From ff9a21d333f11a42e67c1963ed67de9c0fda87c9 Mon Sep 17 00:00:00 2001 From: aktersnurra Date: Thu, 7 Jan 2021 20:10:54 +0100 Subject: Minor updates. --- src/text_recognizer/networks/vit.py | 150 ++++++++++++++++++++++++++++++++++++ 1 file changed, 150 insertions(+) create mode 100644 src/text_recognizer/networks/vit.py (limited to 'src/text_recognizer/networks/vit.py') diff --git a/src/text_recognizer/networks/vit.py b/src/text_recognizer/networks/vit.py new file mode 100644 index 0000000..efb3701 --- /dev/null +++ b/src/text_recognizer/networks/vit.py @@ -0,0 +1,150 @@ +"""A Vision Transformer. + +Inspired by: +https://openreview.net/pdf?id=YicbFdNTTy + +""" +from typing import Optional, Tuple + +from einops import rearrange, repeat +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.transformer import Transformer + + +class ViT(nn.Module): + """Transfomer for image to sequence prediction.""" + + def __init__( + self, + num_encoder_layers: int, + num_decoder_layers: int, + hidden_dim: int, + vocab_size: int, + num_heads: int, + expansion_dim: int, + patch_dim: Tuple[int, int], + image_size: Tuple[int, int], + dropout_rate: float, + trg_pad_index: int, + max_len: int, + activation: str = "gelu", + ) -> None: + super().__init__() + + self.trg_pad_index = trg_pad_index + self.patch_dim = patch_dim + self.num_patches = image_size[-1] // self.patch_dim[1] + + # Encoder + self.patch_to_embedding = nn.Linear( + self.patch_dim[0] * self.patch_dim[1], hidden_dim + ) + self.cls_token = nn.Parameter(torch.randn(1, 1, hidden_dim)) + self.character_embedding = nn.Embedding(vocab_size, hidden_dim) + self.pos_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim)) + self.dropout = nn.Dropout(dropout_rate) + self._init() + + self.transformer = Transformer( + num_encoder_layers, + num_decoder_layers, + hidden_dim, + num_heads, + expansion_dim, + dropout_rate, + activation, + ) + + self.head = nn.Sequential(nn.Linear(hidden_dim, vocab_size),) + + def _init(self) -> None: + nn.init.normal_(self.character_embedding.weight, std=0.02) + # nn.init.normal_(self.pos_embedding.weight, std=0.02) + + def _create_trg_mask(self, trg: Tensor) -> Tensor: + # Move this outside the transformer. + trg_pad_mask = (trg != self.trg_pad_index)[:, None, None] + trg_len = trg.shape[1] + trg_sub_mask = torch.tril( + torch.ones((trg_len, trg_len), device=trg.device) + ).bool() + trg_mask = trg_pad_mask & trg_sub_mask + return trg_mask + + def encoder(self, src: Tensor) -> Tensor: + """Forward pass with the encoder of the transformer.""" + return self.transformer.encoder(src) + + def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor: + """Forward pass with the decoder of the transformer + classification head.""" + return self.head( + self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask) + ) + + def extract_image_features(self, src: Tensor) -> Tensor: + """Extracts image features with a backbone neural network. + + It seem like the winning idea was to swap channels and width dimension and collapse + the height dimension. The transformer is learning like a baby with this implementation!!! :D + Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D + + Args: + src (Tensor): Input tensor. + + Returns: + Tensor: A input src to the transformer. + + """ + # If batch dimension is missing, it needs to be added. + if len(src.shape) < 4: + src = src[(None,) * (4 - len(src.shape))] + + patches = rearrange( + src, + "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", + p1=self.patch_dim[0], + p2=self.patch_dim[1], + ) + + # From patches to encoded sequence. + x = self.patch_to_embedding(patches) + b, n, _ = x.shape + cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b) + x = torch.cat((cls_tokens, x), dim=1) + x += self.pos_embedding[:, : (n + 1)] + x = self.dropout(x) + + return x + + def target_embedding(self, trg: Tensor) -> Tuple[Tensor, Tensor]: + """Encodes target tensor with embedding and postion. + + Args: + trg (Tensor): Target tensor. + + Returns: + Tuple[Tensor, Tensor]: Encoded target tensor and target mask. + + """ + _, n = trg.shape + trg = self.character_embedding(trg.long()) + trg += self.pos_embedding[:, :n] + return trg + + def decode_image_features(self, h: Tensor, trg: Optional[Tensor] = None) -> Tensor: + """Takes images features from the backbone and decodes them with the transformer.""" + trg_mask = self._create_trg_mask(trg) + trg = self.target_embedding(trg) + out = self.transformer(h, trg, trg_mask=trg_mask) + + logits = self.head(out) + return logits + + def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor: + """Forward pass with CNN transfomer.""" + h = self.extract_image_features(x) + logits = self.decode_image_features(h, trg) + return logits -- cgit v1.2.3-70-g09d2