From 7e8e54e84c63171e748bbf09516fd517e6821ace Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Sat, 20 Mar 2021 18:09:06 +0100 Subject: Inital commit for refactoring to lightning --- text_recognizer/datasets/sentence_generator.py | 81 ++++++++++++++++++++++++++ 1 file changed, 81 insertions(+) create mode 100644 text_recognizer/datasets/sentence_generator.py (limited to 'text_recognizer/datasets/sentence_generator.py') diff --git a/text_recognizer/datasets/sentence_generator.py b/text_recognizer/datasets/sentence_generator.py new file mode 100644 index 0000000..dd76652 --- /dev/null +++ b/text_recognizer/datasets/sentence_generator.py @@ -0,0 +1,81 @@ +"""Downloading the Brown corpus with NLTK for sentence generating.""" + +import itertools +import re +import string +from typing import Optional + +import nltk +from nltk.corpus.reader.util import ConcatenatedCorpusView +import numpy as np + +from text_recognizer.datasets.util import DATA_DIRNAME + +NLTK_DATA_DIRNAME = DATA_DIRNAME / "raw" / "nltk" + + +class SentenceGenerator: + """Generates text sentences using the Brown corpus.""" + + def __init__(self, max_length: Optional[int] = None) -> None: + """Loads the corpus and sets word start indices.""" + self.corpus = brown_corpus() + self.word_start_indices = [0] + [ + _.start(0) + 1 for _ in re.finditer(" ", self.corpus) + ] + self.max_length = max_length + + def generate(self, max_length: Optional[int] = None) -> str: + """Generates a word or sentences from the Brown corpus. + + Sample a string from the Brown corpus of length at least one word and at most max_length, padding to + max_length with the '_' characters if sentence is shorter. + + Args: + max_length (Optional[int]): The maximum number of characters in the sentence. Defaults to None. + + Returns: + str: A sentence from the Brown corpus. + + Raises: + ValueError: If max_length was not specified at initialization and not given as an argument. + + """ + if max_length is None: + max_length = self.max_length + if max_length is None: + raise ValueError( + "Must provide max_length to this method or when making this object." + ) + + index = np.random.randint(0, len(self.word_start_indices) - 1) + start_index = self.word_start_indices[index] + end_index_candidates = [] + for index in range(index + 1, len(self.word_start_indices)): + if self.word_start_indices[index] - start_index > max_length: + break + end_index_candidates.append(self.word_start_indices[index]) + end_index = np.random.choice(end_index_candidates) + sampled_text = self.corpus[start_index:end_index].strip() + padding = "_" * (max_length - len(sampled_text)) + return sampled_text + padding + + +def brown_corpus() -> str: + """Returns a single string with the Brown corpus with all punctuations stripped.""" + sentences = load_nltk_brown_corpus() + corpus = " ".join(itertools.chain.from_iterable(sentences)) + corpus = corpus.translate({ord(c): None for c in string.punctuation}) + corpus = re.sub(" +", " ", corpus) + return corpus + + +def load_nltk_brown_corpus() -> ConcatenatedCorpusView: + """Load the Brown corpus using the NLTK library.""" + nltk.data.path.append(NLTK_DATA_DIRNAME) + try: + nltk.corpus.brown.sents() + except LookupError: + NLTK_DATA_DIRNAME.mkdir(parents=True, exist_ok=True) + nltk.download("brown", download_dir=NLTK_DATA_DIRNAME) + return nltk.corpus.brown.sents() -- cgit v1.2.3-70-g09d2