From a1d795bf02d14befc62cf600fb48842958148eba Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Fri, 23 Jul 2021 14:55:31 +0200 Subject: Complete cnn-transformer network, not tested --- notebooks/00-scratch-pad.ipynb | 421 +++++---------------- noxfile.py | 1 - text_recognizer/data/iam_preprocessor.py | 2 + text_recognizer/networks/cnn_tranformer.py | 81 +++- .../networks/encoders/efficientnet/efficientnet.py | 2 +- 5 files changed, 161 insertions(+), 346 deletions(-) diff --git a/notebooks/00-scratch-pad.ipynb b/notebooks/00-scratch-pad.ipynb index 1e30038..2c98064 100644 --- a/notebooks/00-scratch-pad.ipynb +++ b/notebooks/00-scratch-pad.ipynb @@ -2,9 +2,18 @@ "cells": [ { "cell_type": "code", - "execution_count": 12, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The autoreload extension is already loaded. To reload it, use:\n", + " %reload_ext autoreload\n" + ] + } + ], "source": [ "%load_ext autoreload\n", "%autoreload 2\n", @@ -30,472 +39,230 @@ }, { "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "from pathlib import Path" - ] - }, - { - "cell_type": "code", - "execution_count": 14, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "import attr" + "from text_recognizer.networks.encoders.efficientnet.efficientnet import EfficientNet" ] }, { "cell_type": "code", - "execution_count": 44, - "metadata": {}, + "execution_count": 7, + "metadata": { + "scrolled": false + }, "outputs": [], "source": [ - "@attr.s\n", - "class B(nn.Module):\n", - " input_dim = attr.ib()\n", - " hidden = attr.ib()\n", - " xx = attr.ib(init=False, default=\"hek\")\n", - " \n", - " def __attrs_post_init__(self):\n", - " super().__init__()\n", - " self.fc = nn.Linear(self.input_dim, self.hidden)\n", - " self.xx = \"da\"\n", - " \n", - " def forward(self, x):\n", - " return self.fc(x)" + "en = EfficientNet(\"b0\")" ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ - "def f(x):\n", - " return 2\n", - "\n", - "@attr.s(auto_attribs=True)\n", - "class T(B):\n", - " \n", - " h: Path = attr.ib(converter=Path)\n", - " p: int = attr.ib(init=False, default=f(3))" - ] - }, - { - "cell_type": "code", - "execution_count": 53, - "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "__init__() missing 1 required positional argument: 'hidden'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mT\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_dim\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m16\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mh\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"hej\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: __init__() missing 1 required positional argument: 'hidden'" - ] - } - ], - "source": [ - "t = T(input_dim=16, h=\"hej\")" + "def generate_square_subsequent_mask(size: int) -> torch.Tensor:\n", + " \"\"\"Generate a triangular (size, size) mask.\"\"\"\n", + " mask = (torch.triu(torch.ones(size, size)) == 1).transpose(0, 1)\n", + " mask = mask.float().masked_fill(mask == 0, float(\"-inf\")).masked_fill(mask == 1, float(0.0))\n", + " return mask" ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "'da'" + "tensor([[0., -inf, -inf, -inf],\n", + " [0., 0., -inf, -inf],\n", + " [0., 0., 0., -inf],\n", + " [0., 0., 0., 0.]])" ] }, - "execution_count": 51, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "t.xx" + "generate_square_subsequent_mask(4)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "from torch import Tensor" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "2" - ] - }, - "execution_count": 52, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "t.p" + "tgt = torch.randint(0, 4, (1, 4))\n", + "tgt_mask = torch.ones_like(tgt).bool()" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "16" + "tensor([[True, True, True, True]])" ] }, - "execution_count": 19, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "t.input_dim" + "tgt_mask" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ - "x = torch.rand(16, 16)" + "def target_padding_mask(trg: Tensor, pad_index: int) -> Tensor:\n", + " \"\"\"Returns causal target mask.\"\"\"\n", + " trg_pad_mask = (trg != pad_index)[:, None, None]\n", + " trg_len = trg.shape[1]\n", + " trg_sub_mask = torch.tril(torch.ones((trg_len, trg_len), device=trg.device)).bool()\n", + " trg_mask = trg_pad_mask & trg_sub_mask\n", + " return trg_mask" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 54, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "torch.Size([16, 16])" - ] - }, - "execution_count": 21, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "x.shape" + "t = torch.randint(0, 6, (0, 4))" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 55, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "T(input_dim=16, hidden=24, h=PosixPath('hej'))" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "t.cuda()" + "t = torch.Tensor([[0, 0, 0, 3, 3, 3]])" ] }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 58, "metadata": {}, "outputs": [], "source": [ - "x = x.cuda()" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "data": { - "text/plain": [ - "tensor([[ 3.6047e-01, 1.0200e+00, 3.6786e-01, 1.6077e-01, 3.9281e-02,\n", - " 3.2830e-01, 1.3433e-01, -9.0334e-02, -3.8712e-01, 8.1547e-01,\n", - " -5.4483e-01, -9.7471e-01, 3.3706e-01, -9.5283e-01, -1.6271e-01,\n", - " 3.8504e-01, -5.0106e-01, -4.8638e-01, 3.7033e-01, -4.9557e-01,\n", - " 2.6555e-01, 5.1245e-01, 6.6751e-01, -2.6291e-01],\n", - " [ 1.3811e-01, 7.4522e-01, 4.9935e-01, 3.3878e-01, 1.8501e-01,\n", - " 2.2269e-02, -2.0328e-01, 1.4629e-01, -2.2957e-01, 4.1197e-01,\n", - " -1.9555e-01, -4.7609e-01, 9.0206e-02, -8.8568e-01, -2.1618e-01,\n", - " 2.8882e-01, -5.4335e-01, -6.6301e-01, 4.9990e-01, -4.0144e-01,\n", - " 3.6403e-01, 5.3901e-01, 8.6665e-01, -7.8312e-02],\n", - " [ 1.6493e-02, 4.6157e-01, 2.9500e-02, 2.4190e-01, 6.5753e-01,\n", - " 4.3770e-02, -5.3773e-02, 1.8183e-01, -2.5983e-02, 4.1634e-01,\n", - " -3.5218e-01, -5.6129e-01, 4.1452e-01, -1.2265e+00, -5.8544e-01,\n", - " 3.6382e-01, -6.4090e-01, -5.8679e-01, 4.3489e-02, -1.1233e-01,\n", - " 3.1175e-01, 4.2857e-01, 1.6501e-01, -2.4118e-01],\n", - " [ 9.2361e-02, 6.0196e-01, 1.3081e-02, -8.1091e-02, 4.2342e-01,\n", - " -8.8457e-02, -8.1851e-02, -1.1562e-01, -1.5049e-01, 4.9972e-01,\n", - " -3.0432e-01, -7.8619e-01, 2.1060e-01, -1.0598e+00, -4.6542e-01,\n", - " 4.2382e-01, -6.5671e-01, -4.8589e-01, 5.5977e-02, -2.9478e-02,\n", - " 8.5718e-02, 4.7685e-01, 4.8351e-01, -2.8142e-01],\n", - " [ 1.3377e-01, 5.4434e-01, 3.4505e-01, 1.1307e-01, 4.4057e-01,\n", - " -7.6075e-03, 1.3841e-01, -1.1497e-01, -1.3177e-01, 8.0254e-01,\n", - " -3.0627e-01, -6.8437e-01, 1.9035e-01, -1.0208e+00, -1.3259e-01,\n", - " 5.3231e-01, -4.7814e-01, -5.1266e-01, 2.4646e-02, -3.0552e-01,\n", - " 2.7398e-01, 5.8269e-01, 6.5481e-01, -4.2041e-01],\n", - " [ 1.9604e-01, 4.0597e-01, 1.9071e-01, -2.5535e-01, 1.1915e-01,\n", - " -6.7129e-02, 5.4386e-03, -8.2196e-02, -4.2803e-01, 7.0287e-01,\n", - " -3.0026e-01, -7.6001e-01, -5.1471e-03, -7.0283e-01, -9.2978e-02,\n", - " 1.2243e-01, -1.8398e-01, -4.7374e-01, 2.7978e-01, -3.6962e-01,\n", - " 5.6046e-02, 4.1773e-01, 4.9894e-01, -3.1945e-01],\n", - " [ 1.2657e-01, 3.3224e-01, 6.2830e-02, 1.5718e-01, 4.8844e-01,\n", - " -1.1476e-01, -1.5044e-01, 2.5265e-02, -2.0351e-01, 5.5770e-01,\n", - " -3.6036e-01, -7.4406e-01, 1.6962e-01, -9.6185e-01, -2.9334e-01,\n", - " 2.2584e-01, -4.1169e-01, -5.2146e-01, 2.3314e-01, -1.3668e-01,\n", - " -1.9598e-02, 3.8727e-01, 3.6892e-01, -3.3071e-01],\n", - " [ 5.2178e-01, 6.9704e-01, 5.0093e-01, 1.1157e-01, 8.0012e-02,\n", - " 3.6931e-01, -6.4927e-02, 1.1126e-01, -2.5117e-01, 5.3017e-01,\n", - " -2.6488e-01, -8.4056e-01, 2.2374e-01, -6.6831e-01, -1.9402e-01,\n", - " 7.4174e-02, -4.7763e-01, -2.6912e-01, 5.1009e-01, -5.4239e-01,\n", - " 3.0123e-01, 3.7529e-01, 4.1625e-01, -2.0141e-01],\n", - " [ 3.7968e-01, 4.9387e-01, 3.6786e-01, -1.3131e-01, 2.4445e-02,\n", - " 2.2155e-01, -4.0087e-02, -1.4872e-01, -5.5030e-01, 6.8958e-01,\n", - " -3.8156e-01, -7.5760e-01, 3.2085e-01, -6.4571e-01, 1.1268e-03,\n", - " 3.4251e-02, -2.6440e-01, -2.6374e-01, 5.9787e-01, -4.6502e-01,\n", - " 2.0074e-01, 4.5471e-01, 2.4238e-01, -4.3247e-01],\n", - " [ 2.9364e-01, 4.8659e-01, 9.0845e-02, 1.6348e-01, 5.7636e-01,\n", - " 4.5485e-01, -1.6781e-01, -1.4557e-01, -8.8814e-02, 6.6351e-01,\n", - " -5.3669e-01, -8.2818e-01, 6.0474e-01, -9.4558e-01, -3.0133e-01,\n", - " 3.0310e-01, -5.2493e-01, -2.5948e-01, 1.5857e-01, -4.2695e-01,\n", - " 2.1311e-01, 4.6502e-01, 8.7946e-02, -5.5815e-01],\n", - " [ 9.2208e-02, 2.9731e-01, 3.3849e-01, -5.1049e-02, 2.7834e-01,\n", - " -1.1120e-01, 1.1835e-01, 1.3665e-01, -2.1291e-01, 3.5107e-01,\n", - " -9.8108e-02, -5.0180e-01, 2.9894e-01, -7.7726e-01, -8.1317e-02,\n", - " 3.5704e-01, -3.6759e-01, -2.2148e-01, 1.1019e-01, -1.4452e-02,\n", - " 1.5092e-02, 3.3405e-01, 1.2765e-01, -4.0411e-01],\n", - " [ 2.8927e-02, 4.4180e-01, 1.0994e-01, 5.6124e-01, 4.7174e-01,\n", - " 1.9914e-01, -9.5047e-02, 3.1277e-02, -1.8656e-01, 5.0631e-01,\n", - " -3.4353e-01, -5.7425e-01, 4.3409e-01, -8.3343e-01, -1.1627e-01,\n", - " 3.1852e-02, -4.1274e-01, -2.6756e-01, 4.9652e-01, -2.6137e-01,\n", - " 2.8559e-02, 3.0587e-01, 3.6717e-01, -4.4303e-01],\n", - " [-1.0741e-01, 1.3539e-01, 1.5746e-01, 2.1208e-01, 6.3745e-01,\n", - " -2.1864e-01, -1.8820e-01, 2.1184e-01, -3.6832e-02, 3.0890e-01,\n", - " -2.4719e-03, -3.3573e-01, 1.8479e-01, -9.2119e-01, -2.3361e-01,\n", - " 8.9827e-02, -5.4372e-01, -4.4935e-01, 3.2967e-01, -9.2807e-02,\n", - " 9.9241e-02, 4.1705e-01, 2.4728e-01, -4.8119e-01],\n", - " [ 2.8125e-01, 5.3276e-01, 5.0110e-02, 2.0471e-01, 5.7750e-01,\n", - " 4.6670e-02, -2.1400e-01, 6.8794e-03, -6.8737e-02, 4.2138e-01,\n", - " -3.1261e-01, -7.3709e-01, 4.2001e-01, -9.9757e-01, -4.8091e-01,\n", - " 2.9960e-01, -6.2133e-01, -4.0566e-01, 3.2191e-01, -1.0219e-02,\n", - " 1.2901e-01, 3.9601e-01, 1.6291e-01, -3.3871e-01],\n", - " [ 2.9181e-01, 5.5400e-01, 3.0462e-01, 2.2431e-02, 2.8480e-01,\n", - " 4.4624e-01, -2.8859e-01, -1.4629e-01, -4.3573e-02, 2.9742e-01,\n", - " -1.0100e-01, -4.3070e-01, 4.6713e-01, -3.7132e-01, -8.6748e-02,\n", - " 2.5666e-01, -3.5361e-01, -2.3917e-02, 3.0071e-01, -3.2420e-01,\n", - " 1.3375e-01, 3.4475e-01, 3.0642e-01, -4.3496e-01],\n", - " [-7.7723e-04, 2.3828e-01, 2.3124e-01, 4.1347e-01, 6.8455e-01,\n", - " -9.8319e-03, 1.3403e-01, 1.8460e-02, -1.4025e-01, 5.9780e-01,\n", - " -3.7015e-01, -5.7865e-01, 4.9211e-01, -1.1262e+00, -2.1693e-01,\n", - " 3.2002e-01, -2.9313e-01, -3.1941e-01, 9.8446e-02, -6.2767e-02,\n", - " -9.8636e-03, 3.5712e-01, 2.8833e-01, -5.3506e-01]], device='cuda:0',\n", - " grad_fn=)" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "t(x)" + "tt = t != 3" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "PosixPath('hej')" + "tensor([[ True, True, True, False, False, False]])" ] }, - "execution_count": 13, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "t.h" + "tt" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 43, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "16" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "t.batch_size" + "t = torch.cat((t, t))" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "PosixPath('hej')" + "torch.Size([2, 6])" ] }, - "execution_count": 11, + "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "t.h" + "t.shape" ] }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "../text_recognizer/__init__.py\n", - "../text_recognizer/callbacks/__init__.py\n", - "../text_recognizer/callbacks/wandb_callbacks.py\n", - "../text_recognizer/data/image_utils.py\n", - "../text_recognizer/data/emnist.py\n", - "../text_recognizer/data/iam_lines.py\n", - "../text_recognizer/data/download_utils.py\n", - "../text_recognizer/data/mappings.py\n", - "../text_recognizer/data/iam_preprocessor.py\n", - "../text_recognizer/data/__init__.py\n", - "../text_recognizer/data/make_wordpieces.py\n", - "../text_recognizer/data/iam_paragraphs.py\n", - "../text_recognizer/data/sentence_generator.py\n", - "../text_recognizer/data/emnist_lines.py\n", - "../text_recognizer/data/build_transitions.py\n", - "../text_recognizer/data/base_dataset.py\n", - "../text_recognizer/data/base_data_module.py\n", - "../text_recognizer/data/iam.py\n", - "../text_recognizer/data/iam_synthetic_paragraphs.py\n", - "../text_recognizer/data/transforms.py\n", - "../text_recognizer/data/iam_extended_paragraphs.py\n", - "../text_recognizer/networks/__init__.py\n", - "../text_recognizer/networks/util.py\n", - "../text_recognizer/networks/cnn_tranformer.py\n", - "../text_recognizer/networks/encoders/__init__.py\n", - "../text_recognizer/networks/encoders/efficientnet/efficientnet.py\n", - "../text_recognizer/networks/encoders/efficientnet/__init__.py\n", - "../text_recognizer/networks/encoders/efficientnet/utils.py\n", - "../text_recognizer/networks/encoders/efficientnet/mbconv.py\n", - "../text_recognizer/networks/loss/__init__.py\n", - "../text_recognizer/networks/loss/label_smoothing_loss.py\n", - "../text_recognizer/networks/vqvae/__init__.py\n", - "../text_recognizer/networks/vqvae/decoder.py\n", - "../text_recognizer/networks/vqvae/vqvae.py\n", - "../text_recognizer/networks/vqvae/vector_quantizer.py\n", - "../text_recognizer/networks/vqvae/encoder.py\n", - "../text_recognizer/networks/transformer/__init__.py\n", - "../text_recognizer/networks/transformer/layers.py\n", - "../text_recognizer/networks/transformer/residual.py\n", - "../text_recognizer/networks/transformer/attention.py\n", - "../text_recognizer/networks/transformer/transformer.py\n", - "../text_recognizer/networks/transformer/vit.py\n", - "../text_recognizer/networks/transformer/mlp.py\n", - "../text_recognizer/networks/transformer/norm.py\n", - "../text_recognizer/networks/transformer/positional_encodings/positional_encoding.py\n", - "../text_recognizer/networks/transformer/positional_encodings/__init__.py\n", - "../text_recognizer/networks/transformer/positional_encodings/absolute_embedding.py\n", - "../text_recognizer/networks/transformer/positional_encodings/rotary_embedding.py\n", - "../text_recognizer/networks/transformer/nystromer/__init__.py\n", - "../text_recognizer/networks/transformer/nystromer/nystromer.py\n", - "../text_recognizer/networks/transformer/nystromer/attention.py\n", - "../text_recognizer/models/__init__.py\n", - "../text_recognizer/models/base.py\n", - "../text_recognizer/models/vqvae.py\n", - "../text_recognizer/models/transformer.py\n", - "../text_recognizer/models/dino.py\n", - "../text_recognizer/models/metrics.py\n" - ] - } - ], - "source": [ - "for f in Path(\"../text_recognizer\").glob(\"**/*.py\"):\n", - " print(f)" - ] - }, - { - "cell_type": "code", - "execution_count": 12, + "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "tensor([[[[ True, False, False, False, False, False],\n", + " [ True, True, False, False, False, False],\n", + " [ True, True, True, False, False, False],\n", + " [ True, True, True, False, False, False],\n", + " [ True, True, True, False, False, False],\n", + " [ True, True, True, False, False, False]]],\n", + "\n", + "\n", + " [[[ True, False, False, False, False, False],\n", + " [ True, True, False, False, False, False],\n", + " [ True, True, True, False, False, False],\n", + " [ True, True, True, False, False, False],\n", + " [ True, True, True, False, False, False],\n", + " [ True, True, True, False, False, False]]]])" ] }, - "execution_count": 12, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "Path(\"..\").glob(\"**/*.py\")" + "target_padding_mask(t, 3)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "from text_recognizer.networks.encoders.efficientnet.efficientnet import EfficientNet" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "en = EfficientNet(\"b0\")" + "target_padding_mask()" ] }, { @@ -1404,7 +1171,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.5" + "version": "3.9.6" } }, "nbformat": 4, diff --git a/noxfile.py b/noxfile.py index a90d53b..d14fefb 100644 --- a/noxfile.py +++ b/noxfile.py @@ -2,7 +2,6 @@ import tempfile from typing import Any - import nox from nox.sessions import Session diff --git a/text_recognizer/data/iam_preprocessor.py b/text_recognizer/data/iam_preprocessor.py index 506036e..f7457e4 100644 --- a/text_recognizer/data/iam_preprocessor.py +++ b/text_recognizer/data/iam_preprocessor.py @@ -47,6 +47,8 @@ def load_metadata( class Preprocessor: """A preprocessor for the IAM dataset.""" + # TODO: attrs + def __init__( self, data_dir: Union[str, Path], diff --git a/text_recognizer/networks/cnn_tranformer.py b/text_recognizer/networks/cnn_tranformer.py index 5c13e9a..e030cb8 100644 --- a/text_recognizer/networks/cnn_tranformer.py +++ b/text_recognizer/networks/cnn_tranformer.py @@ -3,6 +3,7 @@ import math from typing import Tuple, Type import attr +import torch from torch import nn, Tensor from text_recognizer.data.mappings import AbstractMapping @@ -18,13 +19,19 @@ class CnnTransformer(nn.Module): def __attrs_pre_init__(self) -> None: super().__init__() - # Parameters, + # Parameters and placeholders, input_dims: Tuple[int, int, int] = attr.ib() hidden_dim: int = attr.ib() dropout_rate: float = attr.ib() max_output_len: int = attr.ib() num_classes: int = attr.ib() padding_idx: int = attr.ib() + start_token: str = attr.ib() + start_index: int = attr.ib(init=False, default=None) + end_token: str = attr.ib() + end_index: int = attr.ib(init=False, default=None) + pad_token: str = attr.ib() + pad_index: int = attr.ib(init=False, default=None) # Modules. encoder: Type[nn.Module] = attr.ib() @@ -38,6 +45,9 @@ class CnnTransformer(nn.Module): def __attrs_post_init__(self) -> None: """Post init configuration.""" + self.start_index = int(self.mapping.get_index(self.start_token)) + self.end_index = int(self.mapping.get_index(self.end_token)) + self.pad_index = int(self.mapping.get_index(self.pad_token)) # Latent projector for down sampling number of filters and 2d # positional encoding. self.latent_encoder = nn.Sequential( @@ -99,20 +109,20 @@ class CnnTransformer(nn.Module): z = self.encoder(x) z = self.latent_encoder(z) - # Permute tensor from [B, E, Ho * Wo] to [Sx, B, E] - z = z.permute(2, 0, 1) + # Permute tensor from [B, E, Ho * Wo] to [B, Sx, E] + z = z.permute(0, 2, 1) return z - def decode(self, z: Tensor, trg: Tensor) -> Tensor: + def decode(self, z: Tensor, context: Tensor) -> Tensor: """Decodes latent images embedding into word pieces. Args: z (Tensor): Latent images embedding. - trg (Tensor): Word embeddings. + context (Tensor): Word embeddings. Shapes: - z: :math: `(B, Sx, E)` - - trg: :math: `(B, Sy)` + - context: :math: `(B, Sy)` - out: :math: `(B, Sy, T)` where Sy is the length of the output and T is the number of tokens. @@ -120,32 +130,69 @@ class CnnTransformer(nn.Module): Returns: Tensor: Sequence of word piece embeddings. """ - trg_mask = trg != self.padding_idx - trg = self.token_embedding(trg) * math.sqrt(self.hidden_dim) - trg = self.token_pos_encoder(trg) - out = self.decoder(x=trg, context=z, mask=trg_mask) + context_mask = context != self.padding_idx + context = self.token_embedding(context) * math.sqrt(self.hidden_dim) + context = self.token_pos_encoder(context) + out = self.decoder(x=context, context=z, mask=context_mask) logits = self.head(out) return logits - def forward(self, x: Tensor, trg: Tensor) -> Tensor: + def forward(self, x: Tensor, context: Tensor) -> Tensor: """Encodes images into word piece logtis. Args: x (Tensor): Input image(s). - trg (Tensor): Target word embeddings. + context (Tensor): Target word embeddings. Shapes: - x: :math: `(B, C, H, W)` - - trg: :math: `(B, Sy, T)` + - context: :math: `(B, Sy, T)` where B is the batch size, C is the number of input channels, H is the image height and W is the image width. + + Returns: + Tensor: Sequence of logits. """ z = self.encode(x) - logits = self.decode(z, trg) + logits = self.decode(z, context) return logits def predict(self, x: Tensor) -> Tensor: - """Predicts text in image.""" - # TODO: continue here!!!!!!!!! - pass + """Predicts text in image. + + Args: + x (Tensor): Image(s) to extract text from. + + Shapes: + - x: :math: `(B, H, W)` + - output: :math: `(B, S)` + + Returns: + Tensor: A tensor of token indices of the predictions from the model. + """ + bsz = x.shape[0] + + # Encode image(s) to latent vectors. + z = self.encode(x) + + # Create a placeholder matrix for storing outputs from the network + output = torch.ones((bsz, self.max_output_len), dtype=torch.long).to(x.device) + output[:, 0] = self.start_index + + for i in range(1, self.max_output_len): + context = output[:, :i] # (bsz, i) + logits = self.decode(z, context) # (i, bsz, c) + tokens = torch.argmax(logits, dim=-1) # (i, bsz) + output[:, i : i + 1] = tokens[-1:] + + # Early stopping of prediction loop if token is end or padding token. + if (output[:, i - 1] == self.end_index | output[: i - 1] == self.pad_index).all(): + break + + # Set all tokens after end token to pad token. + for i in range(1, self.max_output_len): + idx = (output[:, i -1] == self.end_index | output[:, i - 1] == self.pad_index) + output[idx, i] = self.pad_index + + return output diff --git a/text_recognizer/networks/encoders/efficientnet/efficientnet.py b/text_recognizer/networks/encoders/efficientnet/efficientnet.py index 59598b5..6719efb 100644 --- a/text_recognizer/networks/encoders/efficientnet/efficientnet.py +++ b/text_recognizer/networks/encoders/efficientnet/efficientnet.py @@ -41,7 +41,7 @@ class EfficientNet(nn.Module): self.bn_momentum = bn_momentum self.bn_eps = bn_eps self._conv_stem: nn.Sequential = None - self._blocks: nn.Sequential = None + self._blocks: nn.ModuleList = None self._conv_head: nn.Sequential = None self._build() -- cgit v1.2.3-70-g09d2