAFuB30495MPnauoc/i3w2NTjReQ2McbkAJ8Cfg1gWVbUsqwhdE0VmY0cgNsY4wA8QDe6psp94k4FP36g64rbF6e2ichdNFW2ugI4BJRYltU9dVcPUDL1d52/InfPT4DvA8mp2wXAkGVZ8anbV56P6XN16v7hqceLyO1TDfQD/3tqSebfGWO86JoqMqtYlnUJ+BHQyWTgMwwcQ9dUuU+oubPIfcoYkwW8CvxHy7JGrrzPmhz3p5F/IneRMeYzQJ9lWcfu9rGIyHU5gJXALyzLWgGM86dlXYCuqSKzwVSfrWeZDGvLAS+w/a4elMgddKeCn0vAvCtuV0xtE5G7wBjjZDL0edmyrN9Nbe5NlZtP/dk3tV3nr8jd8QjwWWNMO5NLpLcy2Uskd6pMHaafj+lzder+HGDgTh6wyH3oInDRsqxDU7d/y2QQpGuqyOzyONBmWVa/ZVkx4HdMXmd1TZX7wp0Kfo4AdVNd0zOYbKT1r3do3yJyhan1yb8GGi3L+h9X3PWvwEtTf38J+MMV21+cmkTyMDB8Rfm6iNwmlmX9V8uyKizLqmLyuvmmZVlfAd4Cnp962IfP1dQ5/PzU41VlIHIbWZbVA3QZYxZObXoMOIuuqSKzTSfwsDHGM/Vv4dS5qmuq3BfMnfr9NcY8zWSvAjvw95Zl/dUd2bGITGOM2QjsAxr4U9+Qv2Syz89vgEqgA/iiZVnBqYvjz5gshw0Bf25Z1tE7fuAi9zFjzGbgv1iW9RljTA2TFUD5wAngq5ZlRYwxLuD/MNm3Kwj8mWVZrXfpkEXuG8aY5Uw2YM8AWoE/Z/J/ruqaKjKLGGP+O/AlJifcngD+HZO9fHRNlTnvjgU/IiIiIiIiIiJyZ6m5s4iIiIiIiIjIHKXgR0RERERERERkjlLwIyIiIiIiIiIyRyn4ERERERERERGZoxT8iIiIiIiIiIjMUQp+RERERERERETmKAU/IiIiIiIiIiJzlIIfEREREREREZE56v8D+0y8HG2XuxsAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(20, 20))\n", + "plt.imshow(d[0, 0], cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAADgCAYAAAB1lqE5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAp6UlEQVR4nO3de4xV5f3v8c8zwx3lMiA4jiBisd6w1BLFgpeG1htQMDVaW0/UtNWmttGkrcdojPakRjy1raa2tvan9RKrbSMo3s4pxVOhak2hRaFVQHQUCHdmYFQY5vKcP2b7C8r6PjOzZu21n1nzfiWEYX1Ys5/Z8/3utXnYs7/Oey8AAAAAAAAUT1WlFwAAAAAAAIDyYOMHAAAAAACgoNj4AQAAAAAAKCg2fgAAAAAAAAqKjR8AAAAAAICCYuMHAAAAAACgoPr15GTn3HmS7pZULem/vPfzO/n7zI5Hn+a9d3ncDr0JdA+9CcSJ3gTiRG8CcbJ603mfrjecc9WS1kr6kqSNkv4h6VLv/X8C59CI6NPyuEjSm0D30ZtAnOhNIE70JhAnqzd78qNep0p6y3v/tvd+v6THJc3twecDkA16E4gTvQnEid4E4kRvAhnpycZPnaQNB/x5Y+kYgMqiN4E40ZtAnOhNIE70JpCRHr3HT1c4566SdFW5bwdA99CbQJzoTSBO9CYQJ3oT6FxPNn42SRp3wJ+PLB37GO/9fZLuk/iZSyAn9CYQJ3oTiBO9CcSJ3gQy0pMf9fqHpEnOuaOdcwMkfVXSomyWBaAH6E0gTvQmECd6E4gTvQlkJPUrfrz3rc6570r6v+oYr/eA9/7fma0Mmauurjaztra2HFeCckrbm1Z9UBtANrhuAnGiN4E40ZtAdlKPc091Y7z0rqLY+Km8PEZfpuGc82z8oC+LuTcrvQagkuhNIE70JhCncoxzBwAAAAAAQMTY+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKBSj3NHZTlnv5H+UUcdlXh85syZ5jlLliwxs/r6+i6vC73T6NGjNXfu3MSM2kBRVFUl/19He3t7zitBbKzaCF1rQ1NRqam+wZqGSW0AAGLDK34AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgnKhkZOZ35hz+d1YwY0dO9bM5s+fn3h81qxZ5jl33HGHmd19991m1traamY4mPfeng1cQVOmTPGLFy9OzKgN9Cb9+vUzs5EjRyYeb2hoUEtLS5S9yXUzO2lqY+jQoeY5H3zwgZk1NDSYWWicN6O+DxbrdXPgwIH+iCOOSMyojd6pqsr+//Dq6mozGzFihJmFHkO2bt1qZs3NzWYWSy3E2pvluG6mqY2+WheoPKs3ecUPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFD2bFNUXE1NjZldffXVZmaNbQ99vtNOO83MQuMId+zYYWboPfr162fWB7WB2IwZM8bMvvrVr5rZmWeemXj8+uuv7/GaEIesa2P8+PHmOe+9956ZvfLKK2a2du1aM1u8eLGZ7du3z8yQv4kTJ+rhhx9OzPKsDeriYM7ZU8ZHjRplZmeccYaZnXzyyWY2efJkMws9hrz44otmtnTpUjOjFtLLszZiqQuJ2kAHXvEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUEz1ilhoCldoOsno0aMTj7e3t/d4TQCQpUGDBiUeP/zww81zvvGNb5jZt771LTOzHhtvv/128xxUhlUXUr61EZoAc8opp5jZueeea2abN282s+9///tm9uyzz5oZ1/f8DR06VJ/73OcSszxro6/WxcCBA83suOOOM7PrrrvOzC644AIzC00xra6uNrPQY8iUKVPMbO7cuWZ22223JR7//e9/b57T0tJiZkXjnNOAAQMSszxrI5a6kKgNdOjRxo9zrl5Sk6Q2Sa3e+6lZLApAz9CbQJzoTSBO9CYQJ3oTyEYWr/j5gvd+RwafB0C26E0gTvQmECd6E4gTvQn0EO/xAwAAAAAAUFA93fjxkv7snFvhnLsq6S84565yzi13zi3v4W0B6Lpu9eb27dtzXh7QZ3HdBOLEdROIU7d603uf8/KA3qGnP+o1w3u/yTk3RtJi59yb3vulB/4F7/19ku6TJOccnQjko1u9OXXqVHoTyAfXTSBOXDeBOHWrN6uqquhNIEGPXvHjvd9U+n2bpIWSTs1iUQB6ht4E4kRvAnGiN4E40ZtANlK/4sc5N1RSlfe+qfTxOZL+V2Yrg4YPH25moVG3lubmZjN79dVXzayxsbHbt4XKSdOb7e3tZn1QG+ip0NjSurq6xOOnnmo/r5s9e7aZjRw50syqqir7tnZcNz8uTV1I+dZG2nHYQ4YMMbPa2lozO/bYY83s+eefN7PePrbbGnvc1taWy+2n7c00P1KSdW0UuS4kuzbOPfdc85xbb73VzI4//ngz69fP/mfRrl27zCz0XKh///5mFvp+H3PMMWY2f/78xOMrVqwwz1m9erWZxSxNbw4bNkxnnXVWYpZnbcRSF1IxawPd15Mf9RoraWHpiVs/Sb/33v+fTFYFoCfoTSBO9CYQJ3oTiBO9CWQk9caP9/5tSZ/JcC0AMkBvAnGiN4E40ZtAnOhNIDuMcwcAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKB6MtULGQiN9ZwzZ46ZHX744WZmjRddu3atec7ixYvNrLW11cxQDPv27TPrg9pAV1gjdyXp6KOPNrNbbrkl8fi0adNSfb7m5mYze/PNNxOP79271zwHPZN1XUj51sbbb79tnhMaDz9jxgwzGzx4sJmddtppZjZixAgzC42ajmWkd2kqTyLr+7Zhw4ZyLafHGhsb9fTTTydmedZGb68LKV1tXHnlleY5kydPNrOqKvv/vBctWmRmjz76qJmtWrXKzA499FAzu/nmm81s1qxZZjZ27NjE46ER99ZjnFS853KjR4826yPP2oilLiRqAx14xQ8AAAAAAEBBsfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUIxzz0FoPODMmTPN7LLLLjOzgQMHmll9fX3i8TvvvNM8Z82aNWaG4tu6datZH9QGPhJ63Bk+fLiZTZ8+3cys0dxHHHGEeU5LS4uZrVu3zswWLlyYeLyhocE8B53Lsy6kfGtj7dq15jmhsdyf//znzSz0nGDUqFFmFrqfQ+OwYxH62m688cbE4z/60Y/KtZwea2ho0B//+MfELM/a6O11IaWrjdB46tD9+Pbbb5vZD3/4QzN75513zKytrc3M+vfvb2YrV640s/PPP9/MrK/v9NNPN895+OGHzWz79u1m1hsNGzbMrI88ayOWupCoDXTgFT8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQTHOPQehUZtnnnmmmY0fP97MQiMCFyxYkHj8ySefNM9pbm42MxRfY2OjWR/URt8yePBgM5s3b56ZnXPOOWZ23nnnmdkhhxySeLypqck85/nnnzezu+++28x27tyZeHzHjh3mOegQS11I+dbGYYcdZp5z6aWXmlnIrl27zCw0VjdUp6HnBLEIjeyePn164vFQHVTavn37tGbNmsQsz9ro7XUhpauNQYMGmefU19ebWeh789Zbb5lZWt57M2tvb0/1OZ1ziccnT55snlNTU2NmRRvZXVVVZdZHLLWRZ11I1AY68IofAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKA6HefunHtA0mxJ27z3J5WO1Uj6g6QJkuolXey9byjfMnu3sWPHmtkXvvAFM+vXz/72hMbrvfzyy4nH9+7da56D3ifL3mxvb6c+CqZ///5mNnz4cDObNWuWmd10001mNmbMGDN79913zezXv/514vHVq1eb5yxbtszMGhsbzezb3/524vHHH3/cPCeN2K+baWojlrqQ8q2N0Kj6008/3cxCo3pDI7tfeeUVM2tubjazWFRV2f+feMIJJ5jZiBEjEo+HngelkWVvHnnkkbrzzjsTszxrozfUhZR9bYS0tLSYWehxIG+hsd2hOrGy0H0Vuo/XrVtnZmlHi3dXXtfN3lAbWdeF1LtrA9npyit+HpR03ieO3SBpifd+kqQlpT8DyNeDojeBGD0oehOI0YOiN4EYPSh6EyirTjd+vPdLJX3yvyDmSnqo9PFDkuZluywAnaE3gTjRm0Cc6E0gTvQmUH5p3+NnrPd+c+njLZLsn2UCkCd6E4gTvQnEid4E4kRvAhnq8Zs7+44fKDR/qNA5d5VzbrlzbnlPbwtA19GbQJzoTSBO3enN3bt357gyoG/rTm+G3gcV6MvSbvxsdc7VSlLp923WX/Te3+e9n+q9n5rytgB0Hb0JxIneBOKUqjdDb5IPIBOpevOwww7LbYFAb5J242eRpMtLH18u6alslgOgh+hNIE70JhAnehOIE70JZKgr49wfk3S2pNHOuY2SbpE0X9IfnXPfkPSupIvLucjewDlnZqNHjzazmpoaMwuN5QuNwX3ttdcSjzN2r1iy7k3qo1hC/xv9mc98xsxC46tra2vN7IMPPjCzRYsWmdnChQsTj2/ZssU8Z+fOnWY2ePBgMxs3blzi8QEDBpjnpBH7dTNNbcRSF1K+tXHkkUea5wwcONDM9u7da2bvv/++me3fv9/MeoPQc6GjjjrKzIYMGZJ4PDQCPI0se3PAgAFmfVAbB8u6NnqL0HOrlStXmlnoef7EiRMTj4fqbvz48WYW+t7kJfbrZtbyrAupd9cGklnXx1Btdbrx472/1IhmdmlVAMqC3gTiRG8CcaI3gTjRm0D5ZftfKQAAAAAAAIgGGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABRUp1O90DWHHXaYmV1zzTVmFhqDGxpL+8tf/tLMNm3aZGYAiiM0nnPWrFlmFhrNfcEFF5jZhg0bzGzZsmVmds8995jZtm3bzMwSGv17+eWXm9lXvvKVxOMPPfRQt9cQu6xrozfUhZR9bYSu0SGh6/ALL7xgZlu3bk11e7Foa2szs1AtbN++PfF4S0tLj9dULgMGDNC4ceO6fR61cbA0tTF06NBU66iurk51Xlqh0cqLFy82s1tuucXMvvnNbyYef+6558xznnrqKTMLfW/6kjxrI8+6kKiNIrLq1XtvnsMrfgAAAAAAAAqKjR8AAAAAAICCYuMHAAAAAACgoNj4AQAAAAAAKCg2fgAAAAAAAAqKjR8AAAAAAICCYpx7N4TG/J1xxhlmdv7555vZgAEDzOy9994zs9DoS2v8ab9+9rfbOWdmw4cPN7OQxsZGM2ttbU31OVE+Vn3kWRvUxcFC9/9xxx1nZtddd52ZfepTnzKz/fv3m9kjjzxiZk8++aSZWeN4JWnw4MGJx4844gjznNA409Coemv8b2j0eczyrI1Y6kLKtzZC6uvrzex3v/udmf397383s+bm5m6vo7fYvXu3mVlfd2gsbaU558zHDmqje9LURsiIESPMbPLkyWa2Zs2abt9WT+zbt8/MFixYYGZLly5NPL5161bzHJ5fdegNtZF1XUjURhGNHDky8fiuXbvMc3jFDwAAAAAAQEGx8QMAAAAAAFBQbPwAAAAAAAAUFBs/AAAAAAAABcXGDwAAAAAAQEEx1asbTjzxRDO7+eabzWzMmDFm1tbWZmavvvqqmZ166qlmNn/+/MTjJ510knlOSE1NTarzNm7caGZPP/20mS1cuNDM1q1bZ2ahyQ/t7e1mho7a/tOf/tTt87Kujb5aF6HpTKGJU1OmTDGz2traVJ/z3XffNbOVK1ea2ZYtW1Ld3qRJkxKPh762adOmmdmQIUPMrLey6iPP2oilLqR8ayM07eS1114zs+eee87MNm3aZGaxPCaVQ2hy06pVqxKP7927t1zL6THvvVkf1Eb3pKmN0HTK0HOTr3/962YWeg6S91S10O2F6gQdvWn9+6q31wZ10beEJnJb9froo4+a5/CKHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCgOh3n7px7QNJsSdu89yeVjt0q6VuStpf+2o3ee3s+ZS8SGps2c+ZMMwuNng2prq42s0suucTMLrroIjOzRn6GxvytWLHCzE455RQzC41FPP7441NlF154oZn9+c9/NrPnn3/ezJYuXZp43Br32Btk2Zvt7e368MMPE7M8ayOWupDyrY3QfXX66aeb2U033WRmo0aNMrP333/fzEJjIEMjvceNG2dms2bNMjPr+3r44Yeb5xx22GFmZo0+l6T6+vrE41mPYs2yN6urqzVixIjELM/aiKUupHxrIzSW+5577jGz1atXm1lvvu70xK5du8zMqq+dO3dmuoYse3P37t169tlnEzNqo3vS1Ebo+cfEiRPN7Itf/KKZHXfccWb2+uuvm5n33szQNVn25v79+83rUp61QV2gnIYNG5Z4PLS30JVX/Dwo6byE4z/33k8p/SrEpg/QyzwoehOI0YOiN4EYPSh6E4jRg6I3gbLqdOPHe79Ukr0VD6Ai6E0gTvQmECd6E4gTvQmUX0/e4+e7zrnXnXMPOOdGZrYiAD1FbwJxojeBONGbQJzoTSAjaTd+7pV0jKQpkjZL+qn1F51zVznnljvnlqe8LQBdl6o3Gxoacloe0Gel6k3eIwAou1S9uWfPnpyWB/RZqXoz9J5RQF+WauPHe7/Ve9/mvW+X9FtJpwb+7n3e+6ne+6lpFwmga9L25siR/CcKUE5pezP0hsQAei5tb1pvrAkgG2l7MzQwA+jLUm38OOdqD/jjhZLsEQUAckNvAnGiN4E40ZtAnOhNIFtdGef+mKSzJY12zm2UdIuks51zUyR5SfWSri7fEvPVv39/M6urq0t1Xuh/bEMv4x86dKiZvfnmm2Z21113JR5ftmyZec6OHTvMLLRzHhoLPHv2bDObM2eOmYXG/37ve98zs0mTJpnZhg0bEo+vX7/ePCf2H7HIsjfXr1+viy++ODHLszZiqQsp39oIPX5Yo7yl8H0cGucYemy54oorzOxrX/uamfXrZ19OQuO3Bw0aZGaW0GNqS0uLmT3xxBOJxxsbG7u9hpAse9M5Z9ZHnrXRG+pCyr42/vCHP5jn/Otf/zKzvjqWOyR0n/zlL39JPL53795M15Blb27evFm33XZbYkZtdE+a2li4cKF5zrXXXmtmoevfD37wAzO7+eabzay+vt7M0DVZ9mZjY6NZH3nWBnWB2HS68eO9vzTh8P1lWAuAbqA3gTjRm0Cc6E0gTvQmUH49meoFAAAAAACAiLHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQXU61auvGTt2rJmdffbZZhYaWRsa/RwaVbpgwQIzu/POO83MGvXe3NxsnhOyZ88eMwuNKvz3v/9tZo888oiZzZw508ys0amSdM4555hZQ0ND4vHrr7/ePCc0xrxo9u/fr7fffrvb52VdG7HUhZRvbYRG2X7wwQdm1tramur2Qo9XdXV1ZpZ2jH1ofHgaoXWEHue2bNmSeDw05jsGVn3kWRu9oS6k7Gtj165d5jmM5c6O9Vyovb0955V0XWtrq1kf1EZ2rNpYunSpec7cuXPN7JhjjjGzefPmmVnoOc0999xjZtu2bTOztI+dCGtqajLrI8/aoC4QG17xAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABRUnxzn7pwzs9GjR5tZTU1NqttLO7L91ltvNbPQ6O1YxgDu27fPzELr79+/v5mFxm+HvnennXZa4vERI0aY5/Slce55s2ojlrqQ8q2NpqYmM1u7dq2ZrVmzxswOOeQQMwuNcw89PoYeW0Ljwzdu3Ghmw4YNSzx+6KGHmueExoC/8MILZrZw4cLE46H6qbS2tjazPvKsjVjqQsq3NjZt2mSeg+zEPLbd0tLSQn3kwKqNxYsXm+fcdtttZnbHHXeY2ZgxY8zs6quvNrMjjzzSzO666y4zCz1Oh55DI2zPnj1mfeRZG9QFeir0bx/ruVDoeRCv+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACgoNn4AAAAAAAAKqk+Ocx81apSZXXPNNWZWW1trZs3NzWZW5JHtaYVGzYVG9YbG2oXGwb7xxhuJx3fv3m2eg/zFUhdSvrURGs8ZGtn9ne98x8y+9KUvmVlonHdVlf3/AaH78v333zezl19+2cwuu+yyxOOzZ882z6mrqzOzlStXmtmGDRsSj4dGjlea996sjzxrI5a6kPKtjZaWFvOctEL3ZSgLPc6FenrYsGFmtmvXLjNrampKPB5zv+TJex987pdGmtqIpS6kfGsjdN18/PHHzayxsdHMfvOb35hZaJz35ZdfbmaXXHKJmYUewxcuXGhmzzzzTOLxnTt3muds3rzZzLKu40oLXTfzrI1Y6kIqdm3065f9dkboeU0oy9rYsWPN7Kyzzko8fv/995vn8IofAAAAAACAgmLjBwAAAAAAoKDY+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKA6nX/mnBsn6WFJYyV5Sfd57+92ztVI+oOkCZLqJV3svW8o31K7zzmXeHzChAnmOWeccYaZDRw40Mw2bdpkZk899ZSZhUZG9/aR7UOGDDGz0DjhK6+80sxqa2vNbO/evWb2yiuvJB5vaIiqZLulN/emVRux1IUUT22Exkm/9dZbZhYao12O0ZehMb5pxv+W4/EvNCo5S3n1Zm+ojazrQsq3NqznEZ2tY9CgQWZ26KGHmtnw4cPNLDR++6ijjjKziRMnmtmSJUvMbP369YnHQ9+32GXdm1Z95FkbsdSFFE9thEZQP/vss2b2i1/8wsxCz0FC93Po+33yySeb2bHHHmtm1pjwHTt2mOf88pe/NLO///3vZtbW1pZ4fMOGDeY5aeR13cyzNmKpCynf2vjwww/Nc6qrq7v9+STp8MMPNzNrrLkUfnwMjWVfunSpmS1btizV50wj9JzM+tpCz3W78iy4VdL3vfcnSJom6Rrn3AmSbpC0xHs/SdKS0p8B5IfeBOJEbwJxojeBONGbQJl1uvHjvd/svf9n6eMmSW9IqpM0V9JDpb/2kKR5ZVojgAT0JhAnehOIE70JxIneBMqvW6/pds5NkPRZSa9KGuu931yKtqjjpXlJ51wl6aoerBFAJ+hNIE70JhAnehOIE70JlEeX3/DAOXeIpCckXee933Ng5jt+mDnxB5q99/d576d676f2aKUAEtGbQJzoTSBO9CYQJ3oTKJ8ubfw45/qrowkf9d4vKB3e6pyrLeW1kraVZ4kALPQmECd6E4gTvQnEid4EyqvTjR/XMbLgfklveO9/dkC0SNJHbx9+uSR7dBWAzNGbQJzoTSBO9CYQJ3oTKL+uvMfPdEn/Q9Iq59zK0rEbJc2X9Efn3DckvSvp4rKssAesMXrXXnuteU5dXV2q2xozZoyZ3X777WYWGg/4q1/9ysxCo27TCI2LGzlypJmNGzfOzL785S+b2WWXXWZmofGH+/fvN7Mnn3zSzJ544onE41nfjznLpTfzrI1Y6kLqHbWxb98+M6uvr89vIZ0IPa5aY0tHjBhhnhMaVTljxgwzmzNnTuLx0OjilCp+3ewNtZGmLqR8a+Odd94xzwmZPXu2mZ1wwglmNmnSJDPbuXOnmYUer0JjaUOfMzT2uBfLrDeHDBmi448/vtsLyLo2qIvuCd0nP//5z81s9erVZnbFFVeY2Re/+EUzGzx4sJmFxn1PmDAh8XjoedJPfvITM2tosKejW+OpL7roIvOclCp+3cy6NmKpCynf2njvvffMc0Jf2969e80sdG0cOzbxbZ8kSf379zezlpYWMwt56aWXzCzrce5Z63Tjx3v/N0nOiGdmuxwAXUVvAnGiN4E40ZtAnOhNoPy6/ObOAAAAAAAA6F3Y+AEAAAAAACgoNn4AAAAAAAAKio0fAAAAAACAgmLjBwAAAAAAoKC6Ms49aqFR0xdeeGHi8Xnz5pnnDBw40MyamppSnXf00Ueb2cyZ9hvVv/zyy2bW2NhoZpbhw4eb2dlnn21mp59+uplNmTLFzGpra80s9H0LjRF9/vnnzezHP/6xmb377rtmhvBY2jxrg7oopjSjxcePH2+eE3osmzx5spldeumlicf/9a9/meegfNKOnM+zNtKOcw9d20eOHGlm27dvN7Ply5eb2bZt28xs8eLFqc5LO+q2r6ipqTHrJiTr2qAusvPhhx+a2TPPPGNmq1atMjPr3yJS+DnUiSeeaGbWvznq6urMc2pqasxs9OjRZmYJjRUvojS1EUtdSPnWxrHHHtvtczrjnDXwLb22trbMP2fseMUPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFDOe5/fjTmX+Y1VV1eb2Xe+853E4zfccIN5ziGHHGJmDz/8sJmFxt2FxseHbN682cxC4zSt72lVlb3PN2bMGDMLjQdsb283s3Xr1plZaIxoaIz9Sy+9ZGahMbh51nmI9z77eYQZmDx5sl+wYEFilmdt9NW6KLrQGM6TTz458fjs2bPNc6655hozGzVqlJlZNTl9+nStWLEiyt4sx3UzFmnqQsq3NkKPY42NjWa2adMmM1u9erWZ3X333Wa2du1aMws9J2htbTWz3iDW6+Ypp5zi//a3vyVmedZGX62L3qJfv35mNnLkSDMbPnx4t7M5c+aY58yYMSNVZv3bYdq0aVw3eyDPupDyrY1yCD2Wbd261cyam5vNbNWqVWZ27733mtmLL75oZqHnDGlMmDDBzB577LHE41deeaXeeOONxN7kFT8AAAAAAAAFxcYPAAAAAABAQbHxAwAAAAAAUFBs/AAAAAAAABQUGz8AAAAAAAAFZb+leC/R1tZmZta7XW/cuNE8Z/z48Wb21FNPmVnondTr6urMLDS5JPSO7/379zcz693N//rXv5rnNDU1mVnInj17zGzJkiVmFpr4FXoH9qzfLR0dGhsbtWjRosQsz9qgLoopND3tP//5T+Lx0OQb6xxJOumkk8zMmkARmqCI8klTF1K+tRF6bAlNYHrttdfMLPTYuHPnTjNjCmFctmzZovnz5ydmedYGdRG30PS00NTRUGYJTSmaPn26maWZ3MR1s2fyrAsp39ooh9Bj49KlS81s9+7dqbLQtTjPf3OEnu9Y+xy7du0yz+EVPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUGz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBuc7GQDrnxkl6WNJYSV7Sfd77u51zt0r6lqSP5srd6L1/rpPPFcXMydD4OeecmYVGx4fGq3/60582s2nTppnZ2rVrzWzgwIFmtn79+sTjodGLLS0tZpZWaFRhX+W9twusm7LszaqqKj9o0KDEjNpAJYQep0eNGmVmw4cP7/ZtbdiwQfv27YuyN2O5bsYkz9oICY2CbWhoMLPQKNg8x8T2FrFeNwcNGuTHjRuXmFEbiE3ocTPNWO7W1tZoe5PrZvdkXRt5K/K/KUL3/xlnnJF4fMWKFWpqakrszX5duM1WSd/33v/TOXeopBXOucWl7Ofe+zu78DkAZI/eBOJEbwJxojeBONGbQJl1uvHjvd8saXPp4ybn3BuS6sq9MABh9CYQJ3oTiBO9CcSJ3gTKr1uv33LOTZD0WUmvlg591zn3unPuAefcyKwXB6Br6E0gTvQmECd6E4gTvQmUR5c3fpxzh0h6QtJ13vs9ku6VdIykKerYof2pcd5VzrnlzrnlPV8ugE+iN4E40ZtAnLLozdD7PgJIh+smUD5d2vhxzvVXRxM+6r1fIEne+63e+zbvfbuk30o6Nelc7/193vup3vupWS0aQAd6E4gTvQnEKaverK6uzm/RQB/AdRMor043flzHmKv7Jb3hvf/ZAcdrD/hrF0panf3yAFjoTSBO9CYQJ3oTiBO9CZRfV8a5z5C0TNIqSR/NkrxR0qXqeNmdl1Qv6erSG3OFPhfj9T4h9D9GaUd3dvY9ReVkPPqS3gQyQm8CcaI3gTjRm0DlWKPe29vbzd7sdOMnSzTiwdj46VuyvEhmid5EX0dvAnGiN4E40ZtA5aTZ+OnWVC8AAAAAAAD0Hmz8AAAAAAAAFBQbPwAAAAAAAAXFxg8AAAAAAEBBsfEDAAAAAABQUP0qvYC+rq2trdJLAAAAAAAAvUCa6d+84gcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoqLzHue+Q9G7p49GlP8cglrWwjoPFspYs1nFUFgspE3ozjHUcLJa10JuVEctaWMfBYlkLvZm/WNYhxbOWWNYhxbMWejN/saxDimctrONgZe1N573v4edOxzm33Hs/tSI3/gmxrIV1HCyWtcSyjjzE9LXGshbWcbBY1hLLOvIQ09cay1pYx8FiWUss68hDLF9rLOuQ4llLLOuQ4llLLOvIQyxfayzrkOJZC+s4WLnXwo96AQAAAAAAFBQbPwAAAAAAAAVVyY2f+yp4258Uy1pYx8FiWUss68hDTF9rLGthHQeLZS2xrCMPMX2tsayFdRwslrXEso48xPK1xrIOKZ61xLIOKZ61xLKOPMTytcayDimetbCOg5V1LRV7jx8AAAAAAACUFz/qBQAAAAAAUFAV2fhxzp3nnFvjnHvLOXdDJdZQWke9c26Vc26lc255zrf9gHNum3Nu9QHHapxzi51z60q/j6zQOm51zm0q3S8rnXMX5LCOcc65/+ec+49z7t/OuWtLxytxn1hryf1+yRu9SW8mrCOK3uzLfSnRm6Xbpjc/vg56MwL0Jr2ZsA56s8Ji6cvSWuhNerOr6yjrfZL7j3o556olrZX0JUkbJf1D0qXe+//kupCOtdRLmuq931GB2z5T0vuSHvben1Q69r8l7fLezy89SI303v/PCqzjVknve+/vLOdtf2IdtZJqvff/dM4dKmmFpHmSrlD+94m1louV8/2SJ3rzv2+b3vz4OqLozb7alxK9ecBt05sfXwe9WWH05n/fNr358XXQmxUUU1+W1lMvepPe7No6ytqblXjFz6mS3vLev+293y/pcUlzK7COivLeL5W06xOH50p6qPTxQ+oogEqsI3fe+83e+3+WPm6S9IakOlXmPrHWUnT0pujNhHVE0Zt9uC8lelMSvZmwDnqz8uhN0ZsJ66A3K4u+LKE3D1pHn+7NSmz81EnacMCfN6pyD0Je0p+dcyucc1dVaA0HGuu931z6eIuksRVcy3edc6+XXppX9pcAHsg5N0HSZyW9qgrfJ59Yi1TB+yUH9KaN3lQ8vdnH+lKiN0PoTdGbFURv2uhN0ZsVElNfSvRmCL2ZY2/29Td3nuG9P0XS+ZKuKb0MLQq+42fwKjVy7V5Jx0iaImmzpJ/mdcPOuUMkPSHpOu/9ngOzvO+ThLVU7H7pg+jNZH2+N+nLiqM3k9Gb9Gal0ZvJ6E16s9LozWT0Zs69WYmNn02Sxh3w5yNLx3Lnvd9U+n2bpIXqeGlgJW0t/czfRz/7t60Si/Deb/Xet3nv2yX9VjndL865/uoo/ke99wtKhytynyStpVL3S47oTRu9GUFv9tG+lOjNEHqT3qwketNGb9KblRJNX0r0poXezL83K7Hx8w9Jk5xzRzvnBkj6qqRFeS/COTe09GZKcs4NlXSOpNXhs8pukaTLSx9fLumpSizio8IvuVA53C/OOSfpfklveO9/dkCU+31iraUS90vO6E0bvVnh3uzDfSnRmyH0Jr1ZSfSmjd6kNyslir6U6M0QerMCvem9z/2XpAvU8W7r6yXdVKE1TJT0WunXv/Neh6TH1PESrhZ1/OzpNySNkrRE0jpJf5FUU6F1PCJplaTX1dEItTmsY4Y6Xlb3uqSVpV8XVOg+sdaS+/2S9y96k95MWEcUvdmX+7L09dOb9OYn10FvRvCL3qQ3E9ZBb1b4Vwx9WVoHvWmvg97MuTdzH+cOAAAAAACAfPT1N3cGAAAAAAAoLDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg2PgBAAAAAAAoKDZ+AAAAAAAACoqNHwAAAAAAgIJi4wcAAAAAAKCg/j8jzgEhVIUUKgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(20, 20))\n", + "for i in range(5):\n", + " ax = fig.add_subplot(1, 5, i + 1)\n", + " ax.imshow(patches[0, i].squeeze(0), cmap='gray')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/src/tasks/prepare_sample_experiments.sh b/src/tasks/prepare_sample_experiments.sh new file mode 100755 index 0000000..bc34f48 --- /dev/null +++ b/src/tasks/prepare_sample_experiments.sh @@ -0,0 +1,2 @@ +#!/bin/bash +python training/prepare_experiments.py --experiments_filename training/experiments/sample_experiment.yml diff --git a/src/tasks/test_functionality.sh b/src/tasks/test_functionality.sh new file mode 100755 index 0000000..cd7eb15 --- /dev/null +++ b/src/tasks/test_functionality.sh @@ -0,0 +1,2 @@ +#!/bin/bash +pytest -s -q text_recognizer diff --git a/src/text_recognizer/datasets/__init__.py b/src/text_recognizer/datasets/__init__.py index 1b4cc59..05f74f6 100644 --- a/src/text_recognizer/datasets/__init__.py +++ b/src/text_recognizer/datasets/__init__.py @@ -1,29 +1,24 @@ """Dataset modules.""" from .emnist_dataset import ( - _augment_emnist_mapping, - _load_emnist_essentials, DATA_DIRNAME, - EmnistDataLoaders, EmnistDataset, + EmnistMapper, ESSENTIALS_FILENAME, ) from .emnist_lines_dataset import ( construct_image_from_string, - EmnistLinesDataLoaders, EmnistLinesDataset, get_samples_by_character, ) -from .util import Transpose +from .util import fetch_data_loaders, Transpose __all__ = [ - "_augment_emnist_mapping", - "_load_emnist_essentials", "construct_image_from_string", "DATA_DIRNAME", "EmnistDataset", - "EmnistDataLoaders", - "EmnistLinesDataLoaders", + "EmnistMapper", "EmnistLinesDataset", + "fetch_data_loaders", "get_samples_by_character", "Transpose", ] diff --git a/src/text_recognizer/datasets/emnist_dataset.py b/src/text_recognizer/datasets/emnist_dataset.py index f3d65ee..96f84e5 100644 --- a/src/text_recognizer/datasets/emnist_dataset.py +++ b/src/text_recognizer/datasets/emnist_dataset.py @@ -39,45 +39,101 @@ def download_emnist() -> None: save_emnist_essentials(dataset) -def _load_emnist_essentials() -> Dict: - """Load the EMNIST mapping.""" - with open(str(ESSENTIALS_FILENAME)) as f: - essentials = json.load(f) - return essentials - - -def _augment_emnist_mapping(mapping: Dict) -> Dict: - """Augment the mapping with extra symbols.""" - # Extra symbols in IAM dataset - extra_symbols = [ - " ", - "!", - '"', - "#", - "&", - "'", - "(", - ")", - "*", - "+", - ",", - "-", - ".", - "/", - ":", - ";", - "?", - ] - - # padding symbol - extra_symbols.append("_") - - max_key = max(mapping.keys()) - extra_mapping = {} - for i, symbol in enumerate(extra_symbols): - extra_mapping[max_key + 1 + i] = symbol - - return {**mapping, **extra_mapping} +class EmnistMapper: + """Mapper between network output to Emnist character.""" + + def __init__(self) -> None: + """Loads the emnist essentials file with the mapping and input shape.""" + self.essentials = self._load_emnist_essentials() + # Load dataset infromation. + self._mapping = self._augment_emnist_mapping(dict(self.essentials["mapping"])) + self._inverse_mapping = {v: k for k, v in self.mapping.items()} + self._num_classes = len(self.mapping) + self._input_shape = self.essentials["input_shape"] + + def __call__(self, token: Union[str, int, np.uint8]) -> Union[str, int]: + """Maps the token to emnist character or character index. + + If the token is an integer (index), the method will return the Emnist character corresponding to that index. + If the token is a str (Emnist character), the method will return the corresponding index for that character. + + Args: + token (Union[str, int, np.uint8]): Eihter a string or index (integer). + + Returns: + Union[str, int]: The mapping result. + + Raises: + KeyError: If the index or string does not exist in the mapping. + + """ + if (isinstance(token, np.uint8) or isinstance(token, int)) and int( + token + ) in self.mapping: + return self.mapping[int(token)] + elif isinstance(token, str) and token in self._inverse_mapping: + return self._inverse_mapping[token] + else: + raise KeyError(f"Token {token} does not exist in the mappings.") + + @property + def mapping(self) -> Dict: + """Returns the mapping between index and character.""" + return self._mapping + + @property + def inverse_mapping(self) -> Dict: + """Returns the mapping between character and index.""" + return self._inverse_mapping + + @property + def num_classes(self) -> int: + """Returns the number of classes in the dataset.""" + return self._num_classes + + @property + def input_shape(self) -> List[int]: + """Returns the input shape of the Emnist characters.""" + return self._input_shape + + def _load_emnist_essentials(self) -> Dict: + """Load the EMNIST mapping.""" + with open(str(ESSENTIALS_FILENAME)) as f: + essentials = json.load(f) + return essentials + + def _augment_emnist_mapping(self, mapping: Dict) -> Dict: + """Augment the mapping with extra symbols.""" + # Extra symbols in IAM dataset + extra_symbols = [ + " ", + "!", + '"', + "#", + "&", + "'", + "(", + ")", + "*", + "+", + ",", + "-", + ".", + "/", + ":", + ";", + "?", + ] + + # padding symbol + extra_symbols.append("_") + + max_key = max(mapping.keys()) + extra_mapping = {} + for i, symbol in enumerate(extra_symbols): + extra_mapping[max_key + 1 + i] = symbol + + return {**mapping, **extra_mapping} class EmnistDataset(Dataset): @@ -110,10 +166,12 @@ class EmnistDataset(Dataset): self.train = train self.sample_to_balance = sample_to_balance + if subsample_fraction is not None: if not 0.0 < subsample_fraction < 1.0: raise ValueError("The subsample fraction must be in (0, 1).") self.subsample_fraction = subsample_fraction + self.transform = transform if self.transform is None: self.transform = Compose([Transpose(), ToTensor()]) @@ -121,17 +179,22 @@ class EmnistDataset(Dataset): self.target_transform = target_transform self.seed = seed - # Load dataset infromation. - essentials = _load_emnist_essentials() - self.mapping = _augment_emnist_mapping(dict(essentials["mapping"])) - self.inverse_mapping = {v: k for k, v in self.mapping.items()} - self.num_classes = len(self.mapping) - self.input_shape = essentials["input_shape"] + self._mapper = EmnistMapper() + self.input_shape = self._mapper.input_shape + self.num_classes = self._mapper.num_classes # Placeholders self.data = None self.targets = None + # Load dataset. + self.load_emnist_dataset() + + @property + def mapper(self) -> EmnistMapper: + """Returns the EmnistMapper.""" + return self._mapper + def __len__(self) -> int: """Returns the length of the dataset.""" return len(self.data) @@ -162,13 +225,18 @@ class EmnistDataset(Dataset): return data, targets + @property + def __name__(self) -> str: + """Returns the name of the dataset.""" + return "EmnistDataset" + def __repr__(self) -> str: """Returns information about the dataset.""" return ( "EMNIST Dataset\n" f"Num classes: {self.num_classes}\n" - f"Mapping: {self.mapping}\n" f"Input shape: {self.input_shape}\n" + f"Mapping: {self.mapper.mapping}\n" ) def _sample_to_balance(self) -> None: @@ -217,118 +285,3 @@ class EmnistDataset(Dataset): if self.subsample_fraction is not None: self._subsample() - - -class EmnistDataLoaders: - """Class for Emnist DataLoaders.""" - - def __init__( - self, - splits: List[str], - sample_to_balance: bool = False, - subsample_fraction: float = None, - transform: Optional[Callable] = None, - target_transform: Optional[Callable] = None, - batch_size: int = 128, - shuffle: bool = False, - num_workers: int = 0, - cuda: bool = True, - seed: int = 4711, - ) -> None: - """Fetches DataLoaders for given split(s). - - Args: - splits (List[str]): One or both of the dataset splits "train" and "val". - sample_to_balance (bool): If true, resamples the unbalanced if the split "byclass" is selected. - Defaults to False. - subsample_fraction (float): The fraction of the dataset will be loaded. If None or 0 the entire - dataset will be loaded. - transform (Optional[Callable]): A function/transform that takes in an PIL image and returns a - transformed version. E.g, transforms.RandomCrop. Defaults to None. - target_transform (Optional[Callable]): A function/transform that takes in the target and - transforms it. Defaults to None. - batch_size (int): How many samples per batch to load. Defaults to 128. - shuffle (bool): Set to True to have the data reshuffled at every epoch. Defaults to False. - num_workers (int): How many subprocesses to use for data loading. 0 means that the data will be - loaded in the main process. Defaults to 0. - cuda (bool): If True, the data loader will copy Tensors into CUDA pinned memory before returning - them. Defaults to True. - seed (int): Seed for sampling. - - Raises: - ValueError: If subsample_fraction is not None and outside the range (0, 1). - - """ - self.splits = splits - - if subsample_fraction is not None: - if not 0.0 < subsample_fraction < 1.0: - raise ValueError("The subsample fraction must be in (0, 1).") - - self.dataset_args = { - "sample_to_balance": sample_to_balance, - "subsample_fraction": subsample_fraction, - "transform": transform, - "target_transform": target_transform, - "seed": seed, - } - self.batch_size = batch_size - self.shuffle = shuffle - self.num_workers = num_workers - self.cuda = cuda - self._data_loaders = self._load_data_loaders() - - def __repr__(self) -> str: - """Returns information about the dataset.""" - return self._data_loaders[self.splits[0]].dataset.__repr__() - - @property - def __name__(self) -> str: - """Returns the name of the dataset.""" - return "Emnist" - - def __call__(self, split: str) -> DataLoader: - """Returns the `split` DataLoader. - - Args: - split (str): The dataset split, i.e. train or val. - - Returns: - DataLoader: A PyTorch DataLoader. - - Raises: - ValueError: If the split does not exist. - - """ - try: - return self._data_loaders[split] - except KeyError: - raise ValueError(f"Split {split} does not exist.") - - def _load_data_loaders(self) -> Dict[str, DataLoader]: - """Fetches the EMNIST dataset and return a Dict of PyTorch DataLoaders.""" - data_loaders = {} - - for split in ["train", "val"]: - if split in self.splits: - - if split == "train": - self.dataset_args["train"] = True - else: - self.dataset_args["train"] = False - - emnist_dataset = EmnistDataset(**self.dataset_args) - - emnist_dataset.load_emnist_dataset() - - data_loader = DataLoader( - dataset=emnist_dataset, - batch_size=self.batch_size, - shuffle=self.shuffle, - num_workers=self.num_workers, - pin_memory=self.cuda, - ) - - data_loaders[split] = data_loader - - return data_loaders diff --git a/src/text_recognizer/datasets/emnist_lines_dataset.py b/src/text_recognizer/datasets/emnist_lines_dataset.py index 1c6e959..d64a991 100644 --- a/src/text_recognizer/datasets/emnist_lines_dataset.py +++ b/src/text_recognizer/datasets/emnist_lines_dataset.py @@ -12,10 +12,9 @@ from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, Normalize, ToTensor from text_recognizer.datasets import ( - _augment_emnist_mapping, - _load_emnist_essentials, DATA_DIRNAME, EmnistDataset, + EmnistMapper, ESSENTIALS_FILENAME, ) from text_recognizer.datasets.sentence_generator import SentenceGenerator @@ -30,7 +29,6 @@ class EmnistLinesDataset(Dataset): def __init__( self, train: bool = False, - emnist: Optional[EmnistDataset] = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, max_length: int = 34, @@ -39,10 +37,9 @@ class EmnistLinesDataset(Dataset): num_samples: int = 10000, seed: int = 4711, ) -> None: - """Short summary. + """Set attributes and loads the dataset. Args: - emnist (EmnistDataset): A EmnistDataset object. train (bool): Flag for the filename. Defaults to False. Defaults to None. transform (Optional[Callable]): The transform of the data. Defaults to None. target_transform (Optional[Callable]): The transform of the target. Defaults to None. @@ -54,7 +51,6 @@ class EmnistLinesDataset(Dataset): """ self.train = train - self.emnist = emnist self.transform = transform if self.transform is None: @@ -64,11 +60,10 @@ class EmnistLinesDataset(Dataset): if self.target_transform is None: self.target_transform = torch.tensor - # Load emnist dataset infromation. - essentials = _load_emnist_essentials() - self.mapping = _augment_emnist_mapping(dict(essentials["mapping"])) - self.num_classes = len(self.mapping) - self.input_shape = essentials["input_shape"] + # Extract dataset information. + self._mapper = EmnistMapper() + self.input_shape = self._mapper.input_shape + self.num_classes = self._mapper.num_classes self.max_length = max_length self.min_overlap = min_overlap @@ -81,10 +76,13 @@ class EmnistLinesDataset(Dataset): self.output_shape = (self.max_length, self.num_classes) self.seed = seed - # Placeholders for the generated dataset. + # Placeholders for the dataset. self.data = None self.target = None + # Load dataset. + self._load_or_generate_data() + def __len__(self) -> int: """Returns the length of the dataset.""" return len(self.data) @@ -104,7 +102,6 @@ class EmnistLinesDataset(Dataset): if torch.is_tensor(index): index = index.tolist() - # data = np.array([self.data[index]]) data = self.data[index] targets = self.targets[index] @@ -116,6 +113,11 @@ class EmnistLinesDataset(Dataset): return data, targets + @property + def __name__(self) -> str: + """Returns the name of the dataset.""" + return "EmnistLinesDataset" + def __repr__(self) -> str: """Returns information about the dataset.""" return ( @@ -129,6 +131,11 @@ class EmnistLinesDataset(Dataset): f"Tagets: {self.targets.shape}\n" ) + @property + def mapper(self) -> EmnistMapper: + """Returns the EmnistMapper.""" + return self._mapper + @property def data_filename(self) -> Path: """Path to the h5 file.""" @@ -161,9 +168,10 @@ class EmnistLinesDataset(Dataset): sentence_generator = SentenceGenerator(self.max_length) # Load emnist dataset. - self.emnist.load_emnist_dataset() + emnist = EmnistDataset(train=self.train, sample_to_balance=True) + samples_by_character = get_samples_by_character( - self.emnist.data.numpy(), self.emnist.targets.numpy(), self.emnist.mapping, + emnist.data.numpy(), emnist.targets.numpy(), self.mapper.mapping, ) DATA_DIRNAME.mkdir(parents=True, exist_ok=True) @@ -332,94 +340,3 @@ def create_datasets( num_samples=num, ) emnist_lines._load_or_generate_data() - - -class EmnistLinesDataLoaders: - """Wrapper for a PyTorch Data loaders for the EMNIST lines dataset.""" - - def __init__( - self, - splits: List[str], - max_length: int = 34, - min_overlap: float = 0, - max_overlap: float = 0.33, - num_samples: int = 10000, - transform: Optional[Callable] = None, - target_transform: Optional[Callable] = None, - batch_size: int = 128, - shuffle: bool = False, - num_workers: int = 0, - cuda: bool = True, - seed: int = 4711, - ) -> None: - """Sets the data loader arguments.""" - self.splits = splits - self.dataset_args = { - "max_length": max_length, - "min_overlap": min_overlap, - "max_overlap": max_overlap, - "num_samples": num_samples, - "transform": transform, - "target_transform": target_transform, - "seed": seed, - } - self.batch_size = batch_size - self.shuffle = shuffle - self.num_workers = num_workers - self.cuda = cuda - self._data_loaders = self._load_data_loaders() - - def __repr__(self) -> str: - """Returns information about the dataset.""" - return self._data_loaders[self.splits[0]].dataset.__repr__() - - @property - def __name__(self) -> str: - """Returns the name of the dataset.""" - return "EmnistLines" - - def __call__(self, split: str) -> DataLoader: - """Returns the `split` DataLoader. - - Args: - split (str): The dataset split, i.e. train or val. - - Returns: - DataLoader: A PyTorch DataLoader. - - Raises: - ValueError: If the split does not exist. - - """ - try: - return self._data_loaders[split] - except KeyError: - raise ValueError(f"Split {split} does not exist.") - - def _load_data_loaders(self) -> Dict[str, DataLoader]: - """Fetches the EMNIST Lines dataset and return a Dict of PyTorch DataLoaders.""" - data_loaders = {} - - for split in ["train", "val"]: - if split in self.splits: - - if split == "train": - self.dataset_args["train"] = True - else: - self.dataset_args["train"] = False - - emnist_lines_dataset = EmnistLinesDataset(**self.dataset_args) - - emnist_lines_dataset._load_or_generate_data() - - data_loader = DataLoader( - dataset=emnist_lines_dataset, - batch_size=self.batch_size, - shuffle=self.shuffle, - num_workers=self.num_workers, - pin_memory=self.cuda, - ) - - data_loaders[split] = data_loader - - return data_loaders diff --git a/src/text_recognizer/datasets/util.py b/src/text_recognizer/datasets/util.py index 6668eef..321bc67 100644 --- a/src/text_recognizer/datasets/util.py +++ b/src/text_recognizer/datasets/util.py @@ -1,6 +1,10 @@ """Util functions for datasets.""" +import importlib +from typing import Callable, Dict, List, Type + import numpy as np from PIL import Image +from torch.utils.data import DataLoader, Dataset class Transpose: @@ -9,3 +13,59 @@ class Transpose: def __call__(self, image: Image) -> np.ndarray: """Swaps axis.""" return np.array(image).swapaxes(0, 1) + + +def fetch_data_loaders( + splits: List[str], + dataset: str, + dataset_args: Dict, + batch_size: int = 128, + shuffle: bool = False, + num_workers: int = 0, + cuda: bool = True, +) -> Dict[str, DataLoader]: + """Fetches DataLoaders for given split(s) as a dictionary. + + Loads the dataset class given, and loads it with the dataset arguments, for the number of splits specified. Then + calls the DataLoader. Added to a dictionary with the split as key and DataLoader as value. + + Args: + splits (List[str]): One or both of the dataset splits "train" and "val". + dataset (str): The name of the dataset. + dataset_args (Dict): The dataset arguments. + batch_size (int): How many samples per batch to load. Defaults to 128. + shuffle (bool): Set to True to have the data reshuffled at every epoch. Defaults to False. + num_workers (int): How many subprocesses to use for data loading. 0 means that the data will be + loaded in the main process. Defaults to 0. + cuda (bool): If True, the data loader will copy Tensors into CUDA pinned memory before returning + them. Defaults to True. + + Returns: + Dict[str, DataLoader]: Dictionary with split as key and PyTorch DataLoader as value. + + """ + + def check_dataset_args(args: Dict, split: str) -> Dict: + args["train"] = True if split == "train" else False + return args + + # Import dataset module. + datasets_module = importlib.import_module("text_recognizer.datasets") + dataset_ = getattr(datasets_module, dataset) + + data_loaders = {} + + for split in ["train", "val"]: + if split in splits: + + data_loader = DataLoader( + dataset=dataset_(**check_dataset_args(dataset_args, split)), + batch_size=batch_size, + shuffle=shuffle, + num_workers=num_workers, + pin_memory=cuda, + ) + + data_loaders[split] = data_loader + + return data_loaders diff --git a/src/text_recognizer/models/base.py b/src/text_recognizer/models/base.py index 84a86ca..6d40b49 100644 --- a/src/text_recognizer/models/base.py +++ b/src/text_recognizer/models/base.py @@ -12,6 +12,7 @@ import torch from torch import nn from torchsummary import summary +from text_recognizer.datasets import EmnistMapper, fetch_data_loaders WEIGHT_DIRNAME = Path(__file__).parents[1].resolve() / "weights" @@ -23,7 +24,6 @@ class Model(ABC): self, network_fn: Type[nn.Module], network_args: Optional[Dict] = None, - data_loader: Optional[Callable] = None, data_loader_args: Optional[Dict] = None, metrics: Optional[Dict] = None, criterion: Optional[Callable] = None, @@ -39,7 +39,6 @@ class Model(ABC): Args: network_fn (Type[nn.Module]): The PyTorch network. network_args (Optional[Dict]): Arguments for the network. Defaults to None. - data_loader (Optional[Callable]): A function that fetches train and val DataLoader. data_loader_args (Optional[Dict]): Arguments for the DataLoader. metrics (Optional[Dict]): Metrics to evaluate the performance with. Defaults to None. criterion (Optional[Callable]): The criterion to evaulate the preformance of the network. @@ -54,15 +53,11 @@ class Model(ABC): """ - # Fetch data loaders. - if data_loader_args is not None: - self._data_loaders = data_loader(**data_loader_args) - dataset_name = self._data_loaders.__name__ - self._mapping = self._data_loaders.mapping - else: - self._mapping = None - dataset_name = "*" - self._data_loaders = None + # Fetch data loaders and dataset info. + dataset_name, self._data_loaders, self._mapper = self._load_data_loader( + data_loader_args + ) + self._input_shape = self._mapper.input_shape self._name = f"{self.__class__.__name__}_{dataset_name}_{network_fn.__name__}" @@ -76,40 +71,15 @@ class Model(ABC): self._device = device # Load network. - self._network = None - self._network_args = network_args - # If no network arguemnts are given, load pretrained weights if they exist. - if self._network_args is None: - self.load_weights(network_fn) - else: - self._network = network_fn(**self._network_args) + self._network, self._network_args = self._load_network(network_fn, network_args) # To device. self._network.to(self._device) - # Set criterion. - self._criterion = None - if criterion is not None: - self._criterion = criterion(**criterion_args) - - # Set optimizer. - self._optimizer = None - if optimizer is not None: - self._optimizer = optimizer(self._network.parameters(), **optimizer_args) - - # Set learning rate scheduler. - self._lr_scheduler = None - if lr_scheduler is not None: - # OneCycleLR needs the number of steps in an epoch as an input argument. - if "OneCycleLR" in str(lr_scheduler): - lr_scheduler_args["steps_per_epoch"] = len(self._data_loaders("train")) - self._lr_scheduler = lr_scheduler(self._optimizer, **lr_scheduler_args) - - # Extract the input shape for the torchsummary. - if isinstance(self._network_args["input_size"], int): - self._input_shape = (1,) + tuple([self._network_args["input_size"]]) - else: - self._input_shape = (1,) + tuple(self._network_args["input_size"]) + # Set training objects. + self._criterion = self._load_criterion(criterion, criterion_args) + self._optimizer = self._load_optimizer(optimizer, optimizer_args) + self._lr_scheduler = self._load_lr_scheduler(lr_scheduler, lr_scheduler_args) # Experiment directory. self.model_dir = None @@ -117,6 +87,64 @@ class Model(ABC): # Flag for stopping training. self.stop_training = False + def _load_data_loader( + self, data_loader_args: Optional[Dict] + ) -> Tuple[str, Dict, EmnistMapper]: + """Loads data loader, dataset name, and dataset mapper.""" + if data_loader_args is not None: + data_loaders = fetch_data_loaders(**data_loader_args) + dataset = list(data_loaders.values())[0].dataset + dataset_name = dataset.__name__ + mapper = dataset.mapper + else: + self._mapper = EmnistMapper() + dataset_name = "*" + data_loaders = None + return dataset_name, data_loaders, mapper + + def _load_network( + self, network_fn: Type[nn.Module], network_args: Optional[Dict] + ) -> Tuple[Type[nn.Module], Dict]: + """Loads the network.""" + # If no network arguemnts are given, load pretrained weights if they exist. + if network_args is None: + network, network_args = self.load_weights(network_fn) + else: + network = network_fn(**network_args) + return network, network_args + + def _load_criterion( + self, criterion: Optional[Callable], criterion_args: Optional[Dict] + ) -> Optional[Callable]: + """Loads the criterion.""" + if criterion is not None: + _criterion = criterion(**criterion_args) + else: + _criterion = None + return _criterion + + def _load_optimizer( + self, optimizer: Optional[Callable], optimizer_args: Optional[Dict] + ) -> Optional[Callable]: + """Loads the optimizer.""" + if optimizer is not None: + _optimizer = optimizer(self._network.parameters(), **optimizer_args) + else: + _optimizer = None + return _optimizer + + def _load_lr_scheduler( + self, lr_scheduler: Optional[Callable], lr_scheduler_args: Optional[Dict] + ) -> Optional[Callable]: + """Loads learning rate scheduler.""" + if self._optimizer and lr_scheduler is not None: + if "OneCycleLR" in str(lr_scheduler): + lr_scheduler_args["steps_per_epoch"] = len(self._data_loaders["train"]) + _lr_scheduler = lr_scheduler(self._optimizer, **lr_scheduler_args) + else: + _lr_scheduler = None + return _lr_scheduler + @property def __name__(self) -> str: """Returns the name of the model.""" @@ -127,10 +155,15 @@ class Model(ABC): """The input shape.""" return self._input_shape + @property + def mapper(self) -> Dict: + """Returns the mapper that maps between ints and chars.""" + return self._mapper + @property def mapping(self) -> Dict: - """Returns the class mapping.""" - return self._mapping + """Returns the mapping between network output and Emnist character.""" + return self._mapper.mapping def eval(self) -> None: """Sets the network to evaluation mode.""" @@ -184,7 +217,11 @@ class Model(ABC): def summary(self) -> None: """Prints a summary of the network architecture.""" device = re.sub("[^A-Za-z]+", "", self.device) - summary(self._network, self._input_shape, device=device) + if self._input_shape is not None: + input_shape = (1,) + tuple(self._input_shape) + summary(self._network, input_shape, device=device) + else: + logger.warning("Could not print summary as input shape is not set.") def _get_state_dict(self) -> Dict: """Get the state dict of the model.""" @@ -218,8 +255,9 @@ class Model(ABC): if self._optimizer is not None: self._optimizer.load_state_dict(checkpoint["optimizer_state"]) - if self._lr_scheduler is not None: - self._lr_scheduler.load_state_dict(checkpoint["scheduler_state"]) + # Does not work when loadning from previous checkpoint and trying to train beyond the last max epochs. + # if self._lr_scheduler is not None: + # self._lr_scheduler.load_state_dict(checkpoint["scheduler_state"]) epoch = checkpoint["epoch"] @@ -257,7 +295,7 @@ class Model(ABC): ) shutil.copyfile(filepath, str(self.model_dir / "best.pt")) - def load_weights(self, network_fn: Type[nn.Module]) -> None: + def load_weights(self, network_fn: Type[nn.Module]) -> Tuple[Type[nn.Module], Dict]: """Load the network weights.""" logger.debug("Loading network with pretrained weights.") filename = glob(self.weights_filename)[0] @@ -267,12 +305,13 @@ class Model(ABC): ) # Loading state directory. state_dict = torch.load(filename, map_location=torch.device(self._device)) - self._network_args = state_dict["network_args"] + network_args = state_dict["network_args"] weights = state_dict["model_state"] # Initializes the network with trained weights. - self._network = network_fn(**self._network_args) - self._network.load_state_dict(weights) + network = network_fn(**self._network_args) + network.load_state_dict(weights) + return network, network_args def save_weights(self, path: Path) -> None: """Save the network weights.""" diff --git a/src/text_recognizer/models/character_model.py b/src/text_recognizer/models/character_model.py index f1dabb7..0a0ab2d 100644 --- a/src/text_recognizer/models/character_model.py +++ b/src/text_recognizer/models/character_model.py @@ -6,10 +6,6 @@ import torch from torch import nn from torchvision.transforms import ToTensor -from text_recognizer.datasets.emnist_dataset import ( - _augment_emnist_mapping, - _load_emnist_essentials, -) from text_recognizer.models.base import Model @@ -20,7 +16,6 @@ class CharacterModel(Model): self, network_fn: Type[nn.Module], network_args: Optional[Dict] = None, - data_loader: Optional[Callable] = None, data_loader_args: Optional[Dict] = None, metrics: Optional[Dict] = None, criterion: Optional[Callable] = None, @@ -36,7 +31,6 @@ class CharacterModel(Model): super().__init__( network_fn, network_args, - data_loader, data_loader_args, metrics, criterion, @@ -47,16 +41,9 @@ class CharacterModel(Model): lr_scheduler_args, device, ) - if self.mapping is None: - self.load_mapping() self.tensor_transform = ToTensor() self.softmax = nn.Softmax(dim=0) - def load_mapping(self) -> None: - """Mapping between integers and classes.""" - essentials = _load_emnist_essentials() - self._mapping = _augment_emnist_mapping(dict(essentials["mapping"])) - def predict_on_image( self, image: Union[np.ndarray, torch.Tensor] ) -> Tuple[str, float]: @@ -86,6 +73,6 @@ class CharacterModel(Model): index = int(torch.argmax(prediction, dim=0)) confidence_of_prediction = prediction[index] - predicted_character = self._mapping[index] + predicted_character = self.mapper(index) return predicted_character, confidence_of_prediction diff --git a/src/text_recognizer/networks/ctc.py b/src/text_recognizer/networks/ctc.py new file mode 100644 index 0000000..00ad47e --- /dev/null +++ b/src/text_recognizer/networks/ctc.py @@ -0,0 +1,10 @@ +"""Decodes the CTC output.""" +# +# from typing import Tuple +# import torch +# +# +# def greedy_decoder( +# output, labels, label_length, blank_label, collapse_repeated=True +# ) -> Tuple[torch.Tensor, torch.Tensor]: +# pass diff --git a/src/text_recognizer/networks/lenet.py b/src/text_recognizer/networks/lenet.py index 2839a0c..cbc58fc 100644 --- a/src/text_recognizer/networks/lenet.py +++ b/src/text_recognizer/networks/lenet.py @@ -1,24 +1,16 @@ """Defines the LeNet network.""" from typing import Callable, Dict, Optional, Tuple +from einops.layers.torch import Rearrange import torch from torch import nn -class Flatten(nn.Module): - """Flattens a tensor.""" - - def forward(self, x: int) -> torch.Tensor: - """Flattens a tensor for input to a nn.Linear layer.""" - return torch.flatten(x, start_dim=1) - - class LeNet(nn.Module): """LeNet network.""" def __init__( self, - input_size: Tuple[int, ...] = (1, 28, 28), channels: Tuple[int, ...] = (1, 32, 64), kernel_sizes: Tuple[int, ...] = (3, 3, 2), hidden_size: Tuple[int, ...] = (9216, 128), @@ -30,7 +22,6 @@ class LeNet(nn.Module): """The LeNet network. Args: - input_size (Tuple[int, ...]): The input shape of the network. Defaults to (1, 28, 28). channels (Tuple[int, ...]): Channels in the convolutional layers. Defaults to (1, 32, 64). kernel_sizes (Tuple[int, ...]): Kernel sizes in the convolutional layers. Defaults to (3, 3, 2). hidden_size (Tuple[int, ...]): Size of the flattend output form the convolutional layers. @@ -44,10 +35,9 @@ class LeNet(nn.Module): """ super().__init__() - self._input_size = input_size - if activation_fn is not None: - activation_fn = getattr(nn, activation_fn)(activation_fn_args) + activation_fn_args = activation_fn_args or {} + activation_fn = getattr(nn, activation_fn)(**activation_fn_args) else: activation_fn = nn.ReLU(inplace=True) @@ -66,7 +56,7 @@ class LeNet(nn.Module): activation_fn, nn.MaxPool2d(kernel_sizes[2]), nn.Dropout(p=dropout_rate), - Flatten(), + Rearrange("b c h w -> b (c h w)"), nn.Linear(in_features=hidden_size[0], out_features=hidden_size[1]), activation_fn, nn.Dropout(p=dropout_rate), @@ -77,6 +67,7 @@ class LeNet(nn.Module): def forward(self, x: torch.Tensor) -> torch.Tensor: """The feedforward.""" + # If batch dimenstion is missing, it needs to be added. if len(x.shape) == 3: x = x.unsqueeze(0) return self.layers(x) diff --git a/src/text_recognizer/networks/line_lstm_ctc.py b/src/text_recognizer/networks/line_lstm_ctc.py new file mode 100644 index 0000000..d704139 --- /dev/null +++ b/src/text_recognizer/networks/line_lstm_ctc.py @@ -0,0 +1,4 @@ +"""LSTM with CTC for handwritten text recognition within a line.""" + +import torch +from torch import nn diff --git a/src/text_recognizer/networks/misc.py b/src/text_recognizer/networks/misc.py new file mode 100644 index 0000000..9440f9d --- /dev/null +++ b/src/text_recognizer/networks/misc.py @@ -0,0 +1,28 @@ +"""Miscellaneous neural network functionality.""" +from typing import Tuple + +from einops import rearrange +import torch +from torch.nn import Unfold + + +def sliding_window( + images: torch.Tensor, patch_size: Tuple[int, int], stride: Tuple[int, int] +) -> torch.Tensor: + """Creates patches of an image. + + Args: + images (torch.Tensor): A Torch tensor of a 4D image(s), i.e. (batch, channel, height, width). + patch_size (Tuple[int, int]): The size of the patches to generate, e.g. 28x28 for EMNIST. + stride (Tuple[int, int]): The stride of the sliding window. + + Returns: + torch.Tensor: A tensor with the shape (batch, patches, height, width). + + """ + unfold = Unfold(kernel_size=patch_size, stride=stride) + patches = unfold(images) + patches = rearrange( + patches, "b (h w) c -> b c h w", h=patch_size[0], w=patch_size[1] + ) + return patches diff --git a/src/text_recognizer/networks/mlp.py b/src/text_recognizer/networks/mlp.py index d704d99..ac2c825 100644 --- a/src/text_recognizer/networks/mlp.py +++ b/src/text_recognizer/networks/mlp.py @@ -1,6 +1,7 @@ """Defines the MLP network.""" from typing import Callable, Dict, List, Optional, Union +from einops.layers.torch import Rearrange import torch from torch import nn @@ -34,7 +35,8 @@ class MLP(nn.Module): super().__init__() if activation_fn is not None: - activation_fn = getattr(nn, activation_fn)(activation_fn_args) + activation_fn_args = activation_fn_args or {} + activation_fn = getattr(nn, activation_fn)(**activation_fn_args) else: activation_fn = nn.ReLU(inplace=True) @@ -42,6 +44,7 @@ class MLP(nn.Module): hidden_size = [hidden_size] * num_layers self.layers = [ + Rearrange("b c h w -> b (c h w)"), nn.Linear(in_features=input_size, out_features=hidden_size[0]), activation_fn, ] @@ -63,7 +66,9 @@ class MLP(nn.Module): def forward(self, x: torch.Tensor) -> torch.Tensor: """The feedforward.""" - x = torch.flatten(x, start_dim=1) + # If batch dimenstion is missing, it needs to be added. + if len(x.shape) == 3: + x = x.unsqueeze(0) return self.layers(x) @property diff --git a/src/text_recognizer/networks/residual_network.py b/src/text_recognizer/networks/residual_network.py new file mode 100644 index 0000000..23394b0 --- /dev/null +++ b/src/text_recognizer/networks/residual_network.py @@ -0,0 +1 @@ +"""Residual CNN.""" diff --git a/src/text_recognizer/weights/CharacterModel_EmnistDataset_LeNet_weights.pt b/src/text_recognizer/weights/CharacterModel_EmnistDataset_LeNet_weights.pt new file mode 100644 index 0000000..81ef9be Binary files /dev/null and b/src/text_recognizer/weights/CharacterModel_EmnistDataset_LeNet_weights.pt differ diff --git a/src/text_recognizer/weights/CharacterModel_EmnistDataset_MLP_weights.pt b/src/text_recognizer/weights/CharacterModel_EmnistDataset_MLP_weights.pt new file mode 100644 index 0000000..49bd166 Binary files /dev/null and b/src/text_recognizer/weights/CharacterModel_EmnistDataset_MLP_weights.pt differ diff --git a/src/text_recognizer/weights/CharacterModel_Emnist_LeNet_weights.pt b/src/text_recognizer/weights/CharacterModel_Emnist_LeNet_weights.pt index 46b1cb1..ed73c09 100644 Binary files a/src/text_recognizer/weights/CharacterModel_Emnist_LeNet_weights.pt and b/src/text_recognizer/weights/CharacterModel_Emnist_LeNet_weights.pt differ diff --git a/src/training/callbacks/wandb_callbacks.py b/src/training/callbacks/wandb_callbacks.py index f64cbe1..6ada6df 100644 --- a/src/training/callbacks/wandb_callbacks.py +++ b/src/training/callbacks/wandb_callbacks.py @@ -72,7 +72,7 @@ class WandbImageLogger(Callback): def set_model(self, model: Type[Model]) -> None: """Sets the model and extracts validation images from the dataset.""" self.model = model - data_loader = self.model.data_loaders("val") + data_loader = self.model.data_loaders["val"] if self.example_indices is None: self.example_indices = np.random.randint( 0, len(data_loader.dataset.data), self.num_examples @@ -86,7 +86,7 @@ class WandbImageLogger(Callback): for i, image in enumerate(self.val_images): image = self.transforms(image) pred, conf = self.model.predict_on_image(image) - ground_truth = self.model._mapping[self.val_targets[i]] + ground_truth = self.model.mapper(int(self.val_targets[i])) caption = f"Prediction: {pred} Confidence: {conf:.3f} Ground Truth: {ground_truth}" images.append(wandb.Image(image, caption=caption)) diff --git a/src/training/experiments/sample_experiment.yml b/src/training/experiments/sample_experiment.yml index 70edb63..57198f1 100644 --- a/src/training/experiments/sample_experiment.yml +++ b/src/training/experiments/sample_experiment.yml @@ -1,28 +1,30 @@ experiment_group: Sample Experiments experiments: - - dataloader: EmnistDataLoaders - data_loader_args: - splits: [train, val] + - dataset: EmnistDataset + dataset_args: sample_to_balance: true subsample_fraction: null transform: null target_transform: null + seed: 4711 + data_loader_args: + splits: [train, val] batch_size: 256 shuffle: true num_workers: 8 cuda: true - seed: 4711 model: CharacterModel metrics: [accuracy] - # network: MLP - # network_args: - # input_size: 784 - # output_size: 62 - # num_layers: 3 - network: LeNet + network: MLP network_args: - input_size: [28, 28] + input_size: 784 output_size: 62 + num_layers: 3 + activation_fn: GELU + # network: LeNet + # network_args: + # output_size: 62 + # activation_fn: GELU train_args: batch_size: 256 epochs: 16 @@ -66,5 +68,75 @@ experiments: num_examples: 4 OneCycleLR: null - verbosity: 1 # 0, 1, 2 + verbosity: 2 # 0, 1, 2 resume_experiment: null + # - dataset: EmnistDataset + # dataset_args: + # sample_to_balance: true + # subsample_fraction: null + # transform: null + # target_transform: null + # seed: 4711 + # data_loader_args: + # splits: [train, val] + # batch_size: 256 + # shuffle: true + # num_workers: 8 + # cuda: true + # model: CharacterModel + # metrics: [accuracy] + # # network: MLP + # # network_args: + # # input_size: 784 + # # output_size: 62 + # # num_layers: 3 + # # activation_fn: GELU + # network: LeNet + # network_args: + # output_size: 62 + # activation_fn: GELU + # train_args: + # batch_size: 256 + # epochs: 16 + # criterion: CrossEntropyLoss + # criterion_args: + # weight: null + # ignore_index: -100 + # reduction: mean + # # optimizer: RMSprop + # # optimizer_args: + # # lr: 1.e-3 + # # alpha: 0.9 + # # eps: 1.e-7 + # # momentum: 0 + # # weight_decay: 0 + # # centered: false + # optimizer: AdamW + # optimizer_args: + # lr: 1.e-2 + # betas: [0.9, 0.999] + # eps: 1.e-08 + # weight_decay: 0 + # amsgrad: false + # # lr_scheduler: null + # lr_scheduler: OneCycleLR + # lr_scheduler_args: + # max_lr: 1.e-3 + # epochs: 16 + # callbacks: [Checkpoint, EarlyStopping, WandbCallback, WandbImageLogger, OneCycleLR] + # callback_args: + # Checkpoint: + # monitor: val_accuracy + # EarlyStopping: + # monitor: val_loss + # min_delta: 0.0 + # patience: 3 + # mode: min + # WandbCallback: + # log_batch_frequency: 10 + # WandbImageLogger: + # num_examples: 4 + # OneCycleLR: + # null + # verbosity: 2 # 0, 1, 2 + # resume_experiment: null diff --git a/src/training/population_based_training/__init__.py b/src/training/population_based_training/__init__.py new file mode 100644 index 0000000..868d739 --- /dev/null +++ b/src/training/population_based_training/__init__.py @@ -0,0 +1 @@ +"""TBC.""" diff --git a/src/training/population_based_training/population_based_training.py b/src/training/population_based_training/population_based_training.py new file mode 100644 index 0000000..868d739 --- /dev/null +++ b/src/training/population_based_training/population_based_training.py @@ -0,0 +1 @@ +"""TBC.""" diff --git a/src/training/prepare_experiments.py b/src/training/prepare_experiments.py index 5a665b3..97c0304 100644 --- a/src/training/prepare_experiments.py +++ b/src/training/prepare_experiments.py @@ -16,19 +16,8 @@ def run_experiments(experiments_filename: str) -> None: for index in range(num_experiments): experiment_config = experiments_config["experiments"][index] experiment_config["experiment_group"] = experiments_config["experiment_group"] - cmd = f"poetry run run-experiment --gpu=-1 --save --experiment_config={json.dumps(experiment_config)}" + cmd = f"python training/run_experiment.py --gpu=-1 --save --experiment_config='{json.dumps(experiment_config)}'" print(cmd) - run( - [ - "poetry", - "run", - "run-experiment", - "--gpu=-1", - "--save", - f"--experiment_config={json.dumps(experiment_config)}", - ], - check=True, - ) @click.command() diff --git a/src/training/run_experiment.py b/src/training/run_experiment.py index c133ce5..d278dc2 100644 --- a/src/training/run_experiment.py +++ b/src/training/run_experiment.py @@ -58,12 +58,17 @@ def create_experiment_dir(model: Callable, experiment_config: Dict) -> Path: return experiment_dir +def check_args(args: Dict) -> Dict: + """Checks that the arguments are not None.""" + return args or {} + + def load_modules_and_arguments(experiment_config: Dict) -> Tuple[Callable, Dict]: """Loads all modules and arguments.""" - # Import the data loader module and arguments. - datasets_module = importlib.import_module("text_recognizer.datasets") - data_loader_ = getattr(datasets_module, experiment_config["dataloader"]) + # Import the data loader arguments. data_loader_args = experiment_config.get("data_loader_args", {}) + data_loader_args["dataset"] = experiment_config["dataset"] + data_loader_args["dataset_args"] = experiment_config.get("dataset_args", {}) # Import the model module and model arguments. models_module = importlib.import_module("text_recognizer.models") @@ -90,10 +95,12 @@ def load_modules_and_arguments(experiment_config: Dict) -> Tuple[Callable, Dict] # Callbacks callback_modules = importlib.import_module("training.callbacks") - callbacks = [] - for callback in experiment_config["callbacks"]: - args = experiment_config["callback_args"][callback] or {} - callbacks.append(getattr(callback_modules, callback)(**args)) + callbacks = [ + getattr(callback_modules, callback)( + **check_args(experiment_config["callback_args"][callback]) + ) + for callback in experiment_config["callbacks"] + ] # Learning rate scheduler if experiment_config["lr_scheduler"] is not None: @@ -106,7 +113,6 @@ def load_modules_and_arguments(experiment_config: Dict) -> Tuple[Callable, Dict] lr_scheduler_args = None model_args = { - "data_loader": data_loader_, "data_loader_args": data_loader_args, "metrics": metric_fns_, "network_fn": network_fn_, diff --git a/src/training/train.py b/src/training/train.py index 3334c2e..aaa0430 100644 --- a/src/training/train.py +++ b/src/training/train.py @@ -106,7 +106,7 @@ class Trainer: # Running average for the loss. loss_avg = RunningAverage() - data_loader = self.model.data_loaders("train") + data_loader = self.model.data_loaders["train"] with tqdm( total=len(data_loader), @@ -164,7 +164,7 @@ class Trainer: self.model.eval() # Running average for the loss. - data_loader = self.model.data_loaders("val") + data_loader = self.model.data_loaders["val"] # Running average for the loss. loss_avg = RunningAverage() -- cgit v1.2.3-70-g09d2