From 050e1bd284a173d2586ad4607e95d114691db563 Mon Sep 17 00:00:00 2001
From: Gustaf Rydholm <gustaf.rydholm@gmail.com>
Date: Mon, 22 Nov 2021 22:38:43 +0100
Subject: Move efficientnet from encoder dir

---
 .../networks/encoders/efficientnet/__init__.py     |   2 -
 .../networks/encoders/efficientnet/efficientnet.py | 118 ----------
 .../networks/encoders/efficientnet/mbconv.py       | 240 ---------------------
 .../networks/encoders/efficientnet/utils.py        |  85 --------
 4 files changed, 445 deletions(-)
 delete mode 100644 text_recognizer/networks/encoders/efficientnet/__init__.py
 delete mode 100644 text_recognizer/networks/encoders/efficientnet/efficientnet.py
 delete mode 100644 text_recognizer/networks/encoders/efficientnet/mbconv.py
 delete mode 100644 text_recognizer/networks/encoders/efficientnet/utils.py

(limited to 'text_recognizer/networks/encoders/efficientnet')

diff --git a/text_recognizer/networks/encoders/efficientnet/__init__.py b/text_recognizer/networks/encoders/efficientnet/__init__.py
deleted file mode 100644
index 344233f..0000000
--- a/text_recognizer/networks/encoders/efficientnet/__init__.py
+++ /dev/null
@@ -1,2 +0,0 @@
-"""Efficient net."""
-from .efficientnet import EfficientNet
diff --git a/text_recognizer/networks/encoders/efficientnet/efficientnet.py b/text_recognizer/networks/encoders/efficientnet/efficientnet.py
deleted file mode 100644
index 9454514..0000000
--- a/text_recognizer/networks/encoders/efficientnet/efficientnet.py
+++ /dev/null
@@ -1,118 +0,0 @@
-"""Efficientnet backbone."""
-from typing import Tuple
-
-import attr
-from torch import nn, Tensor
-
-from .mbconv import MBConvBlock
-from .utils import (
-    block_args,
-    round_filters,
-    round_repeats,
-)
-
-
-@attr.s(eq=False)
-class EfficientNet(nn.Module):
-    """Efficientnet without classification head."""
-
-    def __attrs_pre_init__(self) -> None:
-        super().__init__()
-
-    archs = {
-        # width, depth, dropout
-        "b0": (1.0, 1.0, 0.2),
-        "b1": (1.0, 1.1, 0.2),
-        "b2": (1.1, 1.2, 0.3),
-        "b3": (1.2, 1.4, 0.3),
-        "b4": (1.4, 1.8, 0.4),
-        "b5": (1.6, 2.2, 0.4),
-        "b6": (1.8, 2.6, 0.5),
-        "b7": (2.0, 3.1, 0.5),
-        "b8": (2.2, 3.6, 0.5),
-        "l2": (4.3, 5.3, 0.5),
-    }
-
-    arch: str = attr.ib()
-    params: Tuple[float, float, float] = attr.ib(default=None, init=False)
-    stochastic_dropout_rate: float = attr.ib(default=0.2)
-    bn_momentum: float = attr.ib(default=0.99)
-    bn_eps: float = attr.ib(default=1.0e-3)
-    out_channels: int = attr.ib(default=None, init=False)
-    _conv_stem: nn.Sequential = attr.ib(default=None, init=False)
-    _blocks: nn.ModuleList = attr.ib(default=None, init=False)
-    _conv_head: nn.Sequential = attr.ib(default=None, init=False)
-
-    def __attrs_post_init__(self) -> None:
-        """Post init configuration."""
-        self._build()
-
-    @arch.validator
-    def check_arch(self, attribute: attr._make.Attribute, value: str) -> None:
-        """Validates the efficientnet architecure."""
-        if value not in self.archs:
-            raise ValueError(f"{value} not a valid architecure.")
-        self.params = self.archs[value]
-
-    def _build(self) -> None:
-        """Builds the efficientnet backbone."""
-        _block_args = block_args()
-        in_channels = 1  # BW
-        out_channels = round_filters(32, self.params)
-        self._conv_stem = nn.Sequential(
-            nn.ZeroPad2d((0, 1, 0, 1)),
-            nn.Conv2d(
-                in_channels=in_channels,
-                out_channels=out_channels,
-                kernel_size=3,
-                stride=(2, 2),
-                bias=False,
-            ),
-            nn.BatchNorm2d(
-                num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps
-            ),
-            nn.Mish(inplace=True),
-        )
-        self._blocks = nn.ModuleList([])
-        for args in _block_args:
-            args.in_channels = round_filters(args.in_channels, self.params)
-            args.out_channels = round_filters(args.out_channels, self.params)
-            num_repeats = round_repeats(args.num_repeats, self.params)
-            del args.num_repeats
-            for _ in range(num_repeats):
-                self._blocks.append(
-                    MBConvBlock(
-                        **args, bn_momentum=self.bn_momentum, bn_eps=self.bn_eps,
-                    )
-                )
-                args.in_channels = args.out_channels
-                args.stride = 1
-
-        in_channels = round_filters(320, self.params)
-        self.out_channels = round_filters(1280, self.params)
-        self._conv_head = nn.Sequential(
-            nn.Conv2d(
-                in_channels, self.out_channels, kernel_size=1, stride=1, bias=False
-            ),
-            nn.BatchNorm2d(
-                num_features=self.out_channels,
-                momentum=self.bn_momentum,
-                eps=self.bn_eps,
-            ),
-            nn.Dropout(p=self.params[-1]),
-        )
-
-    def extract_features(self, x: Tensor) -> Tensor:
-        """Extracts the final feature map layer."""
-        x = self._conv_stem(x)
-        for i, block in enumerate(self._blocks):
-            stochastic_dropout_rate = self.stochastic_dropout_rate
-            if self.stochastic_dropout_rate:
-                stochastic_dropout_rate *= i / len(self._blocks)
-            x = block(x, stochastic_dropout_rate=stochastic_dropout_rate)
-        x = self._conv_head(x)
-        return x
-
-    def forward(self, x: Tensor) -> Tensor:
-        """Returns efficientnet image features."""
-        return self.extract_features(x)
diff --git a/text_recognizer/networks/encoders/efficientnet/mbconv.py b/text_recognizer/networks/encoders/efficientnet/mbconv.py
deleted file mode 100644
index 4b051eb..0000000
--- a/text_recognizer/networks/encoders/efficientnet/mbconv.py
+++ /dev/null
@@ -1,240 +0,0 @@
-"""Mobile inverted residual block."""
-from typing import Optional, Tuple, Union
-
-import attr
-import torch
-from torch import nn, Tensor
-import torch.nn.functional as F
-
-from text_recognizer.networks.encoders.efficientnet.utils import stochastic_depth
-
-
-def _convert_stride(stride: Union[Tuple[int, int], int]) -> Tuple[int, int]:
-    """Converts int to tuple."""
-    return (stride,) * 2 if isinstance(stride, int) else stride
-
-
-@attr.s(eq=False)
-class BaseModule(nn.Module):
-    """Base sub module class."""
-
-    bn_momentum: float = attr.ib()
-    bn_eps: float = attr.ib()
-    block: nn.Sequential = attr.ib(init=False)
-
-    def __attrs_pre_init__(self) -> None:
-        super().__init__()
-
-    def __attrs_post_init__(self) -> None:
-        self._build()
-
-    def _build(self) -> None:
-        pass
-
-    def forward(self, x: Tensor) -> Tensor:
-        """Forward pass."""
-        return self.block(x)
-
-
-@attr.s(auto_attribs=True, eq=False)
-class InvertedBottleneck(BaseModule):
-    """Inverted bottleneck module."""
-
-    in_channels: int = attr.ib()
-    out_channels: int = attr.ib()
-
-    def _build(self) -> None:
-        self.block = nn.Sequential(
-            nn.Conv2d(
-                in_channels=self.in_channels,
-                out_channels=self.out_channels,
-                kernel_size=1,
-                bias=False,
-            ),
-            nn.BatchNorm2d(
-                num_features=self.out_channels,
-                momentum=self.bn_momentum,
-                eps=self.bn_eps,
-            ),
-            nn.Mish(inplace=True),
-        )
-
-
-@attr.s(auto_attribs=True, eq=False)
-class Depthwise(BaseModule):
-    """Depthwise convolution module."""
-
-    channels: int = attr.ib()
-    kernel_size: int = attr.ib()
-    stride: int = attr.ib()
-
-    def _build(self) -> None:
-        self.block = nn.Sequential(
-            nn.Conv2d(
-                in_channels=self.channels,
-                out_channels=self.channels,
-                kernel_size=self.kernel_size,
-                stride=self.stride,
-                groups=self.channels,
-                bias=False,
-            ),
-            nn.BatchNorm2d(
-                num_features=self.channels, momentum=self.bn_momentum, eps=self.bn_eps
-            ),
-            nn.Mish(inplace=True),
-        )
-
-
-@attr.s(auto_attribs=True, eq=False)
-class SqueezeAndExcite(BaseModule):
-    """Sequeeze and excite module."""
-
-    in_channels: int = attr.ib()
-    channels: int = attr.ib()
-    se_ratio: float = attr.ib()
-
-    def _build(self) -> None:
-        num_squeezed_channels = max(1, int(self.in_channels * self.se_ratio))
-        self.block = nn.Sequential(
-            nn.Conv2d(
-                in_channels=self.channels,
-                out_channels=num_squeezed_channels,
-                kernel_size=1,
-            ),
-            nn.Mish(inplace=True),
-            nn.Conv2d(
-                in_channels=num_squeezed_channels,
-                out_channels=self.channels,
-                kernel_size=1,
-            ),
-        )
-
-
-@attr.s(auto_attribs=True, eq=False)
-class Pointwise(BaseModule):
-    """Pointwise module."""
-
-    in_channels: int = attr.ib()
-    out_channels: int = attr.ib()
-
-    def _build(self) -> None:
-        self.block = nn.Sequential(
-            nn.Conv2d(
-                in_channels=self.in_channels,
-                out_channels=self.out_channels,
-                kernel_size=1,
-                bias=False,
-            ),
-            nn.BatchNorm2d(
-                num_features=self.out_channels,
-                momentum=self.bn_momentum,
-                eps=self.bn_eps,
-            ),
-        )
-
-
-@attr.s(eq=False)
-class MBConvBlock(nn.Module):
-    """Mobile Inverted Residual Bottleneck block."""
-
-    def __attrs_pre_init__(self) -> None:
-        super().__init__()
-
-    in_channels: int = attr.ib()
-    out_channels: int = attr.ib()
-    kernel_size: Tuple[int, int] = attr.ib()
-    stride: Tuple[int, int] = attr.ib(converter=_convert_stride)
-    bn_momentum: float = attr.ib()
-    bn_eps: float = attr.ib()
-    se_ratio: float = attr.ib()
-    expand_ratio: int = attr.ib()
-    pad: Tuple[int, int, int, int] = attr.ib(init=False)
-    _inverted_bottleneck: Optional[InvertedBottleneck] = attr.ib(init=False)
-    _depthwise: nn.Sequential = attr.ib(init=False)
-    _squeeze_excite: nn.Sequential = attr.ib(init=False)
-    _pointwise: nn.Sequential = attr.ib(init=False)
-
-    @pad.default
-    def _configure_padding(self) -> Tuple[int, int, int, int]:
-        """Set padding for convolutional layers."""
-        if self.stride == (2, 2):
-            return ((self.kernel_size - 1) // 2 - 1, (self.kernel_size - 1) // 2,) * 2
-        return ((self.kernel_size - 1) // 2,) * 4
-
-    def __attrs_post_init__(self) -> None:
-        """Post init configuration."""
-        self._build()
-
-    def _build(self) -> None:
-        has_se = self.se_ratio is not None and 0.0 < self.se_ratio < 1.0
-        inner_channels = self.in_channels * self.expand_ratio
-        self._inverted_bottleneck = (
-            InvertedBottleneck(
-                in_channels=self.in_channels,
-                out_channels=inner_channels,
-                bn_momentum=self.bn_momentum,
-                bn_eps=self.bn_eps,
-            )
-            if self.expand_ratio != 1
-            else None
-        )
-
-        self._depthwise = Depthwise(
-            channels=inner_channels,
-            kernel_size=self.kernel_size,
-            stride=self.stride,
-            bn_momentum=self.bn_momentum,
-            bn_eps=self.bn_eps,
-        )
-
-        self._squeeze_excite = (
-            SqueezeAndExcite(
-                in_channels=self.in_channels,
-                channels=inner_channels,
-                se_ratio=self.se_ratio,
-                bn_momentum=self.bn_momentum,
-                bn_eps=self.bn_eps,
-            )
-            if has_se
-            else None
-        )
-
-        self._pointwise = Pointwise(
-            in_channels=inner_channels,
-            out_channels=self.out_channels,
-            bn_momentum=self.bn_momentum,
-            bn_eps=self.bn_eps,
-        )
-
-    def _stochastic_depth(
-        self, x: Tensor, residual: Tensor, stochastic_dropout_rate: Optional[float]
-    ) -> Tensor:
-        if self.stride == (1, 1) and self.in_channels == self.out_channels:
-            if stochastic_dropout_rate:
-                x = stochastic_depth(
-                    x, p=stochastic_dropout_rate, training=self.training
-                )
-            x += residual
-        return x
-
-    def forward(
-        self, x: Tensor, stochastic_dropout_rate: Optional[float] = None
-    ) -> Tensor:
-        """Forward pass."""
-        residual = x
-        if self._inverted_bottleneck is not None:
-            x = self._inverted_bottleneck(x)
-
-        x = F.pad(x, self.pad)
-        x = self._depthwise(x)
-
-        if self._squeeze_excite is not None:
-            x_squeezed = F.adaptive_avg_pool2d(x, 1)
-            x_squeezed = self._squeeze_excite(x)
-            x = torch.tanh(F.softplus(x_squeezed)) * x
-
-        x = self._pointwise(x)
-
-        # Stochastic depth
-        x = self._stochastic_depth(x, residual, stochastic_dropout_rate)
-        return x
diff --git a/text_recognizer/networks/encoders/efficientnet/utils.py b/text_recognizer/networks/encoders/efficientnet/utils.py
deleted file mode 100644
index 2b1aebb..0000000
--- a/text_recognizer/networks/encoders/efficientnet/utils.py
+++ /dev/null
@@ -1,85 +0,0 @@
-"""Util functions for efficient net."""
-import math
-from typing import List, Tuple
-
-from omegaconf import DictConfig, OmegaConf
-import torch
-from torch import Tensor
-
-
-def stochastic_depth(x: Tensor, p: float, training: bool) -> Tensor:
-    """Stochastic connection.
-
-    Drops the entire convolution with a given survival probability.
-
-    Args:
-        x (Tensor): Input tensor.
-        p (float): Survival probability between 0.0 and 1.0.
-        training (bool): The running mode.
-
-    Shapes:
-        - x: :math: `(B, C, W, H)`.
-        - out: :math: `(B, C, W, H)`.
-
-        where B is the batch size, C is the number of channels, W is the width, and H
-        is the height.
-
-    Returns:
-        out (Tensor): Output after drop connection.
-    """
-    assert 0.0 <= p <= 1.0, "p must be in range of [0, 1]"
-
-    if not training:
-        return x
-
-    bsz = x.shape[0]
-    survival_prob = 1 - p
-
-    # Generate a binary tensor mask according to probability (p for 0, 1-p for 1)
-    random_tensor = survival_prob
-    random_tensor += torch.rand([bsz, 1, 1, 1]).type_as(x)
-    binary_tensor = torch.floor(random_tensor)
-
-    out = x / survival_prob * binary_tensor
-    return out
-
-
-def round_filters(filters: int, arch: Tuple[float, float, float]) -> int:
-    """Returns the number output filters for a block."""
-    multiplier = arch[0]
-    divisor = 8
-    filters *= multiplier
-    new_filters = max(divisor, (filters + divisor // 2) // divisor * divisor)
-    if new_filters < 0.9 * filters:
-        new_filters += divisor
-    return int(new_filters)
-
-
-def round_repeats(repeats: int, arch: Tuple[float, float, float]) -> int:
-    """Returns how many times a layer should be repeated in a block."""
-    return int(math.ceil(arch[1] * repeats))
-
-
-def block_args() -> List[DictConfig]:
-    """Returns arguments for each efficientnet block."""
-    keys = [
-        "num_repeats",
-        "kernel_size",
-        "stride",
-        "expand_ratio",
-        "in_channels",
-        "out_channels",
-        "se_ratio",
-    ]
-    args = [
-        [1, 3, (1, 1), 1, 32, 16, 0.25],
-        [2, 3, (2, 2), 6, 16, 24, 0.25],
-        [2, 5, (2, 2), 6, 24, 40, 0.25],
-        [3, 3, (2, 2), 6, 40, 80, 0.25],
-        [3, 5, (1, 1), 6, 80, 112, 0.25],
-        [1, 3, (1, 1), 6, 112, 320, 0.25],
-    ]
-    block_args_ = []
-    for row in args:
-        block_args_.append(OmegaConf.create(dict(zip(keys, row))))
-    return block_args_
-- 
cgit v1.2.3-70-g09d2