From b44de0e11281c723ec426f8bec8ca0897ecfe3ff Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Sun, 21 Nov 2021 21:34:53 +0100 Subject: Remove VQVAE stuff, did not work... --- text_recognizer/networks/vqvae/__init__.py | 1 - text_recognizer/networks/vqvae/decoder.py | 93 ------------------------------ text_recognizer/networks/vqvae/encoder.py | 85 --------------------------- text_recognizer/networks/vqvae/norm.py | 24 -------- text_recognizer/networks/vqvae/residual.py | 54 ----------------- text_recognizer/networks/vqvae/resize.py | 19 ------ text_recognizer/networks/vqvae/vqvae.py | 42 -------------- 7 files changed, 318 deletions(-) delete mode 100644 text_recognizer/networks/vqvae/__init__.py delete mode 100644 text_recognizer/networks/vqvae/decoder.py delete mode 100644 text_recognizer/networks/vqvae/encoder.py delete mode 100644 text_recognizer/networks/vqvae/norm.py delete mode 100644 text_recognizer/networks/vqvae/residual.py delete mode 100644 text_recognizer/networks/vqvae/resize.py delete mode 100644 text_recognizer/networks/vqvae/vqvae.py (limited to 'text_recognizer/networks/vqvae') diff --git a/text_recognizer/networks/vqvae/__init__.py b/text_recognizer/networks/vqvae/__init__.py deleted file mode 100644 index e1f05fa..0000000 --- a/text_recognizer/networks/vqvae/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""VQ-VAE module.""" diff --git a/text_recognizer/networks/vqvae/decoder.py b/text_recognizer/networks/vqvae/decoder.py deleted file mode 100644 index 7734a5a..0000000 --- a/text_recognizer/networks/vqvae/decoder.py +++ /dev/null @@ -1,93 +0,0 @@ -"""CNN decoder for the VQ-VAE.""" -from typing import Sequence - -from torch import nn -from torch import Tensor - -from text_recognizer.networks.util import activation_function -from text_recognizer.networks.vqvae.norm import Normalize -from text_recognizer.networks.vqvae.residual import Residual - - -class Decoder(nn.Module): - """A CNN encoder network.""" - - def __init__( - self, - out_channels: int, - hidden_dim: int, - channels_multipliers: Sequence[int], - dropout_rate: float, - activation: str = "mish", - use_norm: bool = False, - num_residuals: int = 4, - residual_channels: int = 32, - ) -> None: - super().__init__() - self.out_channels = out_channels - self.hidden_dim = hidden_dim - self.channels_multipliers = tuple(channels_multipliers) - self.activation = activation - self.dropout_rate = dropout_rate - self.use_norm = use_norm - self.num_residuals = num_residuals - self.residual_channels = residual_channels - self.decoder = self._build_decompression_block() - - def _build_decompression_block(self,) -> nn.Sequential: - decoder = [] - in_channels = self.hidden_dim * self.channels_multipliers[0] - for _ in range(self.num_residuals): - decoder += [ - Residual( - in_channels=in_channels, - residual_channels=self.residual_channels, - use_norm=self.use_norm, - activation=self.activation, - ), - ] - - activation_fn = activation_function(self.activation) - out_channels_multipliers = self.channels_multipliers + (1,) - num_blocks = len(self.channels_multipliers) - - for i in range(num_blocks): - in_channels = self.hidden_dim * self.channels_multipliers[i] - out_channels = self.hidden_dim * out_channels_multipliers[i + 1] - if self.use_norm: - decoder += [ - Normalize(num_channels=in_channels,), - ] - decoder += [ - activation_fn, - nn.ConvTranspose2d( - in_channels=in_channels, - out_channels=out_channels, - kernel_size=4, - stride=2, - padding=1, - ), - ] - - if self.use_norm: - decoder += [ - Normalize( - num_channels=self.hidden_dim * out_channels_multipliers[-1], - num_groups=self.hidden_dim * out_channels_multipliers[-1] // 4, - ), - ] - - decoder += [ - nn.Conv2d( - in_channels=self.hidden_dim * out_channels_multipliers[-1], - out_channels=self.out_channels, - kernel_size=3, - stride=1, - padding=1, - ), - ] - return nn.Sequential(*decoder) - - def forward(self, z_q: Tensor) -> Tensor: - """Reconstruct input from given codes.""" - return self.decoder(z_q) diff --git a/text_recognizer/networks/vqvae/encoder.py b/text_recognizer/networks/vqvae/encoder.py deleted file mode 100644 index 4761486..0000000 --- a/text_recognizer/networks/vqvae/encoder.py +++ /dev/null @@ -1,85 +0,0 @@ -"""CNN encoder for the VQ-VAE.""" -from typing import List, Tuple - -from torch import nn -from torch import Tensor - -from text_recognizer.networks.util import activation_function -from text_recognizer.networks.vqvae.norm import Normalize -from text_recognizer.networks.vqvae.residual import Residual - - -class Encoder(nn.Module): - """A CNN encoder network.""" - - def __init__( - self, - in_channels: int, - hidden_dim: int, - channels_multipliers: List[int], - dropout_rate: float, - activation: str = "mish", - use_norm: bool = False, - num_residuals: int = 4, - residual_channels: int = 32, - ) -> None: - super().__init__() - self.in_channels = in_channels - self.hidden_dim = hidden_dim - self.channels_multipliers = tuple(channels_multipliers) - self.activation = activation - self.dropout_rate = dropout_rate - self.use_norm = use_norm - self.num_residuals = num_residuals - self.residual_channels = residual_channels - self.encoder = self._build_compression_block() - - def _build_compression_block(self) -> nn.Sequential: - """Builds encoder network.""" - num_blocks = len(self.channels_multipliers) - channels_multipliers = (1,) + self.channels_multipliers - activation_fn = activation_function(self.activation) - - encoder = [ - nn.Conv2d( - in_channels=self.in_channels, - out_channels=self.hidden_dim, - kernel_size=3, - stride=1, - padding=1, - ), - ] - - for i in range(num_blocks): - in_channels = self.hidden_dim * channels_multipliers[i] - out_channels = self.hidden_dim * channels_multipliers[i + 1] - if self.use_norm: - encoder += [ - Normalize(num_channels=in_channels,), - ] - encoder += [ - activation_fn, - nn.Conv2d( - in_channels=in_channels, - out_channels=out_channels, - kernel_size=4, - stride=2, - padding=1, - ), - ] - - for _ in range(self.num_residuals): - encoder += [ - Residual( - in_channels=out_channels, - residual_channels=self.residual_channels, - use_norm=self.use_norm, - activation=self.activation, - ) - ] - - return nn.Sequential(*encoder) - - def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: - """Encodes input into a discrete representation.""" - return self.encoder(x) diff --git a/text_recognizer/networks/vqvae/norm.py b/text_recognizer/networks/vqvae/norm.py deleted file mode 100644 index d73f9f8..0000000 --- a/text_recognizer/networks/vqvae/norm.py +++ /dev/null @@ -1,24 +0,0 @@ -"""Normalizer block.""" -import attr -from torch import nn, Tensor - - -@attr.s(eq=False) -class Normalize(nn.Module): - num_channels: int = attr.ib() - num_groups: int = attr.ib(default=32) - norm: nn.GroupNorm = attr.ib(init=False) - - def __attrs_post_init__(self) -> None: - """Post init configuration.""" - super().__init__() - self.norm = nn.GroupNorm( - num_groups=self.num_groups, - num_channels=self.num_channels, - eps=1.0e-6, - affine=True, - ) - - def forward(self, x: Tensor) -> Tensor: - """Applies group normalization.""" - return self.norm(x) diff --git a/text_recognizer/networks/vqvae/residual.py b/text_recognizer/networks/vqvae/residual.py deleted file mode 100644 index bdff9eb..0000000 --- a/text_recognizer/networks/vqvae/residual.py +++ /dev/null @@ -1,54 +0,0 @@ -"""Residual block.""" -import attr -from torch import nn -from torch import Tensor - -from text_recognizer.networks.util import activation_function -from text_recognizer.networks.vqvae.norm import Normalize - - -@attr.s(eq=False) -class Residual(nn.Module): - in_channels: int = attr.ib() - residual_channels: int = attr.ib() - use_norm: bool = attr.ib(default=False) - activation: str = attr.ib(default="relu") - - def __attrs_post_init__(self) -> None: - """Post init configuration.""" - super().__init__() - self.block = self._build_res_block() - - def _build_res_block(self) -> nn.Sequential: - """Build residual block.""" - block = [] - activation_fn = activation_function(activation=self.activation) - - if self.use_norm: - block.append(Normalize(num_channels=self.in_channels)) - - block += [ - activation_fn, - nn.Conv2d( - self.in_channels, - self.residual_channels, - kernel_size=3, - padding=1, - bias=False, - ), - ] - - if self.use_norm: - block.append(Normalize(num_channels=self.residual_channels)) - - block += [ - activation_fn, - nn.Conv2d( - self.residual_channels, self.in_channels, kernel_size=1, bias=False - ), - ] - return nn.Sequential(*block) - - def forward(self, x: Tensor) -> Tensor: - """Apply the residual forward pass.""" - return x + self.block(x) diff --git a/text_recognizer/networks/vqvae/resize.py b/text_recognizer/networks/vqvae/resize.py deleted file mode 100644 index 8d67d02..0000000 --- a/text_recognizer/networks/vqvae/resize.py +++ /dev/null @@ -1,19 +0,0 @@ -"""Up and down-sample with linear interpolation.""" -from torch import nn, Tensor -import torch.nn.functional as F - - -class Upsample(nn.Module): - """Upsamples by a factor 2.""" - - def forward(self, x: Tensor) -> Tensor: - """Applies upsampling.""" - return F.interpolate(x, scale_factor=2.0, mode="nearest") - - -class Downsample(nn.Module): - """Downsampling by a factor 2.""" - - def forward(self, x: Tensor) -> Tensor: - """Applies downsampling.""" - return F.avg_pool2d(x, kernel_size=2, stride=2) diff --git a/text_recognizer/networks/vqvae/vqvae.py b/text_recognizer/networks/vqvae/vqvae.py deleted file mode 100644 index 5560e12..0000000 --- a/text_recognizer/networks/vqvae/vqvae.py +++ /dev/null @@ -1,42 +0,0 @@ -"""The VQ-VAE.""" -from typing import Tuple - -from torch import nn -from torch import Tensor - -from text_recognizer.networks.quantizer.quantizer import VectorQuantizer - - -class VQVAE(nn.Module): - """Vector Quantized Variational AutoEncoder.""" - - def __init__( - self, - encoder: nn.Module, - decoder: nn.Module, - quantizer: VectorQuantizer, - ) -> None: - super().__init__() - self.encoder = encoder - self.decoder = decoder - self.quantizer = quantizer - - def encode(self, x: Tensor) -> Tensor: - """Encodes input to a latent code.""" - return self.encoder(x) - - def quantize(self, z_e: Tensor) -> Tuple[Tensor, Tensor]: - """Quantizes the encoded latent vectors.""" - z_q, _, commitment_loss = self.quantizer(z_e) - return z_q, commitment_loss - - def decode(self, z_q: Tensor) -> Tensor: - """Reconstructs input from latent codes.""" - return self.decoder(z_q) - - def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: - """Compresses and decompresses input.""" - z_e = self.encode(x) - z_q, commitment_loss = self.quantize(z_e) - x_hat = self.decode(z_q) - return x_hat, commitment_loss -- cgit v1.2.3-70-g09d2