From 932ba778df1edf8d7d19a66468b5d4dbfaa1f2c2 Mon Sep 17 00:00:00 2001
From: Gustaf Rydholm <gustaf.rydholm@gmail.com>
Date: Thu, 9 Jun 2022 22:31:15 +0200
Subject: Fix conformer

---
 text_recognizer/networks/conformer/conformer.py  |  9 ++++++++-
 text_recognizer/networks/conformer/subsampler.py | 18 +++++++++++++-----
 2 files changed, 21 insertions(+), 6 deletions(-)

diff --git a/text_recognizer/networks/conformer/conformer.py b/text_recognizer/networks/conformer/conformer.py
index e2dce27..09aad55 100644
--- a/text_recognizer/networks/conformer/conformer.py
+++ b/text_recognizer/networks/conformer/conformer.py
@@ -11,6 +11,7 @@ class Conformer(nn.Module):
     def __init__(
         self,
         dim: int,
+        dim_gru: int,
         num_classes: int,
         subsampler: Type[nn.Module],
         block: ConformerBlock,
@@ -19,10 +20,16 @@ class Conformer(nn.Module):
         super().__init__()
         self.subsampler = subsampler
         self.blocks = nn.ModuleList([deepcopy(block) for _ in range(depth)])
-        self.fc = nn.Linear(dim, num_classes, bias=False)
+        self.gru = nn.GRU(
+            dim, dim_gru, 1, bidirectional=True, batch_first=True, bias=False
+        )
+        self.fc = nn.Linear(dim_gru, num_classes)
 
     def forward(self, x: Tensor) -> Tensor:
         x = self.subsampler(x)
+        B, T, C = x.shape
         for fn in self.blocks:
             x = fn(x)
+        x, _ = self.gru(x)
+        x = x.view(B, T, 2, -1).sum(2)
         return self.fc(x)
diff --git a/text_recognizer/networks/conformer/subsampler.py b/text_recognizer/networks/conformer/subsampler.py
index 53928f1..42a983e 100644
--- a/text_recognizer/networks/conformer/subsampler.py
+++ b/text_recognizer/networks/conformer/subsampler.py
@@ -1,6 +1,7 @@
 """Simple convolutional network."""
 from typing import Tuple
 
+from einops import rearrange
 from torch import nn, Tensor
 
 from text_recognizer.networks.transformer import (
@@ -12,16 +13,20 @@ class Subsampler(nn.Module):
     def __init__(
         self,
         channels: int,
+        dim: int,
         depth: int,
+        height: int,
         pixel_pos_embedding: AxialPositionalEmbedding,
         dropout: float = 0.1,
     ) -> None:
         super().__init__()
         self.pixel_pos_embedding = pixel_pos_embedding
-        self.subsampler, self.projector = self._build(channels, depth, dropout)
+        self.subsampler, self.projector = self._build(
+            channels, height, dim, depth, dropout
+        )
 
     def _build(
-        self, channels: int, depth: int, dropout: float
+        self, channels: int, height: int, dim: int, depth: int, dropout: float
     ) -> Tuple[nn.Sequential, nn.Sequential]:
         subsampler = []
         for i in range(depth):
@@ -34,11 +39,14 @@ class Subsampler(nn.Module):
                 )
             )
             subsampler.append(nn.Mish(inplace=True))
-        projector = nn.Sequential(nn.Linear(channels, channels), nn.Dropout(dropout))
+        projector = nn.Sequential(
+            nn.Linear(channels * height, dim), nn.Dropout(dropout)
+        )
         return nn.Sequential(*subsampler), projector
 
     def forward(self, x: Tensor) -> Tensor:
         x = self.subsampler(x)
         x = self.pixel_pos_embedding(x)
-        x = x.flatten(start_dim=2).permute(0, 2, 1)
-        return self.projector(x)
+        x = rearrange(x, "b c h w -> b w (c h)")
+        x = self.projector(x)
+        return x
-- 
cgit v1.2.3-70-g09d2