From 25b5d6983d51e0e791b96a76beb7e49f392cd9a8 Mon Sep 17 00:00:00 2001 From: aktersnurra Date: Mon, 7 Dec 2020 22:54:04 +0100 Subject: Segmentation working! --- src/notebooks/Untitled.ipynb | 72 +++++++++++++++++++++++++++----------------- 1 file changed, 44 insertions(+), 28 deletions(-) (limited to 'src/notebooks/Untitled.ipynb') diff --git a/src/notebooks/Untitled.ipynb b/src/notebooks/Untitled.ipynb index ca0b848..7e812cd 100644 --- a/src/notebooks/Untitled.ipynb +++ b/src/notebooks/Untitled.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -26,7 +26,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -36,7 +36,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -46,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -67,7 +67,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -78,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -87,7 +87,7 @@ "'CNNTransformer'" ] }, - "execution_count": 42, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -98,14 +98,14 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2020-11-18 20:31:23.104 | DEBUG | text_recognizer.models.base:load_weights:432 - Loading network with pretrained weights.\n" + "2020-11-22 20:36:09.684 | DEBUG | text_recognizer.models.base:load_weights:432 - Loading network with pretrained weights.\n" ] } ], @@ -115,25 +115,41 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 121, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "2020-11-18 20:34:49.381 | DEBUG | text_recognizer.models.base:load_from_checkpoint:379 - Loading checkpoint...\n" + "2020-11-22 22:45:47.919 | DEBUG | text_recognizer.models.base:load_from_checkpoint:379 - Loading checkpoint...\n", + "2020-11-22 22:45:47.920 | DEBUG | text_recognizer.models.base:load_from_checkpoint:381 - File does not exist {str(checkpoint_path)}\n" + ] + }, + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: '../training/experiments/TransformerModel_IamLinesDataset_CNNTransformer/1110_073929/model/best.pt'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mckpt_path\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"../training/experiments/TransformerModel_IamLinesDataset_CNNTransformer/1110_073929/model/best.pt\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_from_checkpoint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mckpt_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/Documents/projects/quest-for-general-artifical-intelligence/projects/text-recognizer/src/text_recognizer/models/base.py\u001b[0m in \u001b[0;36mload_from_checkpoint\u001b[0;34m(self, checkpoint_path)\u001b[0m\n\u001b[1;32m 381\u001b[0m \u001b[0mlogger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdebug\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"File does not exist {str(checkpoint_path)}\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 382\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 383\u001b[0;31m \u001b[0mcheckpoint\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcheckpoint_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmap_location\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 384\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_network\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_state_dict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcheckpoint\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"model_state\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 385\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.pyenv/versions/3.8.2/envs/text-recognizer/lib/python3.8/site-packages/torch/serialization.py\u001b[0m in \u001b[0;36mload\u001b[0;34m(f, map_location, pickle_module, **pickle_load_args)\u001b[0m\n\u001b[1;32m 579\u001b[0m \u001b[0mpickle_load_args\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'encoding'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'utf-8'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 580\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 581\u001b[0;31m \u001b[0;32mwith\u001b[0m \u001b[0m_open_file_like\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'rb'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mopened_file\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 582\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_is_zipfile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mopened_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 583\u001b[0m \u001b[0;31m# The zipfile reader is going to advance the current file position.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.pyenv/versions/3.8.2/envs/text-recognizer/lib/python3.8/site-packages/torch/serialization.py\u001b[0m in \u001b[0;36m_open_file_like\u001b[0;34m(name_or_buffer, mode)\u001b[0m\n\u001b[1;32m 228\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m_open_file_like\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 229\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0m_is_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname_or_buffer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 230\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0m_open_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname_or_buffer\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 231\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'w'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/.pyenv/versions/3.8.2/envs/text-recognizer/lib/python3.8/site-packages/torch/serialization.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, name, mode)\u001b[0m\n\u001b[1;32m 209\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0m_open_file\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_opener\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 210\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 211\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m_open_file\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 212\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 213\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__exit__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '../training/experiments/TransformerModel_IamLinesDataset_CNNTransformer/1110_073929/model/best.pt'" ] } ], "source": [ - "ckpt_path = \"../training/experiments/TransformerModel_IamLinesDataset_CNNTransformer/1116_082932/model/best.pt\"\n", + "ckpt_path = \"../training/experiments/TransformerModel_IamLinesDataset_CNNTransformer/1110_073929/model/best.pt\"\n", "model.load_from_checkpoint(ckpt_path)" ] }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 120, "metadata": {}, "outputs": [], "source": [ @@ -142,17 +158,17 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 111, "metadata": {}, "outputs": [], "source": [ - "data, target = dataset[1]\n", + "data, target = dataset[11]\n", "sentence = convert_y_label_to_string(target, dataset) " ] }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 112, "metadata": {}, "outputs": [ { @@ -161,7 +177,7 @@ "torch.Size([98])" ] }, - "execution_count": 127, + "execution_count": 112, "metadata": {}, "output_type": "execute_result" } @@ -172,7 +188,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 115, "metadata": {}, "outputs": [], "source": [ @@ -181,7 +197,7 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 81, "metadata": {}, "outputs": [], "source": [ @@ -190,16 +206,16 @@ }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 82, "metadata": {}, "outputs": [], "source": [ - "ra = transforms.RandomAffine((-1.1, 1.1), scale=(0.5, 1))" + "ra = transforms.RandomAffine((-1.1, 1.1), scale=(0.8, 1))" ] }, { "cell_type": "code", - "execution_count": 131, + "execution_count": 83, "metadata": {}, "outputs": [], "source": [ @@ -208,12 +224,12 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 116, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADSUAAACECAYAAADcSq9PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAArFElEQVR4nO3de7SVVbkw8GcK3k0xEfvQvGQqKh39DC8pKVkZpEkUnmPHPOVJK80ir2hfmnnJW6WEhWYePQfNS6ThEfWIQ/GG6CC8tFXwbpSXvCECIgjz+2MtXte7Dmu71nZvtsDvNwajZ67nnXM+633XbQ/H05tyzgEAAAAAAAAAAAAAAADQrFW6uwAAAAAAAAAAAAAAAABg+aIpCQAAAAAAAAAAAAAAAGiJpiQAAAAAAAAAAAAAAACgJZqSAAAAAAAAAAAAAAAAgJZoSgIAAAAAAAAAAAAAAABaoikJAAAAAAAAAAAAAAAAaImmJAAAAACAFVxK6ZSU0uXdXUezUkqfTinN6Mb9L0spnd5Ja01KKR1ajQ9KKd3S5LxHUkqDOqOG5V3tOQQAAAAAAAA+ODQlAQAAAADwgZJzvivnvE0zx6aUBqWU/tbRvVJK30wp3d3R+a3IOV+Rc96nyWO3zzlP6uKSAAAAAAAAADpMUxIAAAAAQJ2U0kbL49rwXlJKPbu7hu6SKjr830W6+r2bUtowpZS6cg8AAAAAAADoTJqSAAAAAAAiIqXUK6V0eErp/oi4rObxkSmlv6eU3kwpzUgpfbb6+OoppfNTSs9X/52fUlq9muudUrohpTQrpfRaSumummaIy1JK96eUvptS6tVOPSeklJ6q7vtoSmlYTe6bKaW7U0o/Tym9nlJ6JqU0pCa/RUrpjurciRHR+z2e+9CU0oMppdnVPQdXHz8kpfRYdZ2nU0rfqZkzKKX0t5TS8Smlf6SUXkgpfTml9MWU0uPV5/2jmuNXqXlOr6aUrkkpfbhBPaW7H6WUnk0pHZtSejil9EZK6eqU0hoppbUj4qaI6JtSmlP917e9a1O3z7YRcWFEfKo6d1ZNev2U0oTqc78vpbRlzbx+KaWJ1ec4I6X0z+2d35p5xV2ZUkpjUko/r8uPTykdXfOcP1eNT6mer/+q1vNISmlAzbydUkoPVHN/qJ6f0+uu08iU0osRcel7nZ+U0mEppSerz+/6lFLfmlxOKR2RUnqiut9pKaUtU0qTq6+fa1JKqzVxLrZIlffHKtXxxSmlf9Tkx6aUflgzZbOU0j3VPW9JKfWuOXa36v6zUkoPpZQG1eQmpZTOSCndExHzIuJjrVy/lNKqKaVhKaXrI+LJmsdXT5X3319TSi+llC5MKa35XucwVZyXKu+Z2Smlv6SU+len/XtEPJNS+mlKaYv3OocAAAAAAADQ3TQlAQAAAAArrVRplNknpXRlRDwXEftExBkRsX81v01EHBkRO+ecPxQRX4iIZ6vT/19E7BYRO0bEDhGxS0T8uJo7JiL+FhEbRsRGEfGjiMjV3P4R8bPqWs+llH6fUvp8+t93cHkqIj4dEetFxE8j4vKU0v+pye8aETOi0nB0TkRcklJxl5XfR8Sfq7nTIuIb7ZyDXSLivyLiuIjoFRF71jzHf0TEfhGxbkQcEhHnpZR2qpn+kYhYIyI2joiTI+LiiPh6RHyyWvtJNc0V34+IL0fEXhHRNyJej4hfN6prKf45IgZHxBYR8U8R8c2c89yIGBIRz+ec16n+ez7avzaFnPNjEfHdiLi3OrdXTfrAqJz39aPSjHJGRESqNEJNjMo57lM97jcppe1aeC4REVdGxL8suWYppfWj8vq7qsHx+1dzvSLi+oi4oDpvtYi4LiqNdB+urjusbu5HqrnNIuLb0c75SSntHRFnRuV8/5+ovC/qa/pCVK7xbhFxfET8NirX/aMR0T8ivvZeTz7n/ExEzI6I/1t9aM+ImJMqjWIRldfJHTVT/jUqr8E+EbFaRBxbrXfjiJgQEadXn+OxEfHHlNKGNXMPrj7vD0XEy9HE9UspfSKl9MuI+Hv1OU6oPr8lzoqIraNyDj8e774H3usc7lN9rltH5b39zxHxavWcnF2tp09ETE0p3Z5SOjiltFZ75xIAAAAAAAC6i6YkAAAAAGCllFI6MirNN2dFxL0RsWXOeVjOeXzOeWH1sEURsXpEbJdSWjXn/GzO+alq7qCIODXn/I+c88tRaWA5uJpbGJVmhM1yzgtzznflnHNERHX8p5zzsIjYMiKmRMTZEfFstaaoHveHnPPzOefFOeerI+KJqDSPLPFczvninPOiiPjP6n4bpZQ2jYidI+KknPPbOec7I+K/2zkV34qI/8g5T6zu9fec8/RqDRNyzk/lijsi4paoNBstsTAizqier6ui0gQ1Kuf8Zs75kYh4NCpNLxGV5p//l3P+W8757Yg4JSKGp5R6tlNbrV9Vz8dr1eezYzvHtndtmnVdzvn+nPM7EXFFzX77RcSzOedLc87v5JwfiIg/RsQBLa5/V1Qa1Zacz+FRaY56vsHxd+ecb6xe77Hx7nndLSJ6RuX8LMw5XxsR99fNXRwRP6m+Ht6K9s/PQVF5PUyrXqcTo3Inqc1r1jsn5zy7eo3bIuKWnPPTOec3onLnqv8bzbkjIvZKKX2kOh5XHW8RlUa4h2qOvTTn/Hi1/mvi3evx9Yi4sXpuFuecJ0bE1Ij4Ys3cy3LOj1Sv5eBo5/qllPZOKU2NiBsjYn5EDMw5fyrnfFHOeVb1mBSVJqejcs6v5ZzfjEqj4YFNnMOFUWmO6hcRKef8WM75hSWF5pyn5JwPj0rj3pioNHj9LaX0uybPKQAAAAAAACwzmpIAAAAAgJXVFlG5C86DUWl+eLX+gJzzkxHxw6g00PwjpXRVSqlvNd03KndAWeK56mMREedG5e46t6SUnk4pndCghlcj4uFqDetXa4qIiJTSv6WUHkwpzUopzYrKHWh618x9sabOedVwnWoNr1fvIlRbWyMfjcpdmf6XlNKQlNKUlNJr1Rq+WFfDq9UmmYiIt6r/+1JN/q1qTRGVu/RcV/N8HotK09dG7dRW68WaeF7NukvT3rVpVqP9NouIXZc8j+pzOSgqdyNqWrVJ7ap4965C/xqV5qdm61mj2tDVNyL+vqTprWpm3dyXc87za8btnZ9SLuc8Jyqv041rjq+/xo2u+Xu5IyIGReXOQXdGxKSo3CFpr4i4K+e8uObY9q7HAXXXY2BUmvSWqD0f73X9+kTlzkdtUflc+OtS6t4wItaKiD/XrHFz9fGIds5hzvm2qNzl6tdR+Uz5bUpp3foNqs1MSz4bFkTl/Q8AAAAAAAAfKJqSAAAAAICVUs75mKjcqagtIkZHxDMppdNSSlvVHff7nPPAqDQz5Kjc1Sgi4vnqY0tsWn0sqncKOibn/LGI2D8ijk4pfXbJgSmlrVJKp0XEMxExKiL+EhEfq9YUKaXNIuLiiDgyIjbIOfeq1pmaeGovRMT6KaW162prZGb1PJSklFaPyh1kfh4RG1VruLHJGhrtMyTn3Kvm3xo55793cL0l8lIea3htmpzfnpkRcUfd81inenebVl0ZlbtFbRYRu0blfLfqhYjYuHr3niU+WndM/XNs7/yUctXX0QYR8X6v09LcEZU7RQ2qxndHxB5RaUq6o8k1ZkbE2LrrsXbO+ayaY+obthpev5zzVVFpUBoblbuIPZ9SujilNLBmjVei0ny1fc0a6+WclzRKtXsOc86/yjl/MiK2i4itI+K4mmM3SCkdmVK6PyJui4geEfGZnPNuTZ4PAAAAAAAAWGY0JQEAAAAAK62c8z9yzr/MOf9TRHw1InpFxL0ppf+IiEgpbZNS2rvaoDM/Ko0IS+7ecmVE/DiltGFKqXdEnBwRl1fn7ZdS+ni1UeSNqNwRaHE19x8RcW91r6/knHfIOZ+Xc365prS1o9JI8XJ1ziHR5J1Scs7PRcTUiPhpSmm1ajPFl9qZcklEHJJS+mxKaZWU0sYppX4RsVpErF6t4Z2U0pCI2KeZGhq4MCLOqDbgRPW8DX0f6y3xUkRskFJar+axhtemwfxNUkqrNbnfDRGxdUrp4JTSqtV/O6eUtm218JzzA1FpcPldRPxPznlWq2tE5bW0KCKOTCn1rJ7TXd5jTnvn58qovB52rL7ufxYR9+Wcn+1AbZFSyimlQUvL5ZyfiMp76utRaRSaHZXr8dVovinp8oj4UkrpCymlHimlNVJKg1JKmzQ4/j2vX855frUZcZ+I2CEino2IS1NKT1Xzi6PSNHheSqlP9XlunFL6QnWJhuewuteuKaVVI2JuVD5Xlnw2fKu6114R8dOI+GjOeWTO+bEmzwUAAAAAAAAsU5qSAAAAAAAiIuf855zz9yOib1QaaCIqTTlnRaVx5MWI6BMRJ1Zzp0el+efhqNzpaFr1sYiIrSLi1oiYE5Wmkd/knG+v5i6MiL455+/nnKc1qOXRiPhFde5LEfGJiLinhafzr1G5885rEfGTiPivdp73/RFxSEScF5UGqjsiYrOc85sR8YOIuCYiXq+ueX0LNdQbVZ1/S0rpzYiYUq3xfck5T49KE8jTKaVZKaW+0f61qXdbRDwSES+mlF5pYr83o9KcdWBU7ojzYlTunrV6B5/C7yPic9X/bVnOeUFEfCUqd/WZFZUGnxsi4u12pjU8PznnWyPipKjctemFqNxF68CO1JZS+mhEvFndo5E7IuLVnPPMmnGq1vSeqvOGRsSPotJANzMqdx5a6n//aPX65Zxn5pzPyDlvFRHfqEmNjIgnI2JKSml2VN7v21TntHcO141KQ9PrEfFcRLwaEedWc/dG5b13QM55Qs55UTPnAAAAAAAAALpLyjl3dw0AAAAAAEAnSSndFxEX5pwv7eY6vh4R2+ecT3zPgwEAAAAAAIDljqYkAAAAAABYjqWU9oqIGVG5o9dBUbkb18dyzi90a2EAAAAAAADACq1ndxcAAAAAAAC8L9tExDURsXZEPB0RwzUkrZhSSo9ExGZLSb0cERt63OMe97jHP3CPfyfnfMVSHgcAAAAAWCG4UxIAAAAAAAAAAAAAAADQklW6uwAAAAAAAAAAAAAAAABg+aIpCQAAAAAAAAAAAAAAAGhJz1YOTinlrioEAAAAAAAAAAAAAAAA+MB5Jee8Yf2D7pQEAAAAAAAAAAAAAAAANPLc0h7UlAQAAAAAAAAAAAAAAAC0pGd3FwAAAADQEfvtt18R33DDDd1YCQAAAAAAAAAArHzcKQkAAAAAAAAAAAAAAABoiaYkAAAAAAAAAAAAAAAAoCUp59z8wSk1fzAAAKygdthhh9L4oYce6qZKAFYu48ePL41vu+22Il599dVLuXPOOWeZ1AQAAAAAAAAAACuBP+ecB9Q/6E5JAAAAAAAAAAAAAAAAQEs0JQEAAAAAAAAAAAAAAAAt0ZQEAAAAAAAAAAAAAAAAtKRndxcAAADLg/vvv7+IJ0yYUMr169eviK+++uplVhPAymC33XYr4t///velXO1n7qhRo5ZZTQAAAAAAAAAAgDslAQAAAAAAAAAAAAAAAC3SlAQAAAAAAAAAAAAAAAC0pGd3FwAAsLIbMWJEaTxq1Kim5l1zzTWl8ezZs4v40EMPff+FreROPfXU0niXXXZpeOwvfvGLIr766qu7rCaAldEWW2xRxA888EDD4x5++OFlUQ4AAAAAAAAAAFDlTkkAAAAAAAAAAAAAAABASzQlAQAAAAAAAAAAAAAAAC3RlAQAAAAAAAAAAAAAAAC0pGd3FwB0XP/+/Yu4ra2tGysBWrHbbrsV8ZQpU7qxkvYNGDCgiKdOndqNlayYhg0bVsT77bdfKTdq1Kim1pg4cWJpPGfOnCKufZ1FfLBfax8ktdfiT3/6U9PzXnnllS6o5oNr3333LeIJEyZ0YyXAymCbbbYp4iuvvLLhcW+88cayKAcAAAAAAAAAAKhypyQAAAAAAAAAAAAAAACgJZqSAAAAAAAAAAAAAAAAgJb07O4CWHkNGDCgiPfYY49SrlevXkWcUirlTjnllK4sa7nyjW98o4inT59eyl1yySXLuhygSVOmTOnuEpry9a9/vYjnz59fyrW1tS3rclY4e++9dxHPmjWrQ2sMGjSoNL7rrruKeM6cOR1ac2W3aNGiIp42bVrT83r2XLl+Vtf+jpswYUI3VgKsDDbZZJOmjnvllVe6uBIAAAAAAAAAAKCWOyUBAAAAAAAAAAAAAAAALdGUBAAAAAAAAAAAAAAAALREUxIAAAAAAAAAAAAAAADQkp7dXQArjwMPPLA07tOnTxGPGjWq4bw99tijy2paVvr3718at7W1dcq666+/fhHXnk+AztC3b98i7qzPLd611157FfGNN97YoTVWWaXcX96vX78ivvDCCztW2EquV69eHZr39ttvd24hH3ATJkzo7hKAlci6667b1HGLFy/u4kq63mGHHVYa1/4ee/7550u53r17F/G1115bys2YMaMLqgMAAAAAAAAAgDJ3SgIAAAAAAAAAAAAAAABaoikJAAAAAAAAAAAAAAAAaEnP7i6AFdspp5yy1LgV99xzT2n89NNPF/HHPvaxDq25LFx11VVFPHny5FLukEMOKY2nTZtWxFdccUXTe7z++utFXHte6HwDBw4sjXfeeecinjlzZik3a9asIr711lu7tK4PmtGjRxfxpptuWsq9+OKLRfyd73xnmdVEx2255Zadsk7//v2L+N///d9LuYULFxbxM888U8rdfffdRdzW1tYptXyQrLXWWkU8Y8aMpufVfh7Vn7M333zz/Re2kps9e3ZTx+24446l8fz585uaN2DAgNJ46tSpTc2LiDj22GOL+Oc//3nT87pCK3V/UAwaNKg0njRpUrfUsazUfvZGRGy//fZFvNFGG5Vy999/fxFPmTKlQ/sNGzasNL7uuus6tA4sTbPfbxtvvHHD3O9+97vSuPY3/IIFC0q52tfv9OnTm9r7/Tj//POL+N577y3lLr744qbWGDFiRGncym8LAAAAAAAAAADoKHdKAgAAAAAAAAAAAAAAAFqiKQkAAAAAAAAAAAAAAABoiaYkAAAAAAAAAAAAAAAAoCU9u7sAVixnnXVWaXzCCSd0+h4vvPBCEffv37+U+/KXv1zEp59+eqfv3YpTTz21iB999NF2jz3//POLeOrUqaXcjBkzGs7r3bt3ET/yyCMtVvjBN3z48CL+9Kc/Xco9/PDDRbzjjjuWcmPGjCni9zr3tbbbbrvS+NBDDy3iF198sZQ755xzGq6z++67F/Fpp51Wyp100klN17M8OPfcc0vjiy66qIjb2tqannfcccd1bmF0itdee61D84499tjSeKuttiriG2+8sZQbP358w3VqP0frtff6Wl706dOniC+99NKm562zzjpFvGjRolJu4sSJTa+z5557FvHQoUNLublz5xbxySef3PSaK4IJEyY0ddzAgQNL49tuu62peT17ln9+77rrrkV83333tTt3/fXXb2oPlu6MM84oja+88soivuCCC5peZ8CAAaVx/W+3zjBs2LAifvrpp0u5hx56qOG82t/iDzzwQCn31FNPFfGDDz5Yym2xxRZFPHLkyFLu/vvvL+Lbb7+94d6bb755wxwdU3st/vu//7uUa+U37sqk/m+G2r8nat/zERHjxo0r4vr39T777FPE06dP78wSl+qll14q4quvvrpDayxYsKCzygEAAAAAAAAAgKa5UxIAAAAAAAAAAAAAAADQEk1JAAAAAAAAAAAAAAAAQEt6dncBLP922mmnIn722We7fL8NNtigiNva2kq5733ve12+fyMHH3xwaTx27Nim595www1FfOCBB5ZyP/3pTxvO23777Yu4/lysCHr06FHEI0aMaHjc8OHDS+NHH320qfUHDx5cGg8ZMqQ0bm/P9kyePHmpcUTE+eefX8Q//OEPO7T+D37wg9L4V7/6VYfW6ajRo0cX8UUXXVTKtfc6rP2sePnllzu/sBXE4YcfXsRjxoxZpnsfeeSRpfG8efOamnfiiSeWxquvvnpp/J3vfKdD9Zx88slFfPbZZ5dyI0eO7NCaHyRvvvlmh+allIq49jsxImLq1KlNr7PvvvsW8THHHFPK1X4eHnDAAaXcH/7wh6b3WJH17t27NG72e3jKlCml8YABA5rec/78+U0fy/9W+3srIuKCCy7o0Dq1v78iIubMmVPE06dPb3qdoUOHFvHmm29eytW+TrbbbrtS7l/+5V+KeIsttijlzjjjjCJu5bfhjBkzivjmm28u5Q466KAiHjRoUCk3adKkIj7vvPOa3o/m1H7ONPv7dkWVc27quNq/HyLK37Xjxo1rOK/+87X+M74jfvKTn5TG7f1dd+aZZ3Zoj8742wIAAAAAAAAAAN4Pd0oCAAAAAAAAAAAAAAAAWqIpCQAAAAAAAAAAAAAAAGiJpiQAAAAAAAAAAAAAAACgJT27uwCWf5/4xCeK+P777+/y/V5++eWGuY022qjL92/k85//fGk8duzYpufeeuutRfztb3+74XFDhgwpjefMmdP0HsuDE088sTQ+88wzm5o3bty4pvfYaaedinjo0KGl3OGHH970Oh01d+7cIu7fv38p19bW1tQaRx11VGk8derUIp48efL7qG7pPvvZz5bGtc+h2ZojIvbdd98iPu20095/YcuRYcOGlcYzZswo4kcffbSU+/jHP75MalqaHXfcsTSeN29ew2Nrr2ffvn1Lue9///udWldExFprrdXpay5rI0eOLI1vu+22Dq0zc+bMIv7qV79ayh1xxBEN59V/5r322msNj+3Tp08RP/PMM62WuMKqfd0/8cQTnbJm7Wf4e1lzzTU7Zc+VyXbbbVfEDz/8cKes+c4775TG6623XlPzttlmm9K49vt01KhRDefdd999pfHOO+/c8NhWvpebdcUVVxTxmDFjSrlJkyZ1+n68a/311+/uEj4w3nrrrYa52r8h/vjHP5Zyzb4/d9hhh9K4M777evfu/b7XqHfJJZeUxvXvSQAAAAAAAAAAWNbcKQkAAAAAAAAAAAAAAABoiaYkAAAAAAAAAAAAAAAAoCU9u7sAln/vvPNOEU+bNq3L93v88ccb5t54440u37+RVVddtVPWefrppxvmPvnJT5bGTzzxRKfs2Z1GjBhRxDfddFOX73fIIYcU8fnnn9/l+9Vbd911i7itra3peUOHDi3it99+u5Tbeuuti3jy5Mnvo7ql22WXXUrjO+64o6l5xx9/fGk8derUTqtpebPhhhuWxrNnzy7i1VZbrZRba621lklNSwwaNKiIH3744VJuwIABDeftuuuuRXzRRRd1el31evTo0eV7dLX99tuvNL7zzjs7tM7ChQuLeN68eU3Pq7+eEyZMaHhs7fX9z//8zxaqW/7tv//+RXz99deXcvvuu28RH3HEEcuspiVmzZrV6WsefPDBRTx27NiGxw0fPrw0HjduXKfX0hVWWeXd/w+G2u/giPJ36/jx45tes/43X7O/AY8++ujS+Kqrrmp6z1pz584t4jXXXLNDa3TUiy++WBrvuOOORfzggw8u01pWBi+88EJ3l9CyAw44oDT+wx/+0CnrLlq0qIg/85nPlHK9evUq4ltuuaWUq/0+a8+Xv/zl0rj+eTTrmmuuKeJTTjml6Xm33357Ec+ZM6eUO+OMM4r4W9/6VofqAgAAAAAAAACAruJOSQAAAAAAAAAAAAAAAEBLNCUBAAAAAAAAAAAAAAAALdGUBAAAAAAAAAAAAAAAALSkZ3cXwPJv3rx5Rbz//vuXctdff/37Xv/HP/5xaTxz5syGx77yyitFPHDgwFLu7rvvft+1tOf111/vlHUmTZpUGh977LFFfPrpp5dyo0aN6pQ9l6VBgwaVxrNnzy7iBx98sMv3X2211Yp4xowZXb7fdtttVxr36NGjQ+vsvffeRXzNNdeUcptvvnmH1mzWrFmzSuNNNtmk4bHf+973irj+ud50002dWtfy5OWXXy6Na89N/ev+7bffXhYlFQYPHlzEJ5xwQik3evTohvOeeeaZIl68eHHnFxYRO+20UxHXvneXJ7XvicmTJ5dyCxcu7NCaX/rSl4r4qaeeanpezrk0fuutt4p42LBhpdy1117bodpWBF/72teKeNNNNy3l7rnnnmVdTklKqdPX7Nu3b1PH7b777qXxuHHjmppX/1tl/vz5RVz/ebf22msX8THHHNPU+u+lra2tiI844ohSrvZzZfz48U2vudlmm5XGl112WcNj99xzzyK+7bbbSrnbb7+96T1rnXTSSUU8ceLEDq3RUeuvv35pXPsdtttuu5VyU6ZM6dJaDjvssNK4d+/eRXzmmWd26d4REZ/73OdK41tvvbXT96h9TsuLrqq59rdT/W/fkSNHNpxX+/fTI488UspNnz69iA844IAO1TVixIjS+Mknnyzi+t9H/fv3L+IBAwaUcgsWLCjiuXPnlnJd/V4CAAAAAAAAAID3w52SAAAAAAAAAAAAAAAAgJZoSgIAAAAAAAAAAAAAAABa0rO7C2D5d9111xXxL3/5y1Lu+uuv79Cav/jFL4r40UcfLeU22GCDhvPGjRtXxKeeemopd/nllxfxI488UsrNnz+/4X7Nuvnmmzs0LyLioIMOKuLPfOYzpdzPf/7zhvNWXXXVDu/ZXfbff//S+Oijj16m+8+ZM2eZ7nfSSSeVxl/72tc6tE7fvn2LeMSIEaXc6NGjm1pj3333LY179nz3K2D8+PEN5911112l8cUXX1zE2267bSk3c+bMIj7zzDObqmtl8NJLL5XGG264YcNjP/zhD3dpLf379y+Na69ZvSeffLKIBw4cWMpdeumlRbzNNtt0UnVlP/zhD4v4N7/5TZfs0dUGDx5cxD/5yU9KuV122aWpNeqv2TrrrFPEjz32WNO11B9b+z35+OOPl3LHHXdc0+uuaB588MEiPv3000u5+s/RZe2pp57q0LwddtihiL/73e+WcocffnjDebXv+7feeqvp/b73ve8Vcf13Vnv222+/Ij7//PNLudrPg1bstNNORfzCCy+UcqeddlqH1lywYEHTx955551FfNttt5VyTzzxRBFPmzatlKut+6ijjirlHnrooSK+8cYbS7ndd9+9iCdPntx0nTvuuGMR77PPPqVc7Xlr7zrUvz9qX2s33HBDKffKK68U8fbbb1/K1b4Opk6dWsrV/q6q/T0SETF9+vQiXha/Qfbaa6/S+NZbb+30Pdra2op4+PDhpVzt3z0fJP369euUdYYMGVIaz5s3r4gXL17c9Dq176X6eR39XKn9Xt50001LuWOOOaaI699Ltb/na69tRMQXvvCFIj733HNLuTvuuKOIx4wZU8pdddVVzZYNAAAAAAAAAABdwp2SAAAAAAAAAAAAAAAAgJZoSgIAAAAAAAAAAAAAAABaoikJAAAAAAAAAAAAAAAAaEnP7i6AFcvMmTNL49/97ndFPGHChFJu++23L+JtttmmlBs7dmwR33LLLaXc8OHDG+5/3333FfGIESNKuf3226+IBw0aVMqtvfbaRbzBBhuUch/60IeK+I033ijlzj333CK+/vrrS7k77rijiGfPnl3KLVy4sDSufY6HHnpoNGvixIlNH/tBsckmm3Tr/muuuWaX7/HHP/6xiEePHt0pa77zzjsNc/fcc08R/+lPfyrl1l133SJ++OGHS7lZs2YVcZ8+fUq5iy++uIjrX6+9e/cu4n/7t38r5QYPHtywzpXZ/PnzS+Pa61Kv9rPj0ksvLeX+9re/FXH9e6lHjx5FXH9dau27776l8dlnn91ULdtuu20pV/uZesMNNzRc470MGDCgiI888shSbty4cUU8ZcqUDu+xLP3mN78pjX/9618X8bRp00q5rbfeuqk1TzzxxNL4oIMOKuJvf/vbTdf2kY98pDTef//9i3jnnXduep0V3dSpU4u4V69eHVpj6NChpfHmm29exJtuumkpt9pqqxVx/eft0UcfXRrXvieGDRtWyq2xxhpFfOWVV5ZyDz30UBEffvjh7ZVecvfddy81fi+1r/tW1H6WdPRzZeDAgaVxbd1f/OIXO7TmYYcdVhrfeOONHVrnlFNOabhu/ff8ggULivjggw9ueo9LLrmkiOs/H1566aWlrh8R8fe//72Ix48fX8rNmDGjqb1POumk0niPPfYo4j333LOU69u3bxE/99xzpdyQIUOa2q/emDFjirj+s7j+99/rr79exHPnzi3lcs5FfPLJJzfcr/7vgq5Q+16q/77+1Kc+VcRPP/10KbfVVlsV8eLFi0u5RYsWLTWOiLjqqquK+MEHH2y6zm9961tFfNNNNzU9r17t66T2My0iYuTIkQ3n1X4efuUrXynlPvvZzxbxXnvtVcpddNFFRfzoo4+WcqNGjWq4X1tbWxEfc8wxDY+r/zu2Wccdd1xp3K9fvyI+8MADS7n/+Z//KeLHHnuslPvLX/5SxA888EApV/+bBAAAAAAAAAAAOsqdkgAAAAAAAAAAAAAAAICWaEoCAAAAAAAAAAAAAAAAWqIpCQAAAAAAAAAAAAAAAGhJyjk3f3BKzR8MEbHnnnsW8Sc/+clS7rHHHivim2++eZnVRPe67LLLSuNx48YV8Q033NDl+w8ePLiIf/SjH5Vyl19+eWn87LPPFvHGG29cym233XZFvPfee5dyTz31VBHPmzevlJs8eXIR//a3v22y6ojjjz++iM8555ym53WGQw45pDS+9957i3jXXXct5b773e8W8dy5c0u5l156qYjXWGONUq72PF177bWl3HXXXddixR98Q4cOLeLx48c3PK5///6l8XrrrVfE99xzT9Pz2traivib3/xmKVf/nmzWaaedVsQbbbRRKffQQw81nLfuuuuWxltuuWXDWu6+++4O1basTZw4sYg///nPNz2v9juy/jOm9lpfeOGF76O6jqm9vhtssEEp98QTTxTxX/7yl1Lu1ltv7drCusDIkSNL47PPPrubKqGr/exnPyuN638HsPIYMGBAEdf/JllllXf/fzvuvPPOhmv84Ac/KI1/9atfdVJ1zan9LfrhD3+4lOvo9+fo0aOL+IILLijlZsyY0XDeUUcdVcTnnXde0/sNGTKkNO7Vq1cRX3nllU2vs/vuuxdx7W/tlc0ee+xRGtd+f2+66aalXO3fOcvibzAAAAAAAAAAAFYIf845D6h/0J2SAAAAAAAAAAAAAAAAgJZoSgIAAAAAAAAAAAAAAABaknLOzR+cUvMHAzThiiuuKOJtt922lLvzzjuL+N577y3lFixYUMTrrbdeKbfOOus03O+vf/1rET/++OOl3KBBgxqu8+qrr5Zyffr0KeIJEyaUcm1tbQ33r91j0qRJDY8DVi477bRTaTxt2rRuqgRWXGeddVZpfMIJJ3RTJawIhg8fXhqPGzeumyrpGueee25pvHjx4iJea621Srnvf//7HdqjX79+pfH06dM7tA4AAAAAAAAAALBM/DnnPKD+QXdKAgAAAAAAAAAAAAAAAFqiKQkAAAAAAAAAAAAAAABoiaYkAAAAAAAAAAAAAAAAoCU9u7sAYOV20EEHFXG/fv1KuenTpy/TWpbFfpMmTeryPYDlz7Rp07q7BFjhLVq0qLtLYAWy6qqrdncJXeq4447r8j2W9W99AAAAAAAAAACg87lTEgAAAAAAAAAAAAAAANASTUkAAAAAAAAAAAAAAABAS3p2dwEAS0yfPr27SwAAVlA9evTo7hJYgay++urdXQIAAAAAAAAAAEC3c6ckAAAAAAAAAAAAAAAAoCWakgAAAAAAAAAAAAAAAICWaEoCAAAAAAAAAAAAAAAAWtKzuwsAAADoaj169OjuEliBXHbZZd1dAgAAAAAAAAAAQLdzpyQAAAAAAAAAAAAAAACgJZqSAAAAAAAAAAAAAAAAgJb07O4CAAAA2tO/f/8ibmtr69AaCxcu7KxyAAAAAAAAAAAAgHCnJAAAAAAAAAAAAAAAAKBFmpIAAAAAAAAAAAAAAACAlmhKAgAAAAAAAAAAAAAAAFrSs7sLAAAAaM9ee+1VxG1tbR1a4+233+6scgAAAAAAAAAAAIBwpyQAAAAAAAAAAAAAAACgRZqSAAAAAAAAAAAAAAAAgJb07O4CAAAA2vPII48U8cEHH1zKjR07tqk1Zs+e3ak1AQAAAAAAAAAAwMrOnZIAAAAAAAAAAAAAAACAlmhKAgAAAAAAAAAAAAAAAFqiKQkAAAAAAAAAAAAAAABoSc/uLgAAAKA9kyZNKuLDDz+8Q2ssWLCgk6oBAAAAAAAAAAAAItwpCQAAAAAAAAAAAAAAAGiRpiQAAAAAAAAAAAAAAACgJT27uwAAAIBmjRkzpjQ+/vjji/icc84p5QYPHlzEPXr06NrCAAAAAAAAAAAAYCXjTkkAAAAAAAAAAAAAAABASzQlAQAAAAAAAAAAAAAAAC3RlAQAAAAAAAAAAAAAAAC0JOWcmz84peYPBgAAAAAAAAAAAAAAAJZ3f845D6h/0J2SAAAAAAAAAAAAAAAAgJZoSgIAAAAAAAAAAAAAAABaoikJAAAAAAAAAAAAAAAAaImmJAAAAAAAAAAAAAAAAKAlmpIAAAAAAAAAAAAAAACAlmhKAgAAAAAAAAAAAAAAAFrSs8XjX4mI57qiEAAAAAAAAAAAAAAAAOADZ7OlPZhyzsu6EAAAAAAAAAAAAAAAAGA5tkp3FwAAAAAAAAAAAAAAAAAsXzQlAQAAAAAAAAAAAAAAAC3RlAQAAAAAAAAAAAAAAAC0RFMSAAAAAAAAAAAAAAAA0BJNSQAAAAAAAAAAAAAAAEBLNCUBAAAAAAAAAAAAAAAALdGUBAAAAAAAAAAAAAAAALREUxIAAAAAAAAAAAAAAADQEk1JAAAAAAAAAAAAAAAAQEv+PwM/aoaIbrClAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADSUAAACECAYAAADcSq9PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABGJ0lEQVR4nO3deZwUxf3/8U/BLiyHyCHIIQq7iyAiIsgpBoiIoqgoaECJBg/wwq944RmPaODnEYKi8SZqDBghoIAoIGgE5HaXIC64u6wihxzKfUP9/pihrKrsNDOzM7Mgr+fj4cN37Wem+tM9PT3dYzqjtNYCAAAAAAAAAAAAAAAAAAAAAAAAANEqU9oNAAAAAAAAAAAAAAAAAAAAAAAAADi6cFMSAAAAAAAAAAAAAAAAAAAAAAAAgJhwUxIAAAAAAAAAAAAAAAAAAAAAAACAmHBTEgAAAAAAAAAAAAAAAAAAAAAAAICYcFMSAAAAAAAAAAAAAAAAAAAAAAAAgJhwUxIAAAAAAAAAAAAAAAAAAAAAAACAmHBTEgAAAAAAAAAc4ZRSRUqprqXdx7FGKfWyUuqRKB/7d6XUk0nuRymlRimlflZKzU/msgAAAAAAAAAAAADgcNJKuwEAAAAAAAAAAJJFKfV3EflBa/1wrM/VWt+c+I5KpKOInC8iJ2mtdyR7YUqpBiKyUkTStdb7k708AAAAAAAAAAAAAEcXfikJAAAAAAAAAAIopU48Guf+tVBK8X+u9YtTRKQoFTckHWmUUulKqepJnL+8Uur4ZM0PAAAAAAAAAAAA/BpxUxIAAAAAAAAAeJRSVZVStyil5ovI362/D1FKrVZKbVNKLVdKnRf+e3ml1F+VUmvC//xVKVU+XDtBKTVJKbVZKfWTUuoLpdSh72b/rpSar5S6WSlV9TBttVZKLVNK/ayUGqWUyrD66qGUygkvY45SqrlVq6+U+rdSaoNSapNSamT471lKqRnhv21USr1r96CUKlJK3auUWqKU2qGUekMpdaJSakp4/acrpapZj28XXvZmpVSuUqpzwPZtqZT6KjzP+0qp95RST4ZrnZVSP4S39ToRGaWUKqOUul8pVRDu91/2DSrhOdYppbYopf6jlDo9/PcBInKNiNynlNqulJpYTC9KKTVcKbVeKbVVKfVfpVSzcO3vh/oKj+9TSq0Nv8Y3KqW0Uirbmq6aUmpyeL3mKaWyDreMYvqpq5T6MLyv5Culbgr//QYReV1E2ofX5fEIz79eKfVNeD/5RCl1ilU7XSk1LTz3j0qpB8N/b6OUWhju7Uel1F/CT/lP+N+bw8tsH8V+8z/7m1KqXHiZZ1iPq6WU2qmUqlnceliPa6aUek5EfpDQr0Qd+nvQPn+aUuqzcO1rpdSlVu0iFXofbVOh9/I94dIJIrIqvD5d1S/vUQAAAAAAAAAAAAAR8B/VAAAAAAAAAEBEwje+dFNKjRaR70Skm4g8JSKXhuuNReR2EWmttT5ORC4QkaLw0x8SkXYi0kJEzhSRNiLycLh2t4RuqKgpIieKyIMiosO1S0Xkz+G5vlNK/VMpdX6EGyKuCT8uS0ROPTS/UuosEXlTRAaKSA0ReUVEPlShG6XKisik8Po0EJF6IjLm0CqLyFARqSsip4lIfRF5zFtmLwndCHKqiFwiIlPC/deU0PfLd4R7qCcik0XkSRGpLiL3iMi44m44UUqVE5HxErrZq7qIjBaRy72H1Q7XThGRASIySER6ikincL8/i8iL1uOniEgjEaklIotF5F0REa31q+H8tNa6stb6Er8fCb3Ovwmv4/EicpWIbCqm7wtF5C4R6Soi2SLSuZi5+ojI4yJSTUTyJbT/RL2MsDES2l/qikhvEfmzUuq3Wus3RORmEfkyvC6PFtPjZRJ6fa6Q0Gv0hYS2ryiljhOR6SLycXjubBH5NPzUESIyQmtdRUL717/Cf/9N+N9Vw8v8UgL2m0j7m9Z6b3i9+lnt9hWRT7XWG4pZj2pKqVuVUgtEZKqIHBSR32qt3wvXg/b5dBGZGH5eLQntO++G378iIm+IyMDwe7iZiMwQEdFar5bQ6/OViAwXkZVKqSeUUpl+fwAAAAAAAAAAAABCuCkJAAAAAAAAwDFPKXW7hG4wGiYiX4pIltb6cq31B1rrfeGHHRCR8iLSVCmVrrUu0loXhGvXiMgTWuv14ZssHheR34dr+0SkjoicorXep7X+QmutRUTC4wla68sldDPIXBH5fyJSFO7JNlJrvUpr/ZOEbnbpG/77ABF5RWs9T2t9QGv9lojskdBNUm0kdPPIvVrrHVrr3VrrWeFl52utp2mt94R7/ouEbvqxvaC1/jF8w8YXIjJPa/2V1nq3hG4sOiv8uH4i8pHW+iOt9UGt9TQRWSgiFxWzuduJSJqIPB9e/3+LyHzvMQdF5NFwb7skdDPOQ1rrH7TWeyR0E0xvpVRaeF3e1Fpvs2pnKqWOL2bZxdknIseJSBMRUVrrb7TWa4t53FUiMkpr/bXWeqf87w1cIiLjtdbztdb7JXQzVItYlqGUqi8i54jIkPBrlSOhX0e6Nsp1uVlEhobn3y+hG95ahH8tqYeIrNNaPxeee5vWep7VX7ZS6gSt9Xat9dxICzjMfhNxfxORt0Skr1JKhce/F5F3vPWvopQaIyIrJXTT16MiUl9rfa/W+mvroUH7fDsRqSwiw7TWe7XWMyR0o9Sh98s+Cb2Hq2itf9ZaL7bWbZ3W+lmt9RkSurGrqojMDf/q0plBGx4AAAAAAAAAAAA4FnFTEgAAAAAAAACINJTQr9vkiEiuFPMrNlrrfBG5U0I3o6xXSo1RStUNl+tK6NdhDvku/DcRkWck9Ks5U5VShUqp+yP0sElEloR7qBbuybYqwvyniMjdSqnNh/6R0K/X1A3/+7vwDSoOpdSJ4XVYrZTaKiL/EJETvIf9aOVdxYwrWz1c6fXQUUI3Y/nqisjqQzdmFbNuIiIbwjc+HXKKiIy35v5GQjeJnaiUKquUGqaUKgivR1H4Of66FCt808pICf3y0nql1KtKqSoR+rb79HsWEVln5Z0S3j4xLuMnrfU262/fSegXh6JxioiMsLbTTxL6ZaN6EtoXCiI87wYJ/UpQnlJqgVKqR6QFHGa/ibi/hW+A2ikinZVSTST0S00feg9Ll9CvF/0koffBUq31gQjrGWmfrysiq7TWB63H29uwl4RulvtOKfW5Uqp9hFX9VkLHgnwJ3UxWNcLjAAAAAAAAAAAAgGMWNyUBAAAAAAAAOOZpre+W0C8VLRWRF0RkpVLqT0qpRt7j/qm17iihmyK0hH7VSERkTfhvh5wc/puEf5Hmbq11pohcKiJ3KaXOO/RApVQjpdSfJPTrMCNE5L8ikhnuyVa/uPkldHPMU1rrqtY/FbXWo8O1kw/9opDnz+F1OENrXUVCv3akinlcNFaJyDteD5W01sOKeexaEaln/WKOv24S7sufv7s3f0b4F5yuFpHLRKSriBwvIg3Cz1ER5vofWuvntdatRKSphG7OuTdC3ycF9JyIZawRkepKqeOsv50sIqujXMwqERnobacKWus54VpmhN6+1Vr3FZFaEtqnxyqlKknx2y5ovwna30RCv5bUT0K/kjTWu/FMtNabtNbNROR3EtrWi5VSM5RSf1BKVbYeGrTPrxGR+kop+79/mG2otV6gtb4svK4TRORfhx4UvsGtu1JqtIh8LyIXi8hQETlJa/15hHUCAAAAAAAAAAAAjlnclAQAAAAAAAAAIqK1Xq+1/ovWurmEfk2lqoh8qZR6U0REKdVYKfVbpVR5EdktoV8KOvRrLKNF5GGlVE2l1Aki8kcJ/YKMKKV6KKWywzfhbJHQL/wcDNfeFJEvw8u6Qmt9ptZ6uNZ6QzEt3qaUOkkpVV1EHhKR98J/f01EblZKtVUhlZRSF4dvbJkvoZtphoX/nqGUOif8vONEZLuIbFFK1ZPib5KJ1j9E5BKl1AXhGzsylFKdlVInFfPYL8Pb4HalVJpS6jIRaXOY+V8WkaeUUqeIiIS382XWeuyR0C9NVZTQTTO2HyXCzTjhuVqHt126iOyQ0Gt7sJiH/ktE+iulTlNKVRSRRw7Tc8zL0FqvEpE5IjI0vA2bS+hXjP4R5aJeFpEHlFKnh5d7vFLqynBtkojUUUrdqZQqr5Q6TinVNvy4fkqpmuFfF9ocfvxBEdkQ/re9/YL2m6D9TcLrcbmEbkx6O9JKhG8culVCv270ioRuUlqjlLow/JCgff7QLzLdp5RKV0p1FpFLRGSMUqqcUuoapdTxWut9IrJVfnkv1hKRHyS0/8wVkWyt9RVa64nF/fITAAAAAAAAAAAAAG5KAgAAAAAAAID/obVepLUeJCJ1JXSjh4hIeREZJiIbRWSdhH5p5YFw7UkRWSgiSyT0S0eLw38TEWkkItMldCPHlyLyktZ6Zrj2sojU1VoP0lovPkxb/xSRqSJSKCIFh+bXWi8UkZtEZKSI/Cwi+SLyh3DtgIRuyMiW0C+//CChGzxERB4XkZYSulFqsoj8O5ptU5zwzTSXiciDErqRZZWEblb5n++gtdZ7ReQKCd1ss1lCN6hMktCNRZGMEJEPRWSqUmqbhG4aaRuuvS0i30nol3CWhWu2N0SkqVJqs1JqQjFzV5HQTS4/h+fZJCLPFNP3FBF5XkRmSmgbH1pOUN8xLSOsr4R+7WmNiIwXkUe11tOjWIZorcdL6JeOxiiltkrol7+6h2vbROR8Ce0P60TkWxHpEn7qhSLytVJqu4S2dR+t9S6t9U4ReUpEZoe3XzsJ2G8Os78d2k8WS+iXlr4QEVFKfa2UuibC+uzRWr+nte4uIk1EZHn470H7/N5wD90l9F59SUSu1Vrnhaf9vYgUhbfPzSJyaNk7ReRCrfVZWusRWuuNh93gAAAAAAAAAAAAwDFOaa1LuwcAAAAAAAAAwDFMKTVPRF7WWo8q7V6ipZQ6TUI3/ZTnl3SiF/51sDVa64dLuxcAAAAAAAAAAAAAJcMvJQEAAAAAAAAAUkop1UkpVVsplaaUuk5EmovIx6Xd1+EopS5XSpVXSlWT0C8STeSGpOgppRpI6Fey3ijlVgAAAAAAAAAAAAAkQFppNwAAAAAAAAAAOOY0FpF/iUglESkUkd5a67Wl21JUBorI30XkgIh8LiK3lmo3RxGl1J9EZLCIDNVaryztfuKhlHpQRB4splRJRHbwd/7O3/k7f+fvYV9orbsX83cAAAAAAAAA+NVRWuvS7gEAAAAAAAAAAAAAAAAAAAAAAADAUaRMaTcAAAAAAAAAAAAAAAAAAAAAAAAA4OjCTUkAAAAAAAAAAAAAAAAAAAAAAAAAYpIWy4OVUjpZjSRThQoVTNbaXYXdu3enuh0AAAAAAAAAAAAAAAAAAAAAAADgaLFRa13T/2NMNyUdrU499VST9+zZ49Ty8vJS3Q4AAAAAAAAAAAAAAAAAAAAAAABwtPiuuD+WSXUXAAAAAAAAAAAAAAAAAAAAAAAAAI5uv8pfSho4cKAzzszMNHn//v1ObeLEiSbPnTs3uY0BAAAAAAAAAAAAAAAAAAAAAAAAvwL8UhIAAAAAAAAAAAAAAAAAAAAAAACAmHBTEgAAAAAAAAAAAAAAAAAAAAAAAICYpJV2A4nSuXNnk+vUqePUhgwZYvKZZ57p1G688UaT586dm5zmAAAAAAAAAAAAAAAAAAAAAAAAgF8RfikJAAAAAAAAAAAAAAAAAAAAAAAAQEy4KQkAAAAAAAAAAAAAAAAAAAAAAABATLgpCQAAAAAAAAAAAAAAAAAAAAAAAEBM0kq7gURp0aKFyW+//XbEx+Xm5qagGwAAAAAAAAAAAAAAAAAAAAAAAODXi19KAgAAAAAAAAAAAAAAAAAAAAAAABATbkoCAAAAAAAAAAAAAAAAAAAAAAAAEJO00m4gUTZu3GhyYWFh1M+rUKFCMtoBAAAAAAAQEZG2bduaPG/evFLsBAAAAAAAAAAAAAAAAEgcfikJAAAAAAAAAAAAAAAAAAAAAAAAQEy4KQkAAAAAAAAAAAAAAAAAAAAAAABATLgpCQAAAAAAAAAAAAAAAAAAAAAAAEBM0kq7gXh1797dGW/YsCGuebZu3ZqIdgAAAAAAAEREpHHjxs74sssuM7ls2bJObc6cOSnpCQAAAAAAAAAAAAAAAEg0fikJAAAAAAAAAAAAAAAAAAAAAAAAQEy4KQkAAAAAAAAAAAAAAAAAAAAAAABATNJKu4F4nX/++c74rrvuimueAwcOJKIdAAAAAChV2dnZJvfr18+p1atXz+QVK1Y4tWeeeSa5jQHHoK5duzrjoqIik+fMmZPibgAAAAAAAAAAAAAAAIDk4JeSAAAAAAAAAAAAAAAAAAAAAAAAAMSEm5IAAAAAAAAAAAAAAAAAAAAAAAAAxISbkgAAAAAAAAAAAAAAAAAAAAAAAADEJK20G4hFkyZNTM7IyIhrjnbt2jnjDRs2lKgnAAAAALHzz8vnzp1bSp0cvRo0aOCMn376aZNzcnKc2rvvvmtyly5dnNpDDz1k8lNPPZW4BoFjWLNmzZzx1KlTS6kTAEeapk2bOuNly5aVUicAAAAAAAAAAAAAAJQcv5QEAAAAAAAAAAAAAAAAAAAAAAAAICbclAQAAAAAAAAAAAAAAAAAAAAAAAAgJmml3UAs6tSpY/K3335b4jlERFatWlWingAAAADE7oorrnDGZcuWNXn27Nmpbueo9H//93/OeMGCBSYPHTo04vM+++wzZ/zaa6+ZnJmZ6dQKCwtL0CFw7DrhhBOcMe8l4NjSs2dPZ9ypUyeT69Wr59Tsz+Fp06YltS8AAAAAAAAAAAAAABKNX0oCAAAAAAAAAAAAAAAAAAAAAAAAEBNuSgIAAAAAAAAAAAAAAAAAAAAAAAAQE25KAgAAAAAAAAAAAAAAAAAAAAAAABCTtNJuIBa1a9c2efPmzXHN0bRpU2f8+eefl6QlAAAAAHG47777nHH//v1Nnj17dqrbOWo0a9bM5Dp16ji1wYMHxzVnbm6uyR07dnRqhYWFcc0JHIsyMzNN3rVrl1Oz32cAfn1uv/12Z5yRkeGMX3jhBZPvvfdep5aVlWXytGnTktBdYtjnCP76rVu3zuSlS5emrCcAAAAAAAAAAAAAQOnjl5IAAAAAAAAAAAAAAAAAAAAAAAAAxISbkgAAAAAAAAAAAAAAAAAAAAAAAADEJK20G4jFiSeeaPLatWvjmqN27drOeNasWSXq6UjXoEEDZ1y3bl2T9+7d69QWLlyYipYAhGVnZzvjihUrmrxkyZJUtwMACdWvXz9nvGzZMpMXL16c6nZwFBg1alRpt3BUaNeuncnffvttQuYsKCgwuUuXLgmZEzgW2d83bNy4sRQ7QTyysrKcsf16+rWtW7eaPGHChKT2hSNX//79Td6xY4dTGzlyZMTn7d692xmnp6cntrEYdO/e3RlfeOGFJteqVcupFRYWmrxr1y6n1rBhw4jLWLBggckvv/xyXH0CAAAAAAAAAAAAAI5c/FISAAAAAAAAAAAAAAAAAAAAAAAAgJhwUxIAAAAAAAAAAAAAAAAAAAAAAACAmHBTEgAAAAAAAAAAAAAAAAAAAAAAAICYpJV2A7EoX768yXv37o36eb179za5oKAgoT0dafr27euML7roIme8c+dOk+vXr+/U8vPzTX711Ved2tKlSxPVYoldcMEFJnfq1Mmppaenm7x9+3andvrpp5s8atQopzZlypREtggYWVlZzvj66683uXr16k4tLe2XQ/KaNWuc2qOPPpqE7hCNDh06mOwfc2rXrm1ymTLufb72a7hr1y6nVlhYaPKHH36YkD6BI03Hjh2dsX0et3jx4lS386tjnw+JiGRkZJj8wQcfpLodpFDbtm1N/vTTTxMy59q1a01WSiVkTuBYVK1aNZO3bNlSip0gkq5duzpj+/zePkcXESkqKjJ51apVTq1Ro0YmjxgxwqlNmDDB5JkzZ8bbKqJwzz33OOOWLVuavG3bNqdmvy7xfgfUs2dPZ1y1alWThw8fHvU8+/btc8axfMcZj6ZNmzpj+7vDE044wanNmDHD5K+++sqp2d8bBmnSpIkz7tOnj8l//vOfndqDDz4Y1ZwAAAAAAAAAAAAAgCMXv5QEAAAAAAAAAAAAAAAAAAAAAAAAICbclAQAAAAAAAAAAAAAAAAAAAAAAAAgJmml3UAsatSoYfLu3bujfl6bNm1M/sc//pHQno4EgwcPNnnjxo1O7dFHH3XGhYWFEee54YYbTB40aJBTGzhwYElajFl2drbJ//d//+fU9u7da/Inn3zi1KZOnRpxzt69e5vsr9+aNWtMzs3Nja3ZBLj00ktNrlOnjlOrWLGiycuWLXNq/vrjyHPJJZc444ULF5o8fvz4iM+74447nPGAAQNMfvXVVxPUHQ7p2LGjyVdccYVT27Rpk8lz5sxxaitXrjS5qKgo4vytWrVyxh06dDD59ddfd2rjxo0zecqUKQFdA0e2ChUqOGP7PA4lt337dmf8hz/8weQNGzY4Nf/YhaNLZmamM65Xr57J33zzTUKWobU2OSMjIyFzAsei2rVrmxx0bojUat68ucm9evVyamPGjDH5888/j3rOmTNnmtykSROnZn+HYT8Oiff11187Y/v8yD//ufzyy032P+uCrs3tz2H/uu6RRx6JvlnLli1bnPH+/fvjmidI586dTba/7xMRWbx4scnxrkOQvLw8Z/zYY4+ZfN999zm1Bx54wOShQ4cmvBdft27dnHHQ94gAAAAAAAAAAAAAgOjwS0kAAAAAAAAAAAAAAAAAAAAAAAAAYsJNSQAAAAAAAAAAAAAAAAAAAAAAAABiwk1JAAAAAAAAAAAAAAAAAAAAAAAAAGKSVtoNxGLXrl0m79u3L+Ljmjdv7owrVKhg8pIlSxLfWIp17NjRGVevXt3k4cOHxz3v559/bvJvfvObuOeJR9euXZ1x7969Tf73v//t1KZOnRrXMsaOHWvycccd59QaNGhgcm5ublzzB7n55pudcZs2bZxxUVGRyatXr45Ya9iwoVMbMWKEyf/5z3+c2rhx4+JpFQnQp08fk8uVK+fUxo8fH9Ucs2bNcsbdu3cveWMw7NdIROS8884z+a233nJq/msRj0WLFkUcN2nSxKndd999Jv/8889Obe7cuSXu5Vhw9tlnm9yuXTuntnLlSpPT09Od2p49e0yeMmVKkrr7RdOmTU2290G/prV2ajNmzDDZ/mw70tSuXdsZ5+TklE4jv1KzZ892xrVq1TL5zjvvdGpz5sxJRUtHnaysLJP99+AZZ5xhsv8erFGjhjPev3+/yZ999plTGzVqVEnb/J/30oYNG0xO1Hlr1apVTQ66zkqUiy++2OTOnTs7te+//97kb775xqkdOHDA5JkzZyanOaAE7GvzpUuXlmInsN10000m+9dj9vcg8crLy3PGhYWFJvvf3yTi2iJRMjMznXHbtm1Nts+nRUS2bdtmsv+ZuWDBApPvuuuuRLZ4WPa5vYhI3bp1Tfa//7PH/veGQXr16mXye++9F2uLxdq4caMz3rp1a4nn7NKlizMeOHCgySNHjnRqpbkfPv30087Yvv62z81ERAoKChK+fH8Z9vW4/14GAAAAAAAAAAAAAESHX0oCAAAAAAAAAAAAAAAAAAAAAAAAEBNuSgIAAAAAAAAAAAAAAAAAAAAAAAAQk7TSbiAWO3bsMLl8+fIRH3fxxRc74+nTpyetp9LQvXt3Zzx58uSEzNuoUSOT165dm5A5g7Rp08bkPn36OLXnn3/e5CVLliR82atWrXLGidhHMjMznfGgQYNMXr16tVP761//6ozjXcfs7GyTb7nlFqd28sknmzx8+PC45o9X//79nXGTJk1MHjJkSEp7SYWWLVs6486dO5t88803xzVnjRo1nPGGDRvimge/aNGihcnnnHOOU7PfI8uWLUtVSyIikpeX54zfeecdk6+++mqnNnfu3JT0dDSwjyu9evVyakopkz/++GOntnDhwohztmrVyuQBAwY4tU2bNpk8bty42JoNu+OOO5zxeeedZ7L/2r711lsmV65c2aldcMEFJl900UVO7dlnnzU51fuyiPvZXrt2bafmf/YiscaPH29yly5dnNr5559v8rRp01LW05Gmbdu2ztg+/1y0aJFTe/HFF032j9M++/PFf5+3a9fO5IEDB0bdq61evXrOeNeuXXHNE6Rq1aomJ+Oc49prr3XG9vHhlVdecWr5+fkJXz5Kzv7c9V/Pffv2mewf6+33z6xZs5LU3ZGjTp06Jn/66ael2Mmx7YEHHnDG27ZtM3nq1KlJX759nD548GDSlxfEPjcTcc8RypRx/3+K7PevfU0iIpKTk2Oyfc4h4n73kWr+Z7R9fLKPW/5jg76Dsc+1RUS2b99u8tKlS+Pq01euXLmEzGO76qqrnLF9znckH38XLFhgsv09lohIQUFBwpfn7zP2e+Rw53yJYH932LRpU6c2adKkpC8fAAAAAAAAAAAAAJKBX0oCAAAAAAAAAAAAAAAAAAAAAAAAEBNuSgIAAAAAAAAAAAAAAAAAAAAAAAAQE25KAgAAAAAAAAAAAAAAAAAAAAAAABCTtNJuIBZbt241uUqVKk6tcePGJjdq1MipDR06NLmNpdipp57qjB966KGEzHvhhReaPHny5ITMGeSGG24w+d1333VqS5YsSeqyp0+fnpB5mjZtavKgQYOc2qeffmry2LFjE7I8X35+vsl33323U3vppZdMbtWqlVNbtGhRwnvJzs42+YILLnBq5cqVS/jyjiSXXHKJM16+fHmJ5zzttNOc8bx580o857HummuuMdk/5ixbtizV7UQ0c+ZMkx988EGn1rx5c5OTfZw80vjHlauuuspk/xg7ZcqUuJZhHxv94+Rjjz1m8urVq53a3LlzTbbPR0RE7rrrLpN3797t1IYMGWJyXl5e1H3an2Hdu3d3avZngf05myoNGzY0edOmTU7N/sxCctnnACIiAwYMMHnatGmpbqdU9e3b1+ROnTo5tVdffdXkxYsXx72MnJwck6+//nqn9vrrr5tsH0eKG0eSkZHhjAsLC2PqLxr2tvn4448TPr9/ffbII48kfBlILvtzyj8/sbVr184Zt2nTxuSrr77aqX3yySfO+IMPPihJi0cE+/1akuMKSqZr167OOGifTYYaNWqYvH79+pQuW0Rk8ODBJrdt29ap2ecBb7zxRlzz5+bmOuNkfG7Ea86cOSbb1wsiIk888URUc7Ru3doZP/nkkyVvzFOtWjVnvGLFirjmadmypcmVKlVyavZ15ZHMvpaqWbNm0pe3cuVKZ9yvXz+T33777aQvPysry+QdO3YkfXkAAAAAAAAAAAAAkAr8UhIAAAAAAAAAAAAAAAAAAAAAAACAmHBTEgAAAAAAAAAAAAAAAAAAAAAAAICYcFMSAAAAAAAAAAAAAAAAAAAAAAAAgJiklXYDsdiwYYPJp59+ulNr1KiRybNnz05ZT8W58cYbTd6zZ49Te+edd+KaMzs72+Rdu3bF15jnzjvvdMarV682eerUqQlZhq1v377OOC8vz+SZM2cmfHnJ0KZNG2d8ww03mDxu3DinloxtGIsJEyaY3KFDB6e2aNGihC+vT58+Jn/11VdOrW3btiafc845Tq2036+JkJWV5YxffvnluOZp1aqVyTVr1nRq8+bNi2vOY9k999zjjO1j3Ny5c1PdTlzWrl3rjJs2bWrykiVLUt1Oyl155ZUmd+zY0akNHTrU5Pz8/KT3MmvWLJPr1Knj1Bo3bmzykCFDnJp9vH3xxRcT3teUKVOc8SmnnGLysGHDnNr999+f8OX7MjMzTd64caNTy8nJSfryEWKfY4mIrFq1yuTevXs7tbFjx0Y1p/8evOSSS0w+6aSTnNqBAwdM9s/xRo0aFdXy4tW1a1dnfOGFF5r8+OOPO7XCwsKk9iIi8uyzz5r8wgsvxDVHjRo1nPHOnTtL1FNxqlatanIyzmHLly+f8DlxZPLPsexxixYtnNq5557rjEeMGGHyxIkTndr06dMT1GFy7dixo7RbOGbZ35ns27fPqSX7Wqply5bO2D7mpeI8dfjw4c744MGDJj/44INOLRmffdGeS6TCpEmTTPbPeex9xH9dLr/8cpNTcZ3lX+9v3749rnns6xB/nVJxnpMI9vslPT096csrKipyxuvWrTPZP49MxGeP/X2YiEi3bt1Mvvfee0s8PwAAAAAAAAAAAAAcCfilJAAAAAAAAAAAAAAAAAAAAAAAAAAx4aYkAAAAAAAAAAAAAAAAAAAAAAAAADFJK+0GYvHVV1+ZfOeddzq15cuXm/zEE0+kqqVi1a1b1+Rdu3Y5tRtvvNHk119/Peo5MzIyTC5XrlzcvfXt29fkrKwspzZo0KC4542kQYMGJl900UVO7bHHHkv48pLthhtucMYTJkwweerUqSnuJtiKFStMPvXUUxM+f9OmTZ1xx44dTX744Yed2tlnn21y7dq1E95LaWjWrJnJVapUcWpz5syJa84rr7zS5BkzZsTXGIxGjRo542eeeaaUOolftWrVnPFtt91mcq1atZza888/n9Re7M8PEZGdO3ea/MEHHyRkGT169HDGl156qclPPfWUU8vPz0/IMqO1fv16k3fv3u3U+vTpY/LatWud2osvvpjcxjwvv/yyyXfccUdKly3iHhtnzpyZ8uWjeLNnzza5Z8+eTm3s2LEmd+jQwanZ7/vNmzc7tf/85z8m2+fhIu55629/+1unNnDgQJNfeeWVw3QeHft887rrrnNqf/3rX00uLCxMyPJikZeXZ/Lq1avjmqNChQrOeOXKlSXqScQ9vookf9vMnz/fGffv39/kUaNGJXXZOHLk5OQEjlu2bGnyVVdd5dRat25t8ujRo51aUVFRQvqLR5s2bUpt2XClpf3y9ZZ/rpZs/mfPpEmTkrq8Rx991BlrrZ3x3XffndTlHy3mzZvnjO1zEv9a4swzzzQ5Fd9VHX/88c74xx9/jGse+xxo06ZNJWmp1FSsWNHkDz/8MOXLt89RWrVq5dSmT59e4vnPPfdcZ+yfNwMAAAAAAAAAAADArwG/lAQAAAAAAAAAAAAAAAAAAAAAAAAgJtyUBAAAAAAAAAAAAAAAAAAAAAAAACAm3JQEAAAAAAAAAAAAAAAAAAAAAAAAICZppd1ALMqUKVNsFhH57LPPUtxNZHZvRUVFTu3aa681edasWU4tLy8v4pzbt283uVKlSlH30rdvX2fco0cPk4cOHRr1PPGqXr26yRUqVHBqBQUFSV9+Itjb7Oeff3ZqU6ZMSXU7UbP3vZEjRyZ8/t69ezvjGTNmmLxw4UKn9u2335rcokULpzZu3LiE95YKVatWNXnfvn1xzTFgwABnvGnTJpOnTp0a15zHuszMTJMzMjKcWn5+fqrbiUu/fv1M9j9DWrZsaXJhYWGqWhIRkdGjRztju89Eufrqq53xX/7yF5ODPiNToVy5cib7+1aHDh1MvuWWW1LW0+EsW7bMGbdq1coZL1q0qMTLyMrKcsbNmzc3+amnnirx/EiM+fPnm9ynTx+nds8995hcp04dp/b666+bnJubG9eyly5d6oxHjBhhcs+ePZ3ahAkT4lrGeeedZ7J/bEzEfp4oP/74Y1zPS09Pd8axXAtEctlllznj5557rsRzBhk7dqwzfuWVV0yeM2eOU1u+fHlSe0FkZ555pskXXHCBU7PPdzdu3OjUtNYmf/nll04tlmu+xYsXF5tF3GPXAw884NReeOEFk/1jTrLVq1fPGX/33XcpXT5+Ye+HZcuWdWpNmzY12T8/ipe9H65YscKpTZs2LSHLsDVr1szkxo0bOzX/HBoh/ueLff1y8cUXO7VUX1vZ1xYi8V+rVqxY0eTdu3eXqKfSkoz3Syw++OADk+3v/0Tc769ycnLimt+/Xnr55ZfjmifV7O9W7OsFEfc6/Wj5ngUAAAAAAAAAAABAcvFLSQAAAAAAAAAAAAAAAAAAAAAAAABiwk1JAAAAAAAAAAAAAAAAAAAAAAAAAGKSVtoNxKJfv34mL1682KmdccYZqW4notmzZ5vcsmVLp7Zq1SqTmzVr5tTy8vIizllUVGTyzz//7NQGDhxo8kknneTU6tat64yfe+45k5cuXRpxeYliv04VK1Z0am3btjV53rx5Se8lXh07djR57ty5pdhJ6WvSpInJzZs3d2r3339/xOdNmDDB5N///vcJ7ytIdna2M65UqZLJubm5cc+7fft2k9PT06N+Xrdu3Uy2t6eIyF133RV3PwgpV66cyWXKHLn33Z5zzjkmt2jRwqlt2bLF5MLCQqdWoUIFkydNmpSc5qJkfy6VxHXXXWdyQUGBU1u4cGFClpEIlStXLjaLiHz//fcm+69ZaZo+fXrSl3HNNdc4Y/scZdmyZUlfPmK3adMmZ2yfQ9vvx2R58803TX7mmWecmn2+EIvOnTub/MYbb8Q1RyrMnz8/ruft3LnTGR88eDCuefr37x9xzlS/XydOnGiyf/5jX9sgufr27euM27dvb7L/XirJeXMijBkzxmT7fEhE5I9//KPJV111VVzzn3nmmc44Le2Xr0q01k5t69atJjdo0MCpffvtt3EtHyW3fPlyk/3XoWHDhibHe7y75ZZbnPFxxx1n8tChQ+OaMxatW7c2+euvv0768n4N/OPWrbfeanLXrl2d2siRI5PeT9OmTU22r/lKwt6fzz///ITMeSz77rvvnLH9vVdOTk5cc9rfQYmI7NmzJ655Uq179+4m29+ziIjk5+enuh0AAAAAAAAAAAAAR7gj93+xDQAAAAAAAAAAAAAAAAAAAAAAAOCIxE1JAAAAAAAAAAAAAAAAAAAAAAAAAGLCTUkAAAAAAAAAAAAAAAAAAAAAAAAAYpJW2g0E+dOf/uSMt2zZYvKYMWOc2iOPPGJy//79ndqoUaOS0F1k06ZNM7lu3bpO7dJLLzX5o48+ijhHdna2M65atarJu3btcmq33XabyePGjXNq/jYsKiqKuMxks7eLiMgtt9xicvXq1Z3alClTUtJTNPbt22fy6aef7tQmTJiQ4m5KV/fu3U3+7LPPnFp+fn7E582fP9/ks846y6n17NnT5Fi25wUXXGByy5YtnVqjRo0iPm/Dhg0mX3755U7NP67k5eVFnCcnJ8fk9PR0p9asWbOIvXTr1s3kESNGRJwf8bFfs4yMjFLsJNjs2bOLzSIiv//9703u06ePUxs+fHhyG4uB1joh85x33nkmv/rqqwmZMxFatWrljHfu3Gly48aNndru3btT0tORokWLFiafdtppTm3FihUp7gbRsF8z/1zmhx9+SGkvubm5Js+ZM8ep2eeGf/vb3yLOkZmZ6YyrVKlisn9+kmpt2rRxxnv37jXZP0+P1p49e5zxgQMHonpep06dnLF9HfLQQw/F1UuiTJo0yeSaNWs6tQEDBph8JH0u/Fp06dLFZPucVUTkjjvuSHU7cfGv7+3rC38dnn/++YjzPP744ybb1xYiIitXrjQ5Lc392sQ+x/Sv98ePH2+yvZ8jtfzPlx49epg8efLkqOexv08pV66cUxsyZEic3cXH/uwrLCxM6bJ/LRYsWGCy/54vKChI+vKrVatmcqK+mxs9erTJHTp0cGrXXnutyW+//XZClpcM9rmTf05Qq1Ytk1Px3a5/Hnn++eeXeE77u2wRkTp16pgc9J1TqtnnByIi+/fvN9n/zgIAAAAAAAAAAAAAfPxSEgAAAAAAAAAAAAAAAAAAAAAAAICYcFMSAAAAAAAAAAAAAAAAAAAAAAAAgJiklXYDvqeeesrkPXv2OLVnn3024vOGDx9u8oMPPujU9u3bZ/I//vGPkrZ4WC1atDD59NNPd2pr1qwxuW3btk7NHtetW9ep7dixw+TFixc7tc2bN5t8xhlnOLVLL73UGT///PMBnSeX/RqJiHTv3t3kq6++2qkNHDjQ5E8//dSpzZs3z+QtW7Y4teXLl5e4T997771n8l/+8henduKJJ5o8ceJEp7Z+/XqTc3Nzo15egwYNnHFRUZHJ2dnZEZ+Xn58f9TLi1bp1a5P991m0PvvsM2f82GOPmdy+fXuntnXrVpP9ffunn34y+YsvvnBq9mtWWFgYsZdevXo54zvuuMMZ33rrrRGfa/P3w/vuu8/kgwcPOrVhw4aZnJeXF9X8iI/W2hl36NDB5Dlz5qS6HYf9Xu7Xr59Tq1Chgslr1651akH7c6r52zde1apVM9n+jCwN9uviH4vHjRtncsOGDVPVUkK1bNnSGdvH2Fg+Q66//nqTV65c6dTs8xUcOa699lqT//nPfzq13/3ud6lux5g+fbozvummm0z+29/+FvF5FStWdMa7du1KbGOH0adPH2d8zjnnmFylSpWIz7vuuuviWp5/nlGjRo2onucv76WXXjJ52bJlcfWSDKNGjXLGt99+u8mDBw92av71BGLXuXNnk999993SaySB7Ouwq666KuLjbr75Zmc8bdo0kx999NGol9emTRuTH3jggYhzovSMHTvWGdvH7UGDBjm1pUuXFvs4Efea4a233kpkizHbuXOnyU2bNi3FTo5eBQUFJlevXj3ly7fPX5Jx3fPaa68549tuu81k+7scEZGPP/7YZP97NPs6Tynl1DIyMkyuVKmSU7O3aWZmplMrV66cyccff7xTs68n/OvfJk2amGx/hygiMmXKFEm0WbNmOeMbb7zR5KysLKdm709B/Nfafi1mzpwZa4sJNWDAAJNXrVrl1OzvO/3vtQAAAAAAAAAAAADAxy8lAQAAAAAAAAAAAAAAAAAAAAAAAIgJNyUBAAAAAAAAAAAAAAAAAAAAAAAAiAk3JQEAAAAAAAAAAAAAAAAAAAAAAACISVppLPScc84xuWfPnk5t8+bNJj/11FNRz7lw4UKTn332Wad23333mdymTRuntmDBApMLCwud2rp160wuX768U2vYsKHJXbt2dWrNmjUzefLkyRF7CZKVleWMCwoKonpe9+7dnbHf29///neTly5d6tTWr19v8s6dO53ajh07Ita2b99e7ONERPbv329yfn6+U5syZYrJ33zzjVO74IILTLb3FxGRHj16mKy1dmo//vijyT/99JNT++6770w+ePCgU9u2bZvJ9j4oIrJ7926Tn3jiiYh9/u53v3Nqe/fujTinva19+/bti1jzKaVMrlq1qlObO3euydOnT496Tpv//rS3b1FRUVxzLl++3BkPGzbM5LPPPtup2fvTp59+6tTs9YvXuHHjnPF5553njO33sv9+sdnbRUTk4osvNvnaa691anl5eTH3ifi8//77znjw4MEmr1mzxqnFuz9H67bbbnPGTZo0Mfmjjz5yavax8U9/+pNTCzp2JFuXLl2c8cqVKxMyr308rlatWkLmjFfr1q1NHj16dMTH2ecOIiIXXXSRya1atXJqixYtSlB3sbvzzjudcbt27Zyx/dngf0bbhgwZ4ozXrl1rcsWKFZ1a0LESqdOpUydnvGHDBpMnTZrk1K688sqU9FScWbNmOWN/n43E38/Kli1r8uWXX+7Uxo8fH9WcDRo0cMZnnXWWyd26dXNqq1evdsavvPJKxN5ef/11k+3zA5H/vU6IxL4mERFp0aJFxMc+9NBDJvvXNtOmTYtqeaVt5MiRJj/88MNObdCgQSa/8MILKevpaNa8eXNnnJmZafKyZctS3U5SnHzyySZv3bo14uP861j/GBSttLRfvkbx3/Pz5s2La04k13vvvWey/z2Tfax86aWXnNqHH36Y3MZiYF8P29fQIiJnnnmmM87NzU1JT0ebGjVqmGx/ByTibsNkbT/7+HTSSSclfP4lS5Y444EDB5psf48m4n7P5l8j2N9/+t/x2d9z+d+5/fDDDyZ/9dVXTm3Tpk0m+98JBenVq5fJsVwL2+d1JbnWt5dZu3Ztpxbt97SffPKJM3788cdNzsnJcWpTp06NscPDs88Dzj33XKdmf4Z9/vnnTs3+PtD/zgIAAAAAAAAAAAAAfPxSEgAAAAAAAAAAAAAAAAAAAAAAAICYcFMSAAAAAAAAAAAAAAAAAAAAAAAAgJikJWqiXr16OePdu3eb/Nvf/tapHX/88Sa///77Tu2TTz4pcS9z5sxxxn/84x9NPuuss5xa+/btTb7kkkucmlLK5L179zq1MmV+uZ9r1qxZTu2NN94weenSpdG27SgoKIjreVOmTAkcN27c2OT69es7tfT09GKzb//+/c54y5YtJufn50ffrKWoqMgZv/LKK8VmX4MGDZxxxYoVTa5evbpTs/v++eefndry5cujbdXhv/alKSsryxmfcMIJJZ6zU6dOznjx4sUlntOXm5tbbC4NGzZscMYtW7Y0+eDBg07t8ssvN9k+Hoi42+nWW291amXLljV59uzZ8TeLw/I/X7Kzs00eOnSoU3vxxRdNjuV93bZtW5N79Ojh1OrVq2dyTk6OUxs5cqTJQcefnTt3OmP/WJls9mdGjRo1nNrMmTMTsoxp06aZfPPNNzu1m266KSHLiMTeJ0RERo8eHdXzCgsLnfGECRNMvvfeeyPWxowZE1uDETRr1szk1q1bO7U2bdqY/NVXXzm1Dz74wBlXqVLFZP/z9OKLLza5YcOGTm3YsGEmDxgwwKn5x1GUjq5duzpjez/07dixw2R73xKJ/zw2Xlu3bo3reW+++abJd911l1Pr0KGDyfb1iYhIrVq1TD7ttNOcmn1O8tprrzm1WM6HVqxYYXKLFi2c2uTJk6OaY926dc745JNPNtl+P4q4nxtPPPFEtG3GzT7/jPf6JciTTz7pjG+//XaTBw8e7NSGDx+e8OX/GvjnEhkZGaXUSeJ07tzZGV9xxRUmP/vssxGft2TJkoQsPzMz02T//Ykjg30eIyLSrl07k/3vnOxzJ/+a70gyf/58kydOnOjUHnnkEWf85z//2eRkXMMfrbTWJi9btsyp2ecByfpeYt68ecXmVJg0aVLg+EhVt25dkxctWhT18/xrG1ss19R79uwx2b52ioX/HnzrrbdM9q+l7M83/3lr1qwx2f7uU0SkSZMmJvvfhdqfU/73EkHfSdnPW716dcTHAQAAAAAAAAAAAIAIv5QEAAAAAAAAAAAAAAAAAAAAAAAAIEbclAQAAAAAAAAAAAAAAAAAAAAAAAAgJtyUBAAAAAAAAAAAAAAAAAAAAAAAACAmaYma6MCBA844MzPT5M8//9ypffjhh4labFSWLFlSbBYReeutt0y2exYRSU9PN3n58uVJ6i617PX4NaxTUVFRabdwxCgoKAgcx2Pv3r3OeM6cOSWe80g2ceJEZ3z99deb3KBBA6eWm5tr8gcffODUmjRpYnLv3r2d2uDBg02+5JJLnNqMGTNM3rhxo1PbuXNnxL7t16mwsDDi4451Q4cONfm2225zav379zf5D3/4g1PTWptcrlw5p7Zp0yaT//vf/zq1UaNGmRzL65KVlWVyRkZG1M9LhrPOOsvkMWPGJGUZI0eONPnNN990au+8847Jzz33nFPLyckp8bLz8/NLPIeIyPjx401evXq1U7vmmmtM7tSpk1Nbv369yWlp7ilZxYoVTa5cubJT27Ztm8n+cfmWW26J2GebNm2c8b333mtys2bNnJq9zz799NNOzf7srVSpklP76aefIi4fqVO+fHlnvGjRooiP3bdvn8n79+9PWk/RsI+p7dq1c2pz586N+LwpU6aYvHLlSqdm7/dly5Z1aosXLzb51VdfdWpB2ywWa9euNfnUU0+Naw7/dbHPSez5RUTuv//+uJYRL3tfGzZsmFOzX4u8vDyn5l8fRsv+zHj88ced2nXXXWeyfY13rPM/63744QeT+/bt69RGjx6dkp6i4V+bd+vWzeT27ds7NXu/mDlzZsQ5E3HuIOKen61atSohcyI62dnZJtvXXCIi5557rsn+dez7779vsv95Yl+v+edRp5xyiskvvvhiHB0nx/Dhw53xjh07nPHDDz9s8j//+U+ntmLFCpP978d+7erXr2+yvx+cccYZqW4HUfjoo49M7tKli1MLOt7b36f85je/cWr++WDQd2cnn3yyyV988UVws1EaO3asyf75kX29eN555zk1+7sI//sh+5pw1qxZTi3ez77jjjvO5IULF8Y1BwAAAAAAAAAAAIBjB7+UBAAAAAAAAAAAAAAAAAAAAAAAACAm3JQEAAAAAAAAAAAAAAAAAAAAAAAAICZpiZpowoQJiZqq1BQWFpZ2C8ARJScnxxkXFBSUTiMpsnDhwsBxtPLy8kx+8sknnVqrVq1Mbt26tVO78MILTU5PT3dqmzdvNnn16tVObfny5SZzHIvOiy++GLHWpEkTZ1yuXDmTt27d6tSKiooS2peISOXKlU0+ePBgwucP0rNnT2f8zTffpHT5119/vTMeMmSIycOGDXNq9r7+7bffOrV169aZvHLlSqe2cePGiMvPz8+PvtkI5s+fH3HcoEEDp5aRkWFy7dq1ndr+/ftNttdHJP4+/d7uvfdek8uXL+/U7ONKkN27dzvjMmW43720dOnSxeQdO3ZE/Tz7NUtLS9ilQVzsfbtatWpxzWF/Bhc3TrVt27bF9bzGjRubfPfddzs1+zi2YcOG+BpLkGXLlpl8//33O7Vu3bqZ3KNHD6fWp08fk9euXevU/vvf/5rsH8O11iYvWrTIqV1xxRUmv/XWW4ft/Vg1evRok4cOHerU2rdvb/K//vUvpzZr1qwSL7tZs2bO2N7PRUTOOOMMk7Oyspza999/b/Izzzzj1JYuXVri3mJxyimnmOyfg6DkOnfubHKvXr2cWoUKFUzOzc11ap9++qnJU6dOjXp5Y8eONdk/57KPXf5xxd4nFyxY4NQ+/PDDqJefCP762u+Jyy67zKn179/fZPt4KyKyZs0ak/3rnPXr15u8ffv2iMs7kvjHmPr165vsX1OXLVs2JT0hWGZmpjP+5JNPTPavM+zH+t+D2PukP+c999zjjO33cs2aNSP2Zj+uuHltQd/L2M/zr6UmT55ssr3uIu61o/88+9oxaHl+X3atTp06EefMzs52avb52K/9e0IAAAAAAAAAAAAA0eF/OQoAAAAAAAAAAAAAAAAAAAAAAAAgJtyUBAAAAAAAAAAAAAAAAAAAAAAAACAm3JQEAAAAAAAAAAAAAAAAAAAAAAAAICZKax39g5WK/sFx6tixo8kZGRlOrUyZX+6h2rdvn1OzH2s/zn+sUsqppaenR5zT3jb240REDh48aHLZsmUj9rlnz56Iz/N7sec5cOBAxF789UtLS5NI9u/fH7Hmz2Mv398WQcuz1yloGX4v9jbdu3dvxF78PoOWZy8j6LUOmsN/rXfv3h1xTrs3/3n2a+g/z3/f2f2UK1cu4jz+61KhQoWIc9rL9Gv2nP7raT+vZs2aTm3Tpk0Sib2d/Pdu0Dr47x+bvV2Ctq+vfPnyJvvrbo/9dff3Nfux/msY6XGHe2zQ+9xeR39Ouze/b/v94y/bPgYFbUN/zqBjQNC+Zdf891nQOtjv3aBjms8/rvjvn0jL9wUdc+xtGDSHz17/oOOm3/NJJ51kcuvWrZ3apEmTTN6xY4dTs+cJOm762+zkk08udtkiIl9++aXJ/mtt70/+fhf0Pvfnsd+vQcfK2rVrO7VmzZqZXLduXYnE3++Dlrd69WqTly9f7tR+/PFHk/3PLHub+tvXfu39/cB+D/rHwnhrkR4n8r/b3u7Hf6w9b9AyMjMznfG6detM9vdRe3v7+4i9j/r7rz32a/ac/jmX/Vj789J/rL+P2L3528X+fPO3S9Cx2O7Fr9njoG3tz+PvT/b711/fr7/+2uTKlSs7ta5du5o8Y8YMp7Z9+/aIfdu9+u8J+33mvyeCjgf16tWTSOx9yz/PsF+zoPeL/3oGvT+DzgH8Zdh1f32zsrJM9o9js2fPNtn/LDj33HOL7UVEpLCw0OSmTZs6tZkzZ0ok9vr77yW7FvT57fdib3v7dRdxt6m/DWvUqGFyrVq1nFrFihVNPv744yPW/DmLiopMzs3NdWpBn1NB13JB59D++tqvvX9ciTSHz+/F7jPonD3ofMh/Pe3nNWzY0KnZ5x3++tmfgz/99JNTs48B/vrZ1xPVqlWL2KeIyNatW03Oy8tzaps3bzbZX9+gc2+7FvRZ569v0Plfy5YtI/a5bdu2YucXCd7vggSdGwdd1wYJOo/zj+lB7G3qH5uDrhnsbeE/L+g82Rb0/vTfg0HHdHt9/c9P23HHHeeMGzRoYLL/etrHI3vfFQn+fsp+rf3XwX7s4a6X7P3X/9yvVKmSyfZ1gL/MoPMjf9uvX78+Yi/2+vvnf9FeA/rv3aDzxqDP9vr165u8ZcsWp2Z/3nz//fdOLegcNqhPf2zvz0HX0UHXnEGf0UH9+Pto0HeT9nty165dEZfnzxn0/WMs1/jRsuf0lx10fmK/B0REqlatarK/LTZu3Giy/14O+o466HufoO/x7Hn8dbKfF7Qf+oI+J+w+7e0gInLiiSea7F8b2735x2n7u8GgY7i/fvPmzTP5kUceifg8AAAAAAAAAAAAAKVukdb6bP+P/FISAAAAAAAAAAAAAAAAAAAAAAAAgJhwUxIAAAAAAAAAAAAAAAAAAAAAAACAmCitdfQPVir6B8fptddeM7ly5cpOze5VKRWxVqaMe6/VwYMHIy4vIyPD5F27djk1e559+/ZFnMPvxX6eX9u/f3/Emi2o5/T09Ihz+q+n/1h7PQ4cOODU0tLSis3+82Lp2x77yytfvrzJ/ra3+/Z7sef0Xxe75vdiz+PX9u7dG3F5QetrP9bf7/z1DbJ7926Ty5UrF3Eef86yZcsWm0XcdfJr9jrZ+4/P3xZ2b/b8Iu46+NvCHvv7aND2DRK0L9t9Br0Hgmo+fx+tUKGCybEcc+z1DdpHgvYn//UM2kfsXvx9y34N/dfF3hb+8+x12LNnj1Oze/N7sbe3v43sx8ayPX12r/46BR077GUG7RdBffv7ctA62XP6r+eJJ55ocr169Zxabm5usfP7ywg6VtifeyIiO3fujPi8oGOqvb6Hex/bz/Ufa9eC9m2/Zj/Pf63t5/nrax+r/GOcfTwM2oZB/GOqvb7+HEHHX/t5/ra31zdomwWdL/js7SLyv/usLeg4aj8v6P0SdL7gf77Yy/Bfa/s19Nch6Jhjb9+gc55Y9gP7sbGcR9lzBp03+vxe2rRpU+zyRNxjR+3atZ1a+/btTR43blzUyw/aR6P9nAi6DvH3Qfux8T7PXx+7F/81Czq+++trz+vP06JFC5P9bW8vIzMz06mNHj3a5J9++smp2evkvwftZRQWFkZcXtAxNeg96G8L/7GR+PukfR7lvy728oLOzYKOf0HHHxH3s8Ffhv1Yf/3s/cv/fLG3jb+PBr2X7F7919M+rgVd/wYdG4M+Q4KuY4N69tmvZyzXZ0HHQ/81CzrmBPUa7edS0PatVauWU+vXr5/Jo0aNcmobN26M2EvQ8c/e14KOVbGw1y+Wa7CgxwbVgt6TQcuwvxcQCb5Gsfdt//PFP/5GEnT+FyTG785Mzs/Pd2r28d4/TmdlZZlcUFDg1Bo0aGByUVFRxDlF3H3df2ykOWN5bND1WtAcqWZvTxGRPn36mDx//nyn1rZtW5OffPLJ5DYGHIG6devmjFu1amXy0KFDU90OAAAAAAAAAAAAgCPXIq312f4f+aUkAAAAAAAAAAAAAAAAAAAAAAAAADHhpiQAAAAAAAAAAAAAAAAAAAAAAAAAMeGmJAAAAAAAAAAAAAAAAAAAAAAAAAAxUVrr6B+s1AYR+S557QAAAAAAAAAAAAAAAAAAAAAAAAA4gpyita7p/zGmm5IAAAAAAAAAAAAAAAAAAAAAAAAAoExpNwAAAAAAAAAAAAAAAAAAAAAAAADg6MJNSQAAAAAAAAAAAAAAAAAAAAAAAABiwk1JAAAAAAAAAAAAAAAAAAAAAAAAAGLCTUkAAAAAAAAAAAAAAAAAAAAAAAAAYsJNSQAAAAAAAAAAAAAAAAAAAAAAAABiwk1JAAAAAAAAAAAAAAAAAAAAAAAAAGLCTUkAAAAAAAAAAAAAAAAAAAAAAAAAYsJNSQAAAAAAAAAAAAAAAAAAAAAAAABiwk1JAAAAAAAAAAAAAAAAAAAAAAAAAGLy/wE5Dx7KVpZgiAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -233,7 +249,7 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 119, "metadata": { "scrolled": true }, @@ -241,10 +257,10 @@ { "data": { "text/plain": [ - "('and Came came into Mr. I. I. \"Amering whin', 0.32183724641799927)" + "('because droch fis at Caully', 0.2531574070453644)" ] }, - "execution_count": 133, + "execution_count": 119, "metadata": {}, "output_type": "execute_result" } @@ -341,7 +357,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.8.2" } }, "nbformat": 4, -- cgit v1.2.3-70-g09d2