From 4d1f2cef39688871d2caafce42a09316381a27ae Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Mon, 5 Jul 2021 23:05:25 +0200 Subject: Refactor with attr, working on cnn+transformer network --- text_recognizer/criterions/__init__.py | 1 + text_recognizer/criterions/label_smoothing_loss.py | 42 ++++++++++++++++++++++ 2 files changed, 43 insertions(+) create mode 100644 text_recognizer/criterions/__init__.py create mode 100644 text_recognizer/criterions/label_smoothing_loss.py (limited to 'text_recognizer/criterions') diff --git a/text_recognizer/criterions/__init__.py b/text_recognizer/criterions/__init__.py new file mode 100644 index 0000000..5b0a7ab --- /dev/null +++ b/text_recognizer/criterions/__init__.py @@ -0,0 +1 @@ +"""Module with custom loss functions.""" diff --git a/text_recognizer/criterions/label_smoothing_loss.py b/text_recognizer/criterions/label_smoothing_loss.py new file mode 100644 index 0000000..40a7609 --- /dev/null +++ b/text_recognizer/criterions/label_smoothing_loss.py @@ -0,0 +1,42 @@ +"""Implementations of custom loss functions.""" +import torch +from torch import nn +from torch import Tensor +import torch.nn.functional as F + + +class LabelSmoothingLoss(nn.Module): + """Label smoothing cross entropy loss.""" + + def __init__( + self, label_smoothing: float, vocab_size: int, ignore_index: int = -100 + ) -> None: + assert 0.0 < label_smoothing <= 1.0 + self.ignore_index = ignore_index + super().__init__() + + smoothing_value = label_smoothing / (vocab_size - 2) + one_hot = torch.full((vocab_size,), smoothing_value) + one_hot[self.ignore_index] = 0 + self.register_buffer("one_hot", one_hot.unsqueeze(0)) + + self.confidence = 1.0 - label_smoothing + + def forward(self, output: Tensor, targets: Tensor) -> Tensor: + """Computes the loss. + + Args: + output (Tensor): Predictions from the network. + targets (Tensor): Ground truth. + + Shapes: + outpus: Batch size x num classes + targets: Batch size + + Returns: + Tensor: Label smoothing loss. + """ + model_prob = self.one_hot.repeat(targets.size(0), 1) + model_prob.scatter_(1, targets.unsqueeze(1), self.confidence) + model_prob.masked_fill_((targets == self.ignore_index).unsqueeze(1), 0) + return F.kl_div(output, model_prob, reduction="sum") -- cgit v1.2.3-70-g09d2