From 2417288c9fe96264da708ce8d13ac7bc2faf83e3 Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Wed, 17 Nov 2021 22:42:58 +0100 Subject: Add new quantizer --- text_recognizer/networks/quantizer/quantizer.py | 59 +++++++++++++++++++++++++ 1 file changed, 59 insertions(+) create mode 100644 text_recognizer/networks/quantizer/quantizer.py (limited to 'text_recognizer/networks/quantizer/quantizer.py') diff --git a/text_recognizer/networks/quantizer/quantizer.py b/text_recognizer/networks/quantizer/quantizer.py new file mode 100644 index 0000000..3e8f0b2 --- /dev/null +++ b/text_recognizer/networks/quantizer/quantizer.py @@ -0,0 +1,59 @@ +"""Implementation of a Vector Quantized Variational AutoEncoder. + +Reference: +https://github.com/AntixK/PyTorch-VAE/blob/master/models/vq_vae.py +""" +from typing import Tuple, Type + +import attr +from einops import rearrange +import torch +from torch import nn +from torch import Tensor +import torch.nn.functional as F + + +@attr.s(eq=False) +class VectorQuantizer(nn.Module): + """Vector quantizer.""" + + input_dim: int = attr.ib() + codebook: Type[nn.Module] = attr.ib() + commitment: float = attr.ib(default=1.0) + project_in: nn.Linear = attr.ib(default=None, init=False) + project_out: nn.Linear = attr.ib(default=None, init=False) + + def __attrs_pre_init__(self) -> None: + super().__init__() + + def __attrs_post_init__(self) -> None: + require_projection = self.codebook.dim != self.input_dim + self.project_in = ( + nn.Linear(self.input_dim, self.codebook.dim) + if require_projection + else nn.Identity() + ) + self.project_out = ( + nn.Linear(self.codebook.dim, self.input_dim) + if require_projection + else nn.Identity() + ) + + def forward(self, x: Tensor) -> Tuple[Tensor, Tensor, Tensor]: + """Quantizes latent vectors.""" + H, W = x.shape[-2:] + x = rearrange(x, "b d h w -> b (h w) d") + x = self.project_in(x) + + quantized, indices = self.codebook(x) + + if self.training: + commitment_loss = F.mse_loss(quantized.detach(), x) * self.commitment + quantized = x + (quantized - x).detach() + else: + commitment_loss = torch.tensor([0.0]).type_as(x) + + quantized = self.project_out(quantized) + quantized = rearrange(quantized, "b (h w) d -> b d h w", h=H, w=W) + + return quantized, indices, commitment_loss -- cgit v1.2.3-70-g09d2