From 050e1bd284a173d2586ad4607e95d114691db563 Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Mon, 22 Nov 2021 22:38:43 +0100 Subject: Move efficientnet from encoder dir --- .../networks/efficientnet/efficientnet.py | 124 +++++++++++++++++++++ 1 file changed, 124 insertions(+) create mode 100644 text_recognizer/networks/efficientnet/efficientnet.py (limited to 'text_recognizer/networks/efficientnet/efficientnet.py') diff --git a/text_recognizer/networks/efficientnet/efficientnet.py b/text_recognizer/networks/efficientnet/efficientnet.py new file mode 100644 index 0000000..4c9ed75 --- /dev/null +++ b/text_recognizer/networks/efficientnet/efficientnet.py @@ -0,0 +1,124 @@ +"""Efficientnet backbone.""" +from typing import Tuple + +import attr +from torch import nn, Tensor + +from text_recognizer.networks.efficientnet.mbconv import MBConvBlock +from text_recognizer.networks.efficientnet.utils import ( + block_args, + round_filters, + round_repeats, +) + + +@attr.s(eq=False) +class EfficientNet(nn.Module): + """Efficientnet without classification head.""" + + def __attrs_pre_init__(self) -> None: + super().__init__() + + archs = { + # width, depth, dropout + "b0": (1.0, 1.0, 0.2), + "b1": (1.0, 1.1, 0.2), + "b2": (1.1, 1.2, 0.3), + "b3": (1.2, 1.4, 0.3), + "b4": (1.4, 1.8, 0.4), + "b5": (1.6, 2.2, 0.4), + "b6": (1.8, 2.6, 0.5), + "b7": (2.0, 3.1, 0.5), + "b8": (2.2, 3.6, 0.5), + "l2": (4.3, 5.3, 0.5), + } + + arch: str = attr.ib() + params: Tuple[float, float, float] = attr.ib(default=None, init=False) + stochastic_dropout_rate: float = attr.ib(default=0.2) + bn_momentum: float = attr.ib(default=0.99) + bn_eps: float = attr.ib(default=1.0e-3) + depth: int = attr.ib(default=7) + out_channels: int = attr.ib(default=None, init=False) + _conv_stem: nn.Sequential = attr.ib(default=None, init=False) + _blocks: nn.ModuleList = attr.ib(default=None, init=False) + _conv_head: nn.Sequential = attr.ib(default=None, init=False) + + def __attrs_post_init__(self) -> None: + """Post init configuration.""" + self._build() + + @depth.validator + def _check_depth(self, attribute: attr._make.Attribute, value: str) -> None: + if not 5 <= value <= 7: + raise ValueError(f"Depth has to be between 5 and 7, was: {value}") + + @arch.validator + def _check_arch(self, attribute: attr._make.Attribute, value: str) -> None: + """Validates the efficientnet architecure.""" + if value not in self.archs: + raise ValueError(f"{value} not a valid architecure.") + self.params = self.archs[value] + + def _build(self) -> None: + """Builds the efficientnet backbone.""" + _block_args = block_args()[: self.depth] + in_channels = 1 # BW + out_channels = round_filters(32, self.params) + self._conv_stem = nn.Sequential( + nn.ZeroPad2d((0, 1, 0, 1)), + nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=3, + stride=(2, 2), + bias=False, + ), + nn.BatchNorm2d( + num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps + ), + nn.Mish(inplace=True), + ) + self._blocks = nn.ModuleList([]) + for args in _block_args: + args.in_channels = round_filters(args.in_channels, self.params) + args.out_channels = round_filters(args.out_channels, self.params) + num_repeats = round_repeats(args.num_repeats, self.params) + del args.num_repeats + for _ in range(num_repeats): + self._blocks.append( + MBConvBlock( + **args, bn_momentum=self.bn_momentum, bn_eps=self.bn_eps, + ) + ) + args.in_channels = args.out_channels + args.stride = 1 + + in_channels = round_filters(_block_args[-1].out_channels, self.params) + self.out_channels = round_filters(1280, self.params) + self._conv_head = nn.Sequential( + nn.Conv2d( + in_channels, self.out_channels, kernel_size=1, stride=1, bias=False + ), + nn.BatchNorm2d( + num_features=self.out_channels, + momentum=self.bn_momentum, + eps=self.bn_eps, + ), + nn.Dropout(p=self.params[-1]), + ) + + def extract_features(self, x: Tensor) -> Tensor: + """Extracts the final feature map layer.""" + x = self._conv_stem(x) + for i, block in enumerate(self._blocks): + stochastic_dropout_rate = self.stochastic_dropout_rate + if self.stochastic_dropout_rate: + stochastic_dropout_rate *= i / len(self._blocks) + x = block(x, stochastic_dropout_rate=stochastic_dropout_rate) + x = self._conv_head(x) + return x + + def forward(self, x: Tensor) -> Tensor: + """Returns efficientnet image features.""" + return self.extract_features(x) -- cgit v1.2.3-70-g09d2