From 7e8e54e84c63171e748bbf09516fd517e6821ace Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Sat, 20 Mar 2021 18:09:06 +0100 Subject: Inital commit for refactoring to lightning --- text_recognizer/networks/__init__.py | 43 +++ text_recognizer/networks/beam.py | 83 +++++ text_recognizer/networks/cnn.py | 101 +++++ text_recognizer/networks/cnn_transformer.py | 158 ++++++++ text_recognizer/networks/crnn.py | 110 ++++++ text_recognizer/networks/ctc.py | 58 +++ text_recognizer/networks/densenet.py | 225 +++++++++++ text_recognizer/networks/lenet.py | 68 ++++ text_recognizer/networks/loss/__init__.py | 2 + text_recognizer/networks/loss/loss.py | 69 ++++ text_recognizer/networks/metrics.py | 123 +++++++ text_recognizer/networks/mlp.py | 73 ++++ text_recognizer/networks/residual_network.py | 310 ++++++++++++++++ text_recognizer/networks/stn.py | 44 +++ text_recognizer/networks/transducer/__init__.py | 3 + text_recognizer/networks/transducer/tds_conv.py | 208 +++++++++++ text_recognizer/networks/transducer/test.py | 60 +++ text_recognizer/networks/transducer/transducer.py | 410 +++++++++++++++++++++ text_recognizer/networks/transformer/__init__.py | 3 + text_recognizer/networks/transformer/attention.py | 93 +++++ .../networks/transformer/positional_encoding.py | 32 ++ .../networks/transformer/transformer.py | 264 +++++++++++++ text_recognizer/networks/unet.py | 255 +++++++++++++ text_recognizer/networks/util.py | 89 +++++ text_recognizer/networks/vit.py | 150 ++++++++ text_recognizer/networks/vq_transformer.py | 150 ++++++++ text_recognizer/networks/vqvae/__init__.py | 5 + text_recognizer/networks/vqvae/decoder.py | 133 +++++++ text_recognizer/networks/vqvae/encoder.py | 147 ++++++++ text_recognizer/networks/vqvae/vector_quantizer.py | 119 ++++++ text_recognizer/networks/vqvae/vqvae.py | 74 ++++ text_recognizer/networks/wide_resnet.py | 221 +++++++++++ 32 files changed, 3883 insertions(+) create mode 100644 text_recognizer/networks/__init__.py create mode 100644 text_recognizer/networks/beam.py create mode 100644 text_recognizer/networks/cnn.py create mode 100644 text_recognizer/networks/cnn_transformer.py create mode 100644 text_recognizer/networks/crnn.py create mode 100644 text_recognizer/networks/ctc.py create mode 100644 text_recognizer/networks/densenet.py create mode 100644 text_recognizer/networks/lenet.py create mode 100644 text_recognizer/networks/loss/__init__.py create mode 100644 text_recognizer/networks/loss/loss.py create mode 100644 text_recognizer/networks/metrics.py create mode 100644 text_recognizer/networks/mlp.py create mode 100644 text_recognizer/networks/residual_network.py create mode 100644 text_recognizer/networks/stn.py create mode 100644 text_recognizer/networks/transducer/__init__.py create mode 100644 text_recognizer/networks/transducer/tds_conv.py create mode 100644 text_recognizer/networks/transducer/test.py create mode 100644 text_recognizer/networks/transducer/transducer.py create mode 100644 text_recognizer/networks/transformer/__init__.py create mode 100644 text_recognizer/networks/transformer/attention.py create mode 100644 text_recognizer/networks/transformer/positional_encoding.py create mode 100644 text_recognizer/networks/transformer/transformer.py create mode 100644 text_recognizer/networks/unet.py create mode 100644 text_recognizer/networks/util.py create mode 100644 text_recognizer/networks/vit.py create mode 100644 text_recognizer/networks/vq_transformer.py create mode 100644 text_recognizer/networks/vqvae/__init__.py create mode 100644 text_recognizer/networks/vqvae/decoder.py create mode 100644 text_recognizer/networks/vqvae/encoder.py create mode 100644 text_recognizer/networks/vqvae/vector_quantizer.py create mode 100644 text_recognizer/networks/vqvae/vqvae.py create mode 100644 text_recognizer/networks/wide_resnet.py (limited to 'text_recognizer/networks') diff --git a/text_recognizer/networks/__init__.py b/text_recognizer/networks/__init__.py new file mode 100644 index 0000000..1521355 --- /dev/null +++ b/text_recognizer/networks/__init__.py @@ -0,0 +1,43 @@ +"""Network modules.""" +from .cnn import CNN +from .cnn_transformer import CNNTransformer +from .crnn import ConvolutionalRecurrentNetwork +from .ctc import greedy_decoder +from .densenet import DenseNet +from .lenet import LeNet +from .metrics import accuracy, cer, wer +from .mlp import MLP +from .residual_network import ResidualNetwork, ResidualNetworkEncoder +from .transducer import load_transducer_loss, TDS2d +from .transformer import Transformer +from .unet import UNet +from .util import sliding_window +from .vit import ViT +from .vq_transformer import VQTransformer +from .vqvae import VQVAE +from .wide_resnet import WideResidualNetwork + +__all__ = [ + "accuracy", + "cer", + "CNN", + "CNNTransformer", + "ConvolutionalRecurrentNetwork", + "DenseNet", + "FCN", + "greedy_decoder", + "MLP", + "LeNet", + "load_transducer_loss", + "ResidualNetwork", + "ResidualNetworkEncoder", + "sliding_window", + "UNet", + "TDS2d", + "Transformer", + "ViT", + "VQTransformer", + "VQVAE", + "wer", + "WideResidualNetwork", +] diff --git a/text_recognizer/networks/beam.py b/text_recognizer/networks/beam.py new file mode 100644 index 0000000..dccccdb --- /dev/null +++ b/text_recognizer/networks/beam.py @@ -0,0 +1,83 @@ +"""Implementation of beam search decoder for a sequence to sequence network. + +Stolen from: https://github.com/budzianowski/PyTorch-Beam-Search-Decoding/blob/master/decode_beam.py + +""" +# from typing import List +# from Queue import PriorityQueue + +# from loguru import logger +# import torch +# from torch import nn +# from torch import Tensor +# import torch.nn.functional as F + + +# class Node: +# def __init__( +# self, parent: Node, target_index: int, log_prob: Tensor, length: int +# ) -> None: +# self.parent = parent +# self.target_index = target_index +# self.log_prob = log_prob +# self.length = length +# self.reward = 0.0 + +# def eval(self, alpha: float = 1.0) -> Tensor: +# return self.log_prob / (self.length - 1 + 1e-6) + alpha * self.reward + + +# @torch.no_grad() +# def beam_decoder( +# network, mapper, device, memory: Tensor = None, max_len: int = 97, +# ) -> Tensor: +# beam_width = 10 +# topk = 1 # How many sentences to generate. + +# trg_indices = [mapper(mapper.init_token)] + +# end_nodes = [] + +# node = Node(None, trg_indices, 0, 1) +# nodes = PriorityQueue() + +# nodes.put((node.eval(), node)) +# q_size = 1 + +# # Beam search +# for _ in range(max_len): +# if q_size > 2000: +# logger.warning("Could not decoder input") +# break + +# # Fetch the best node. +# score, n = nodes.get() +# decoder_input = n.target_index + +# if n.target_index == mapper(mapper.eos_token) and n.parent is not None: +# end_nodes.append((score, n)) + +# # If we reached the maximum number of sentences required. +# if len(end_nodes) >= 1: +# break +# else: +# continue + +# # Forward pass with transformer. +# trg = torch.tensor(trg_indices, device=device)[None, :].long() +# trg = network.target_embedding(trg) +# logits = network.decoder(trg=trg, memory=memory, trg_mask=None) +# log_prob = F.log_softmax(logits, dim=2) + +# log_prob, indices = torch.topk(log_prob, beam_width) + +# for new_k in range(beam_width): +# # TODO: continue from here +# token_index = indices[0][new_k].view(1, -1) +# log_p = log_prob[0][new_k].item() + +# node = Node() + +# pass + +# pass diff --git a/text_recognizer/networks/cnn.py b/text_recognizer/networks/cnn.py new file mode 100644 index 0000000..1807bb9 --- /dev/null +++ b/text_recognizer/networks/cnn.py @@ -0,0 +1,101 @@ +"""Implementation of a simple backbone cnn network.""" +from typing import Callable, Dict, Optional, Tuple + +from einops.layers.torch import Rearrange +import torch +from torch import nn + +from text_recognizer.networks.util import activation_function + + +class CNN(nn.Module): + """LeNet network for character prediction.""" + + def __init__( + self, + channels: Tuple[int, ...] = (1, 32, 64, 128), + kernel_sizes: Tuple[int, ...] = (4, 4, 4), + strides: Tuple[int, ...] = (2, 2, 2), + max_pool_kernel: int = 2, + dropout_rate: float = 0.2, + activation: Optional[str] = "relu", + ) -> None: + """Initialization of the LeNet network. + + Args: + channels (Tuple[int, ...]): Channels in the convolutional layers. Defaults to (1, 32, 64). + kernel_sizes (Tuple[int, ...]): Kernel sizes in the convolutional layers. Defaults to (3, 3, 2). + strides (Tuple[int, ...]): Stride length of the convolutional filter. Defaults to (2, 2, 2). + max_pool_kernel (int): 2D max pooling kernel. Defaults to 2. + dropout_rate (float): The dropout rate. Defaults to 0.2. + activation (Optional[str]): The name of non-linear activation function. Defaults to relu. + + Raises: + RuntimeError: if the number of hyperparameters does not match in length. + + """ + super().__init__() + + if len(channels) - 1 != len(kernel_sizes) and len(kernel_sizes) != len(strides): + raise RuntimeError("The number of the hyperparameters does not match.") + + self.cnn = self._build_network( + channels, kernel_sizes, strides, max_pool_kernel, dropout_rate, activation, + ) + + def _build_network( + self, + channels: Tuple[int, ...], + kernel_sizes: Tuple[int, ...], + strides: Tuple[int, ...], + max_pool_kernel: int, + dropout_rate: float, + activation: str, + ) -> nn.Sequential: + # Load activation function. + activation_fn = activation_function(activation) + + channels = list(channels) + in_channels = channels.pop(0) + configuration = zip(channels, kernel_sizes, strides) + + modules = nn.ModuleList([]) + + for i, (out_channels, kernel_size, stride) in enumerate(configuration): + # Add max pool to reduce output size. + if i == len(channels) // 2: + modules.append(nn.MaxPool2d(max_pool_kernel)) + if i == 0: + modules.append( + nn.Conv2d( + in_channels, out_channels, kernel_size, stride=stride, padding=1 + ) + ) + else: + modules.append( + nn.Sequential( + activation_fn, + nn.BatchNorm2d(in_channels), + nn.Conv2d( + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=1, + ), + ) + ) + + if dropout_rate: + modules.append(nn.Dropout2d(p=dropout_rate)) + + in_channels = out_channels + + return nn.Sequential(*modules) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """The feedforward pass.""" + # If batch dimenstion is missing, it needs to be added. + if len(x.shape) < 4: + x = x[(None,) * (4 - len(x.shape))] + return self.cnn(x) diff --git a/text_recognizer/networks/cnn_transformer.py b/text_recognizer/networks/cnn_transformer.py new file mode 100644 index 0000000..9150b55 --- /dev/null +++ b/text_recognizer/networks/cnn_transformer.py @@ -0,0 +1,158 @@ +"""A CNN-Transformer for image to text recognition.""" +from typing import Dict, Optional, Tuple + +from einops import rearrange +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.transformer import PositionalEncoding, Transformer +from text_recognizer.networks.util import activation_function +from text_recognizer.networks.util import configure_backbone + + +class CNNTransformer(nn.Module): + """CNN+Transfomer for image to sequence prediction.""" + + def __init__( + self, + num_encoder_layers: int, + num_decoder_layers: int, + hidden_dim: int, + vocab_size: int, + num_heads: int, + adaptive_pool_dim: Tuple, + expansion_dim: int, + dropout_rate: float, + trg_pad_index: int, + max_len: int, + backbone: str, + backbone_args: Optional[Dict] = None, + activation: str = "gelu", + pool_kernel: Optional[Tuple[int, int]] = None, + ) -> None: + super().__init__() + self.trg_pad_index = trg_pad_index + self.vocab_size = vocab_size + self.backbone = configure_backbone(backbone, backbone_args) + + if pool_kernel is not None: + self.max_pool = nn.MaxPool2d(pool_kernel, stride=2) + else: + self.max_pool = None + + self.character_embedding = nn.Embedding(self.vocab_size, hidden_dim) + + self.src_position_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim)) + self.pos_dropout = nn.Dropout(p=dropout_rate) + self.trg_position_encoding = PositionalEncoding(hidden_dim, dropout_rate) + + nn.init.normal_(self.character_embedding.weight, std=0.02) + + self.adaptive_pool = ( + nn.AdaptiveAvgPool2d((adaptive_pool_dim)) if adaptive_pool_dim else None + ) + + self.transformer = Transformer( + num_encoder_layers, + num_decoder_layers, + hidden_dim, + num_heads, + expansion_dim, + dropout_rate, + activation, + ) + + self.head = nn.Sequential( + # nn.Linear(hidden_dim, hidden_dim * 2), + # activation_function(activation), + nn.Linear(hidden_dim, vocab_size), + ) + + def _create_trg_mask(self, trg: Tensor) -> Tensor: + # Move this outside the transformer. + trg_pad_mask = (trg != self.trg_pad_index)[:, None, None] + trg_len = trg.shape[1] + trg_sub_mask = torch.tril( + torch.ones((trg_len, trg_len), device=trg.device) + ).bool() + trg_mask = trg_pad_mask & trg_sub_mask + return trg_mask + + def encoder(self, src: Tensor) -> Tensor: + """Forward pass with the encoder of the transformer.""" + return self.transformer.encoder(src) + + def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor: + """Forward pass with the decoder of the transformer + classification head.""" + return self.head( + self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask) + ) + + def extract_image_features(self, src: Tensor) -> Tensor: + """Extracts image features with a backbone neural network. + + It seem like the winning idea was to swap channels and width dimension and collapse + the height dimension. The transformer is learning like a baby with this implementation!!! :D + Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D + + Args: + src (Tensor): Input tensor. + + Returns: + Tensor: A input src to the transformer. + + """ + # If batch dimension is missing, it needs to be added. + if len(src.shape) < 4: + src = src[(None,) * (4 - len(src.shape))] + + src = self.backbone(src) + + if self.max_pool is not None: + src = self.max_pool(src) + + if self.adaptive_pool is not None and len(src.shape) == 4: + src = rearrange(src, "b c h w -> b w c h") + src = self.adaptive_pool(src) + src = src.squeeze(3) + elif len(src.shape) == 4: + src = rearrange(src, "b c h w -> b (h w) c") + + b, t, _ = src.shape + + src += self.src_position_embedding[:, :t] + src = self.pos_dropout(src) + + return src + + def target_embedding(self, trg: Tensor) -> Tuple[Tensor, Tensor]: + """Encodes target tensor with embedding and postion. + + Args: + trg (Tensor): Target tensor. + + Returns: + Tuple[Tensor, Tensor]: Encoded target tensor and target mask. + + """ + trg = self.character_embedding(trg.long()) + trg = self.trg_position_encoding(trg) + return trg + + def decode_image_features( + self, image_features: Tensor, trg: Optional[Tensor] = None + ) -> Tensor: + """Takes images features from the backbone and decodes them with the transformer.""" + trg_mask = self._create_trg_mask(trg) + trg = self.target_embedding(trg) + out = self.transformer(image_features, trg, trg_mask=trg_mask) + + logits = self.head(out) + return logits + + def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor: + """Forward pass with CNN transfomer.""" + image_features = self.extract_image_features(x) + logits = self.decode_image_features(image_features, trg) + return logits diff --git a/text_recognizer/networks/crnn.py b/text_recognizer/networks/crnn.py new file mode 100644 index 0000000..778e232 --- /dev/null +++ b/text_recognizer/networks/crnn.py @@ -0,0 +1,110 @@ +"""CRNN for handwritten text recognition.""" +from typing import Dict, Tuple + +from einops import rearrange, reduce +from einops.layers.torch import Rearrange +from loguru import logger +from torch import nn +from torch import Tensor + +from text_recognizer.networks.util import configure_backbone + + +class ConvolutionalRecurrentNetwork(nn.Module): + """Network that takes a image of a text line and predicts tokens that are in the image.""" + + def __init__( + self, + backbone: str, + backbone_args: Dict = None, + input_size: int = 128, + hidden_size: int = 128, + bidirectional: bool = False, + num_layers: int = 1, + num_classes: int = 80, + patch_size: Tuple[int, int] = (28, 28), + stride: Tuple[int, int] = (1, 14), + recurrent_cell: str = "lstm", + avg_pool: bool = False, + use_sliding_window: bool = True, + ) -> None: + super().__init__() + self.backbone_args = backbone_args or {} + self.patch_size = patch_size + self.stride = stride + self.sliding_window = ( + self._configure_sliding_window() if use_sliding_window else None + ) + self.input_size = input_size + self.hidden_size = hidden_size + self.backbone = configure_backbone(backbone, backbone_args) + self.bidirectional = bidirectional + self.avg_pool = avg_pool + + if recurrent_cell.upper() in ["LSTM", "GRU"]: + recurrent_cell = getattr(nn, recurrent_cell) + else: + logger.warning( + f"Option {recurrent_cell} not valid, defaulting to LSTM cell." + ) + recurrent_cell = nn.LSTM + + self.rnn = recurrent_cell( + input_size=self.input_size, + hidden_size=self.hidden_size, + bidirectional=bidirectional, + num_layers=num_layers, + ) + + decoder_size = self.hidden_size * 2 if self.bidirectional else self.hidden_size + + self.decoder = nn.Sequential( + nn.Linear(in_features=decoder_size, out_features=num_classes), + nn.LogSoftmax(dim=2), + ) + + def _configure_sliding_window(self) -> nn.Sequential: + return nn.Sequential( + nn.Unfold(kernel_size=self.patch_size, stride=self.stride), + Rearrange( + "b (c h w) t -> b t c h w", + h=self.patch_size[0], + w=self.patch_size[1], + c=1, + ), + ) + + def forward(self, x: Tensor) -> Tensor: + """Converts images to sequence of patches, feeds them to a CNN, then predictions are made with an LSTM.""" + if len(x.shape) < 4: + x = x[(None,) * (4 - len(x.shape))] + + if self.sliding_window is not None: + # Create image patches with a sliding window kernel. + x = self.sliding_window(x) + + # Rearrange from a sequence of patches for feedforward network. + b, t = x.shape[:2] + x = rearrange(x, "b t c h w -> (b t) c h w", b=b, t=t) + + x = self.backbone(x) + + # Average pooling. + if self.avg_pool: + x = reduce(x, "(b t) c h w -> t b c", "mean", b=b, t=t) + else: + x = rearrange(x, "(b t) h -> t b h", b=b, t=t) + else: + # Encode the entire image with a CNN, and use the channels as temporal dimension. + x = self.backbone(x) + x = rearrange(x, "b c h w -> b w c h") + if self.adaptive_pool is not None: + x = self.adaptive_pool(x) + x = x.squeeze(3) + + # Sequence predictions. + x, _ = self.rnn(x) + + # Sequence to classification layer. + x = self.decoder(x) + return x diff --git a/text_recognizer/networks/ctc.py b/text_recognizer/networks/ctc.py new file mode 100644 index 0000000..af9b700 --- /dev/null +++ b/text_recognizer/networks/ctc.py @@ -0,0 +1,58 @@ +"""Decodes the CTC output.""" +from typing import Callable, List, Optional, Tuple + +from einops import rearrange +import torch +from torch import Tensor + +from text_recognizer.datasets.util import EmnistMapper + + +def greedy_decoder( + predictions: Tensor, + targets: Optional[Tensor] = None, + target_lengths: Optional[Tensor] = None, + character_mapper: Optional[Callable] = None, + blank_label: int = 79, + collapse_repeated: bool = True, +) -> Tuple[List[str], List[str]]: + """Greedy CTC decoder. + + Args: + predictions (Tensor): Tenor of network predictions, shape [time, batch, classes]. + targets (Optional[Tensor]): Target tensor, shape is [batch, targets]. Defaults to None. + target_lengths (Optional[Tensor]): Length of each target tensor. Defaults to None. + character_mapper (Optional[Callable]): A emnist/character mapper for mapping integers to characters. Defaults + to None. + blank_label (int): The blank character to be ignored. Defaults to 80. + collapse_repeated (bool): Collapase consecutive predictions of the same character. Defaults to True. + + Returns: + Tuple[List[str], List[str]]: Tuple of decoded predictions and decoded targets. + + """ + + if character_mapper is None: + character_mapper = EmnistMapper(pad_token="_") # noqa: S106 + + predictions = rearrange(torch.argmax(predictions, dim=2), "t b -> b t") + decoded_predictions = [] + decoded_targets = [] + for i, prediction in enumerate(predictions): + decoded_prediction = [] + decoded_target = [] + if targets is not None and target_lengths is not None: + for target_index in targets[i][: target_lengths[i]]: + if target_index == blank_label: + continue + decoded_target.append(character_mapper(int(target_index))) + decoded_targets.append(decoded_target) + for j, index in enumerate(prediction): + if index != blank_label: + if collapse_repeated and j != 0 and index == prediction[j - 1]: + continue + decoded_prediction.append(index.item()) + decoded_predictions.append( + [character_mapper(int(pred_index)) for pred_index in decoded_prediction] + ) + return decoded_predictions, decoded_targets diff --git a/text_recognizer/networks/densenet.py b/text_recognizer/networks/densenet.py new file mode 100644 index 0000000..7dc58d9 --- /dev/null +++ b/text_recognizer/networks/densenet.py @@ -0,0 +1,225 @@ +"""Defines a Densely Connected Convolutional Networks in PyTorch. + +Sources: +https://arxiv.org/abs/1608.06993 +https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py + +""" +from typing import List, Optional, Union + +from einops.layers.torch import Rearrange +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.util import activation_function + + +class _DenseLayer(nn.Module): + """A dense layer with pre-batch norm -> activation function -> Conv-layer x 2.""" + + def __init__( + self, + in_channels: int, + growth_rate: int, + bn_size: int, + dropout_rate: float, + activation: str = "relu", + ) -> None: + super().__init__() + activation_fn = activation_function(activation) + self.dense_layer = [ + nn.BatchNorm2d(in_channels), + activation_fn, + nn.Conv2d( + in_channels=in_channels, + out_channels=bn_size * growth_rate, + kernel_size=1, + stride=1, + bias=False, + ), + nn.BatchNorm2d(bn_size * growth_rate), + activation_fn, + nn.Conv2d( + in_channels=bn_size * growth_rate, + out_channels=growth_rate, + kernel_size=3, + stride=1, + padding=1, + bias=False, + ), + ] + if dropout_rate: + self.dense_layer.append(nn.Dropout(p=dropout_rate)) + + self.dense_layer = nn.Sequential(*self.dense_layer) + + def forward(self, x: Union[Tensor, List[Tensor]]) -> Tensor: + if isinstance(x, list): + x = torch.cat(x, 1) + return self.dense_layer(x) + + +class _DenseBlock(nn.Module): + def __init__( + self, + num_layers: int, + in_channels: int, + bn_size: int, + growth_rate: int, + dropout_rate: float, + activation: str = "relu", + ) -> None: + super().__init__() + self.dense_block = self._build_dense_blocks( + num_layers, in_channels, bn_size, growth_rate, dropout_rate, activation, + ) + + def _build_dense_blocks( + self, + num_layers: int, + in_channels: int, + bn_size: int, + growth_rate: int, + dropout_rate: float, + activation: str = "relu", + ) -> nn.ModuleList: + dense_block = [] + for i in range(num_layers): + dense_block.append( + _DenseLayer( + in_channels=in_channels + i * growth_rate, + growth_rate=growth_rate, + bn_size=bn_size, + dropout_rate=dropout_rate, + activation=activation, + ) + ) + return nn.ModuleList(dense_block) + + def forward(self, x: Tensor) -> Tensor: + feature_maps = [x] + for layer in self.dense_block: + x = layer(feature_maps) + feature_maps.append(x) + return torch.cat(feature_maps, 1) + + +class _Transition(nn.Module): + def __init__( + self, in_channels: int, out_channels: int, activation: str = "relu", + ) -> None: + super().__init__() + activation_fn = activation_function(activation) + self.transition = nn.Sequential( + nn.BatchNorm2d(in_channels), + activation_fn, + nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=1, + stride=1, + bias=False, + ), + nn.AvgPool2d(kernel_size=2, stride=2), + ) + + def forward(self, x: Tensor) -> Tensor: + return self.transition(x) + + +class DenseNet(nn.Module): + """Implementation of Densenet, a network archtecture that concats previous layers for maximum infomation flow.""" + + def __init__( + self, + growth_rate: int = 32, + block_config: List[int] = (6, 12, 24, 16), + in_channels: int = 1, + base_channels: int = 64, + num_classes: int = 80, + bn_size: int = 4, + dropout_rate: float = 0, + classifier: bool = True, + activation: str = "relu", + ) -> None: + super().__init__() + self.densenet = self._configure_densenet( + in_channels, + base_channels, + num_classes, + growth_rate, + block_config, + bn_size, + dropout_rate, + classifier, + activation, + ) + + def _configure_densenet( + self, + in_channels: int, + base_channels: int, + num_classes: int, + growth_rate: int, + block_config: List[int], + bn_size: int, + dropout_rate: float, + classifier: bool, + activation: str, + ) -> nn.Sequential: + activation_fn = activation_function(activation) + densenet = [ + nn.Conv2d( + in_channels=in_channels, + out_channels=base_channels, + kernel_size=3, + stride=1, + padding=1, + bias=False, + ), + nn.BatchNorm2d(base_channels), + activation_fn, + ] + + num_features = base_channels + + for i, num_layers in enumerate(block_config): + densenet.append( + _DenseBlock( + num_layers=num_layers, + in_channels=num_features, + bn_size=bn_size, + growth_rate=growth_rate, + dropout_rate=dropout_rate, + activation=activation, + ) + ) + num_features = num_features + num_layers * growth_rate + if i != len(block_config) - 1: + densenet.append( + _Transition( + in_channels=num_features, + out_channels=num_features // 2, + activation=activation, + ) + ) + num_features = num_features // 2 + + densenet.append(activation_fn) + + if classifier: + densenet.append(nn.AdaptiveAvgPool2d((1, 1))) + densenet.append(Rearrange("b c h w -> b (c h w)")) + densenet.append( + nn.Linear(in_features=num_features, out_features=num_classes) + ) + + return nn.Sequential(*densenet) + + def forward(self, x: Tensor) -> Tensor: + """Forward pass of Densenet.""" + # If batch dimenstion is missing, it will be added. + if len(x.shape) < 4: + x = x[(None,) * (4 - len(x.shape))] + return self.densenet(x) diff --git a/text_recognizer/networks/lenet.py b/text_recognizer/networks/lenet.py new file mode 100644 index 0000000..527e1a0 --- /dev/null +++ b/text_recognizer/networks/lenet.py @@ -0,0 +1,68 @@ +"""Implementation of the LeNet network.""" +from typing import Callable, Dict, Optional, Tuple + +from einops.layers.torch import Rearrange +import torch +from torch import nn + +from text_recognizer.networks.util import activation_function + + +class LeNet(nn.Module): + """LeNet network for character prediction.""" + + def __init__( + self, + channels: Tuple[int, ...] = (1, 32, 64), + kernel_sizes: Tuple[int, ...] = (3, 3, 2), + hidden_size: Tuple[int, ...] = (9216, 128), + dropout_rate: float = 0.2, + num_classes: int = 10, + activation_fn: Optional[str] = "relu", + ) -> None: + """Initialization of the LeNet network. + + Args: + channels (Tuple[int, ...]): Channels in the convolutional layers. Defaults to (1, 32, 64). + kernel_sizes (Tuple[int, ...]): Kernel sizes in the convolutional layers. Defaults to (3, 3, 2). + hidden_size (Tuple[int, ...]): Size of the flattend output form the convolutional layers. + Defaults to (9216, 128). + dropout_rate (float): The dropout rate. Defaults to 0.2. + num_classes (int): Number of classes. Defaults to 10. + activation_fn (Optional[str]): The name of non-linear activation function. Defaults to relu. + + """ + super().__init__() + + activation_fn = activation_function(activation_fn) + + self.layers = [ + nn.Conv2d( + in_channels=channels[0], + out_channels=channels[1], + kernel_size=kernel_sizes[0], + ), + activation_fn, + nn.Conv2d( + in_channels=channels[1], + out_channels=channels[2], + kernel_size=kernel_sizes[1], + ), + activation_fn, + nn.MaxPool2d(kernel_sizes[2]), + nn.Dropout(p=dropout_rate), + Rearrange("b c h w -> b (c h w)"), + nn.Linear(in_features=hidden_size[0], out_features=hidden_size[1]), + activation_fn, + nn.Dropout(p=dropout_rate), + nn.Linear(in_features=hidden_size[1], out_features=num_classes), + ] + + self.layers = nn.Sequential(*self.layers) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """The feedforward pass.""" + # If batch dimenstion is missing, it needs to be added. + if len(x.shape) < 4: + x = x[(None,) * (4 - len(x.shape))] + return self.layers(x) diff --git a/text_recognizer/networks/loss/__init__.py b/text_recognizer/networks/loss/__init__.py new file mode 100644 index 0000000..b489264 --- /dev/null +++ b/text_recognizer/networks/loss/__init__.py @@ -0,0 +1,2 @@ +"""Loss module.""" +from .loss import EmbeddingLoss, LabelSmoothingCrossEntropy diff --git a/text_recognizer/networks/loss/loss.py b/text_recognizer/networks/loss/loss.py new file mode 100644 index 0000000..cf9fa0d --- /dev/null +++ b/text_recognizer/networks/loss/loss.py @@ -0,0 +1,69 @@ +"""Implementations of custom loss functions.""" +from pytorch_metric_learning import distances, losses, miners, reducers +import torch +from torch import nn +from torch import Tensor +from torch.autograd import Variable +import torch.nn.functional as F + +__all__ = ["EmbeddingLoss", "LabelSmoothingCrossEntropy"] + + +class EmbeddingLoss: + """Metric loss for training encoders to produce information-rich latent embeddings.""" + + def __init__(self, margin: float = 0.2, type_of_triplets: str = "semihard") -> None: + self.distance = distances.CosineSimilarity() + self.reducer = reducers.ThresholdReducer(low=0) + self.loss_fn = losses.TripletMarginLoss( + margin=margin, distance=self.distance, reducer=self.reducer + ) + self.miner = miners.MultiSimilarityMiner(epsilon=margin, distance=self.distance) + + def __call__(self, embeddings: Tensor, labels: Tensor) -> Tensor: + """Computes the metric loss for the embeddings based on their labels. + + Args: + embeddings (Tensor): The laten vectors encoded by the network. + labels (Tensor): Labels of the embeddings. + + Returns: + Tensor: The metric loss for the embeddings. + + """ + hard_pairs = self.miner(embeddings, labels) + loss = self.loss_fn(embeddings, labels, hard_pairs) + return loss + + +class LabelSmoothingCrossEntropy(nn.Module): + """Label smoothing loss function.""" + + def __init__( + self, + classes: int, + smoothing: float = 0.0, + ignore_index: int = None, + dim: int = -1, + ) -> None: + super().__init__() + self.confidence = 1.0 - smoothing + self.smoothing = smoothing + self.ignore_index = ignore_index + self.cls = classes + self.dim = dim + + def forward(self, pred: Tensor, target: Tensor) -> Tensor: + """Calculates the loss.""" + pred = pred.log_softmax(dim=self.dim) + with torch.no_grad(): + # true_dist = pred.data.clone() + true_dist = torch.zeros_like(pred) + true_dist.fill_(self.smoothing / (self.cls - 1)) + true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence) + if self.ignore_index is not None: + true_dist[:, self.ignore_index] = 0 + mask = torch.nonzero(target == self.ignore_index, as_tuple=False) + if mask.dim() > 0: + true_dist.index_fill_(0, mask.squeeze(), 0.0) + return torch.mean(torch.sum(-true_dist * pred, dim=self.dim)) diff --git a/text_recognizer/networks/metrics.py b/text_recognizer/networks/metrics.py new file mode 100644 index 0000000..2605731 --- /dev/null +++ b/text_recognizer/networks/metrics.py @@ -0,0 +1,123 @@ +"""Utility functions for models.""" +from typing import Optional + +from einops import rearrange +import Levenshtein as Lev +import torch +from torch import Tensor + +from text_recognizer.networks import greedy_decoder + + +def accuracy(outputs: Tensor, labels: Tensor, pad_index: int = 53) -> float: + """Computes the accuracy. + + Args: + outputs (Tensor): The output from the network. + labels (Tensor): Ground truth labels. + pad_index (int): Padding index. + + Returns: + float: The accuracy for the batch. + + """ + + _, predicted = torch.max(outputs, dim=-1) + + # Mask out the pad tokens + mask = labels != pad_index + + predicted *= mask + labels *= mask + + acc = (predicted == labels).sum().float() / labels.shape[0] + acc = acc.item() + return acc + + +def cer( + outputs: Tensor, + targets: Tensor, + batch_size: Optional[int] = None, + blank_label: Optional[int] = int, +) -> float: + """Computes the character error rate. + + Args: + outputs (Tensor): The output from the network. + targets (Tensor): Ground truth labels. + batch_size (Optional[int]): Batch size if target and output has been flattend. + blank_label (Optional[int]): The blank character to be ignored. Defaults to 79. + + Returns: + float: The cer for the batch. + + """ + if len(outputs.shape) == 2 and len(targets.shape) == 1 and batch_size is not None: + targets = rearrange(targets, "(b t) -> b t", b=batch_size) + outputs = rearrange(outputs, "(b t) v -> t b v", b=batch_size) + + target_lengths = torch.full( + size=(outputs.shape[1],), fill_value=targets.shape[1], dtype=torch.long, + ) + decoded_predictions, decoded_targets = greedy_decoder( + outputs, targets, target_lengths, blank_label=blank_label, + ) + + lev_dist = 0 + + for prediction, target in zip(decoded_predictions, decoded_targets): + prediction = "".join(prediction) + target = "".join(target) + prediction, target = ( + prediction.replace(" ", ""), + target.replace(" ", ""), + ) + lev_dist += Lev.distance(prediction, target) + return lev_dist / len(decoded_predictions) + + +def wer( + outputs: Tensor, + targets: Tensor, + batch_size: Optional[int] = None, + blank_label: Optional[int] = int, +) -> float: + """Computes the Word error rate. + + Args: + outputs (Tensor): The output from the network. + targets (Tensor): Ground truth labels. + batch_size (optional[int]): Batch size if target and output has been flattend. + blank_label (Optional[int]): The blank character to be ignored. Defaults to 79. + + Returns: + float: The wer for the batch. + + """ + if len(outputs.shape) == 2 and len(targets.shape) == 1 and batch_size is not None: + targets = rearrange(targets, "(b t) -> b t", b=batch_size) + outputs = rearrange(outputs, "(b t) v -> t b v", b=batch_size) + + target_lengths = torch.full( + size=(outputs.shape[1],), fill_value=targets.shape[1], dtype=torch.long, + ) + decoded_predictions, decoded_targets = greedy_decoder( + outputs, targets, target_lengths, blank_label=blank_label, + ) + + lev_dist = 0 + + for prediction, target in zip(decoded_predictions, decoded_targets): + prediction = "".join(prediction) + target = "".join(target) + + b = set(prediction.split() + target.split()) + word2char = dict(zip(b, range(len(b)))) + + w1 = [chr(word2char[w]) for w in prediction.split()] + w2 = [chr(word2char[w]) for w in target.split()] + + lev_dist += Lev.distance("".join(w1), "".join(w2)) + + return lev_dist / len(decoded_predictions) diff --git a/text_recognizer/networks/mlp.py b/text_recognizer/networks/mlp.py new file mode 100644 index 0000000..1101912 --- /dev/null +++ b/text_recognizer/networks/mlp.py @@ -0,0 +1,73 @@ +"""Defines the MLP network.""" +from typing import Callable, Dict, List, Optional, Union + +from einops.layers.torch import Rearrange +import torch +from torch import nn + +from text_recognizer.networks.util import activation_function + + +class MLP(nn.Module): + """Multi layered perceptron network.""" + + def __init__( + self, + input_size: int = 784, + num_classes: int = 10, + hidden_size: Union[int, List] = 128, + num_layers: int = 3, + dropout_rate: float = 0.2, + activation_fn: str = "relu", + ) -> None: + """Initialization of the MLP network. + + Args: + input_size (int): The input shape of the network. Defaults to 784. + num_classes (int): Number of classes in the dataset. Defaults to 10. + hidden_size (Union[int, List]): The number of `neurons` in each hidden layer. Defaults to 128. + num_layers (int): The number of hidden layers. Defaults to 3. + dropout_rate (float): The dropout rate at each layer. Defaults to 0.2. + activation_fn (str): Name of the activation function in the hidden layers. Defaults to + relu. + + """ + super().__init__() + + activation_fn = activation_function(activation_fn) + + if isinstance(hidden_size, int): + hidden_size = [hidden_size] * num_layers + + self.layers = [ + Rearrange("b c h w -> b (c h w)"), + nn.Linear(in_features=input_size, out_features=hidden_size[0]), + activation_fn, + ] + + for i in range(num_layers - 1): + self.layers += [ + nn.Linear(in_features=hidden_size[i], out_features=hidden_size[i + 1]), + activation_fn, + ] + + if dropout_rate: + self.layers.append(nn.Dropout(p=dropout_rate)) + + self.layers.append( + nn.Linear(in_features=hidden_size[-1], out_features=num_classes) + ) + + self.layers = nn.Sequential(*self.layers) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + """The feedforward pass.""" + # If batch dimenstion is missing, it needs to be added. + if len(x.shape) < 4: + x = x[(None,) * (4 - len(x.shape))] + return self.layers(x) + + @property + def __name__(self) -> str: + """Returns the name of the network.""" + return "mlp" diff --git a/text_recognizer/networks/residual_network.py b/text_recognizer/networks/residual_network.py new file mode 100644 index 0000000..c33f419 --- /dev/null +++ b/text_recognizer/networks/residual_network.py @@ -0,0 +1,310 @@ +"""Residual CNN.""" +from functools import partial +from typing import Callable, Dict, List, Optional, Type, Union + +from einops.layers.torch import Rearrange, Reduce +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.util import activation_function + + +class Conv2dAuto(nn.Conv2d): + """Convolution with auto padding based on kernel size.""" + + def __init__(self, *args, **kwargs) -> None: + super().__init__(*args, **kwargs) + self.padding = (self.kernel_size[0] // 2, self.kernel_size[1] // 2) + + +def conv_bn(in_channels: int, out_channels: int, *args, **kwargs) -> nn.Sequential: + """3x3 convolution with batch norm.""" + conv3x3 = partial(Conv2dAuto, kernel_size=3, bias=False,) + return nn.Sequential( + conv3x3(in_channels, out_channels, *args, **kwargs), + nn.BatchNorm2d(out_channels), + ) + + +class IdentityBlock(nn.Module): + """Residual with identity block.""" + + def __init__( + self, in_channels: int, out_channels: int, activation: str = "relu" + ) -> None: + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.blocks = nn.Identity() + self.activation_fn = activation_function(activation) + self.shortcut = nn.Identity() + + def forward(self, x: Tensor) -> Tensor: + """Forward pass.""" + residual = x + if self.apply_shortcut: + residual = self.shortcut(x) + x = self.blocks(x) + x += residual + x = self.activation_fn(x) + return x + + @property + def apply_shortcut(self) -> bool: + """Check if shortcut should be applied.""" + return self.in_channels != self.out_channels + + +class ResidualBlock(IdentityBlock): + """Residual with nonlinear shortcut.""" + + def __init__( + self, + in_channels: int, + out_channels: int, + expansion: int = 1, + downsampling: int = 1, + *args, + **kwargs + ) -> None: + """Short summary. + + Args: + in_channels (int): Number of in channels. + out_channels (int): umber of out channels. + expansion (int): Expansion factor of the out channels. Defaults to 1. + downsampling (int): Downsampling factor used in stride. Defaults to 1. + *args (type): Extra arguments. + **kwargs (type): Extra key value arguments. + + """ + super().__init__(in_channels, out_channels, *args, **kwargs) + self.expansion = expansion + self.downsampling = downsampling + + self.shortcut = ( + nn.Sequential( + nn.Conv2d( + in_channels=self.in_channels, + out_channels=self.expanded_channels, + kernel_size=1, + stride=self.downsampling, + bias=False, + ), + nn.BatchNorm2d(self.expanded_channels), + ) + if self.apply_shortcut + else None + ) + + @property + def expanded_channels(self) -> int: + """Computes the expanded output channels.""" + return self.out_channels * self.expansion + + @property + def apply_shortcut(self) -> bool: + """Check if shortcut should be applied.""" + return self.in_channels != self.expanded_channels + + +class BasicBlock(ResidualBlock): + """Basic ResNet block.""" + + expansion = 1 + + def __init__(self, in_channels: int, out_channels: int, *args, **kwargs) -> None: + super().__init__(in_channels, out_channels, *args, **kwargs) + self.blocks = nn.Sequential( + conv_bn( + in_channels=self.in_channels, + out_channels=self.out_channels, + bias=False, + stride=self.downsampling, + ), + self.activation_fn, + conv_bn( + in_channels=self.out_channels, + out_channels=self.expanded_channels, + bias=False, + ), + ) + + +class BottleNeckBlock(ResidualBlock): + """Bottleneck block to increase depth while minimizing parameter size.""" + + expansion = 4 + + def __init__(self, in_channels: int, out_channels: int, *args, **kwargs) -> None: + super().__init__(in_channels, out_channels, *args, **kwargs) + self.blocks = nn.Sequential( + conv_bn( + in_channels=self.in_channels, + out_channels=self.out_channels, + kernel_size=1, + ), + self.activation_fn, + conv_bn( + in_channels=self.out_channels, + out_channels=self.out_channels, + kernel_size=3, + stride=self.downsampling, + ), + self.activation_fn, + conv_bn( + in_channels=self.out_channels, + out_channels=self.expanded_channels, + kernel_size=1, + ), + ) + + +class ResidualLayer(nn.Module): + """ResNet layer.""" + + def __init__( + self, + in_channels: int, + out_channels: int, + block: BasicBlock = BasicBlock, + num_blocks: int = 1, + *args, + **kwargs + ) -> None: + super().__init__() + downsampling = 2 if in_channels != out_channels else 1 + self.blocks = nn.Sequential( + block( + in_channels, out_channels, *args, **kwargs, downsampling=downsampling + ), + *[ + block( + out_channels * block.expansion, + out_channels, + downsampling=1, + *args, + **kwargs + ) + for _ in range(num_blocks - 1) + ] + ) + + def forward(self, x: Tensor) -> Tensor: + """Forward pass.""" + x = self.blocks(x) + return x + + +class ResidualNetworkEncoder(nn.Module): + """Encoder network.""" + + def __init__( + self, + in_channels: int = 1, + block_sizes: Union[int, List[int]] = (32, 64), + depths: Union[int, List[int]] = (2, 2), + activation: str = "relu", + block: Type[nn.Module] = BasicBlock, + levels: int = 1, + *args, + **kwargs + ) -> None: + super().__init__() + self.block_sizes = ( + block_sizes if isinstance(block_sizes, list) else [block_sizes] * levels + ) + self.depths = depths if isinstance(depths, list) else [depths] * levels + self.activation = activation + self.gate = nn.Sequential( + nn.Conv2d( + in_channels=in_channels, + out_channels=self.block_sizes[0], + kernel_size=7, + stride=2, + padding=1, + bias=False, + ), + nn.BatchNorm2d(self.block_sizes[0]), + activation_function(self.activation), + # nn.MaxPool2d(kernel_size=2, stride=2, padding=1), + ) + + self.blocks = self._configure_blocks(block) + + def _configure_blocks( + self, block: Type[nn.Module], *args, **kwargs + ) -> nn.Sequential: + channels = [self.block_sizes[0]] + list( + zip(self.block_sizes, self.block_sizes[1:]) + ) + blocks = [ + ResidualLayer( + in_channels=channels[0], + out_channels=channels[0], + num_blocks=self.depths[0], + block=block, + activation=self.activation, + *args, + **kwargs + ) + ] + blocks += [ + ResidualLayer( + in_channels=in_channels * block.expansion, + out_channels=out_channels, + num_blocks=num_blocks, + block=block, + activation=self.activation, + *args, + **kwargs + ) + for (in_channels, out_channels), num_blocks in zip( + channels[1:], self.depths[1:] + ) + ] + + return nn.Sequential(*blocks) + + def forward(self, x: Tensor) -> Tensor: + """Forward pass.""" + # If batch dimenstion is missing, it needs to be added. + if len(x.shape) == 3: + x = x.unsqueeze(0) + x = self.gate(x) + x = self.blocks(x) + return x + + +class ResidualNetworkDecoder(nn.Module): + """Classification head.""" + + def __init__(self, in_features: int, num_classes: int = 80) -> None: + super().__init__() + self.decoder = nn.Sequential( + Reduce("b c h w -> b c", "mean"), + nn.Linear(in_features=in_features, out_features=num_classes), + ) + + def forward(self, x: Tensor) -> Tensor: + """Forward pass.""" + return self.decoder(x) + + +class ResidualNetwork(nn.Module): + """Full residual network.""" + + def __init__(self, in_channels: int, num_classes: int, *args, **kwargs) -> None: + super().__init__() + self.encoder = ResidualNetworkEncoder(in_channels, *args, **kwargs) + self.decoder = ResidualNetworkDecoder( + in_features=self.encoder.blocks[-1].blocks[-1].expanded_channels, + num_classes=num_classes, + ) + + def forward(self, x: Tensor) -> Tensor: + """Forward pass.""" + x = self.encoder(x) + x = self.decoder(x) + return x diff --git a/text_recognizer/networks/stn.py b/text_recognizer/networks/stn.py new file mode 100644 index 0000000..e9d216f --- /dev/null +++ b/text_recognizer/networks/stn.py @@ -0,0 +1,44 @@ +"""Spatial Transformer Network.""" + +from einops.layers.torch import Rearrange +import torch +from torch import nn +from torch import Tensor +import torch.nn.functional as F + + +class SpatialTransformerNetwork(nn.Module): + """A network with differentiable attention. + + Network that learns how to perform spatial transformations on the input image in order to enhance the + geometric invariance of the model. + + # TODO: add arguments to make it more general. + + """ + + def __init__(self) -> None: + super().__init__() + # Initialize the identity transformation and its weights and biases. + linear = nn.Linear(32, 3 * 2) + linear.weight.data.zero_() + linear.bias.data.copy_(torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float)) + + self.theta = nn.Sequential( + nn.Conv2d(in_channels=1, out_channels=8, kernel_size=7), + nn.MaxPool2d(kernel_size=2, stride=2), + nn.ReLU(inplace=True), + nn.Conv2d(in_channels=8, out_channels=10, kernel_size=5), + nn.MaxPool2d(kernel_size=2, stride=2), + nn.ReLU(inplace=True), + Rearrange("b c h w -> b (c h w)", h=3, w=3), + nn.Linear(in_features=10 * 3 * 3, out_features=32), + nn.ReLU(inplace=True), + linear, + Rearrange("b (row col) -> b row col", row=2, col=3), + ) + + def forward(self, x: Tensor) -> Tensor: + """The spatial transformation.""" + grid = F.affine_grid(self.theta(x), x.shape) + return F.grid_sample(x, grid, align_corners=False) diff --git a/text_recognizer/networks/transducer/__init__.py b/text_recognizer/networks/transducer/__init__.py new file mode 100644 index 0000000..8c19a01 --- /dev/null +++ b/text_recognizer/networks/transducer/__init__.py @@ -0,0 +1,3 @@ +"""Transducer modules.""" +from .tds_conv import TDS2d +from .transducer import load_transducer_loss, Transducer diff --git a/text_recognizer/networks/transducer/tds_conv.py b/text_recognizer/networks/transducer/tds_conv.py new file mode 100644 index 0000000..5fb8ba9 --- /dev/null +++ b/text_recognizer/networks/transducer/tds_conv.py @@ -0,0 +1,208 @@ +"""Time-Depth Separable Convolutions. + +References: + https://arxiv.org/abs/1904.02619 + https://arxiv.org/pdf/2010.01003.pdf + +Code stolen from: + https://github.com/facebookresearch/gtn_applications + + +""" +from typing import List, Tuple + +from einops import rearrange +import gtn +import numpy as np +import torch +from torch import nn +from torch import Tensor + + +class TDSBlock2d(nn.Module): + """Internal block of a 2D TDSC network.""" + + def __init__( + self, + in_channels: int, + img_depth: int, + kernel_size: Tuple[int], + dropout_rate: float, + ) -> None: + super().__init__() + + self.in_channels = in_channels + self.img_depth = img_depth + self.kernel_size = kernel_size + self.dropout_rate = dropout_rate + self.fc_dim = in_channels * img_depth + + # Network placeholders. + self.conv = None + self.mlp = None + self.instance_norm = None + + self._build_block() + + def _build_block(self) -> None: + # Convolutional block. + self.conv = nn.Sequential( + nn.Conv3d( + in_channels=self.in_channels, + out_channels=self.in_channels, + kernel_size=(1, self.kernel_size[0], self.kernel_size[1]), + padding=(0, self.kernel_size[0] // 2, self.kernel_size[1] // 2), + ), + nn.ReLU(inplace=True), + nn.Dropout(self.dropout_rate), + ) + + # MLP block. + self.mlp = nn.Sequential( + nn.Linear(self.fc_dim, self.fc_dim), + nn.ReLU(inplace=True), + nn.Dropout(self.dropout_rate), + nn.Linear(self.fc_dim, self.fc_dim), + nn.Dropout(self.dropout_rate), + ) + + # Instance norm. + self.instance_norm = nn.ModuleList( + [ + nn.InstanceNorm2d(self.fc_dim, affine=True), + nn.InstanceNorm2d(self.fc_dim, affine=True), + ] + ) + + def forward(self, x: Tensor) -> Tensor: + """Forward pass. + + Args: + x (Tensor): Input tensor. + + Shape: + - x: :math: `(B, CD, H, W)` + + Returns: + Tensor: Output tensor. + + """ + B, CD, H, W = x.shape + C, D = self.in_channels, self.img_depth + residual = x + x = rearrange(x, "b (c d) h w -> b c d h w", c=C, d=D) + x = self.conv(x) + x = rearrange(x, "b c d h w -> b (c d) h w") + x += residual + + x = self.instance_norm[0](x) + + x = self.mlp(x.transpose(1, 3)).transpose(1, 3) + x + x + self.instance_norm[1](x) + + # Output shape: [B, CD, H, W] + return x + + +class TDS2d(nn.Module): + """TDS Netowrk. + + Structure is the following: + Downsample layer -> TDS2d group -> ... -> Linear output layer + + + """ + + def __init__( + self, + input_dim: int, + output_dim: int, + depth: int, + tds_groups: Tuple[int], + kernel_size: Tuple[int], + dropout_rate: float, + in_channels: int = 1, + ) -> None: + super().__init__() + + self.in_channels = in_channels + self.input_dim = input_dim + self.output_dim = output_dim + self.depth = depth + self.tds_groups = tds_groups + self.kernel_size = kernel_size + self.dropout_rate = dropout_rate + + self.tds = None + self.fc = None + + self._build_network() + + def _build_network(self) -> None: + in_channels = self.in_channels + modules = [] + stride_h = np.prod([grp["stride"][0] for grp in self.tds_groups]) + if self.input_dim % stride_h: + raise RuntimeError( + f"Image height not divisible by total stride {stride_h}." + ) + + for tds_group in self.tds_groups: + # Add downsample layer. + out_channels = self.depth * tds_group["channels"] + modules.extend( + [ + nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=self.kernel_size, + padding=(self.kernel_size[0] // 2, self.kernel_size[1] // 2), + stride=tds_group["stride"], + ), + nn.ReLU(inplace=True), + nn.Dropout(self.dropout_rate), + nn.InstanceNorm2d(out_channels, affine=True), + ] + ) + + for _ in range(tds_group["num_blocks"]): + modules.append( + TDSBlock2d( + tds_group["channels"], + self.depth, + self.kernel_size, + self.dropout_rate, + ) + ) + + in_channels = out_channels + + self.tds = nn.Sequential(*modules) + self.fc = nn.Linear(in_channels * self.input_dim // stride_h, self.output_dim) + + def forward(self, x: Tensor) -> Tensor: + """Forward pass. + + Args: + x (Tensor): Input tensor. + + Shape: + - x: :math: `(B, H, W)` + + Returns: + Tensor: Output tensor. + + """ + if len(x.shape) == 4: + x = x.squeeze(1) # Squeeze the channel dim away. + + B, H, W = x.shape + x = rearrange( + x, "b (h1 h2) w -> b h1 h2 w", h1=self.in_channels, h2=H // self.in_channels + ) + x = self.tds(x) + + # x shape: [B, C, H, W] + x = rearrange(x, "b c h w -> b w (c h)") + + return self.fc(x) diff --git a/text_recognizer/networks/transducer/test.py b/text_recognizer/networks/transducer/test.py new file mode 100644 index 0000000..cadcecc --- /dev/null +++ b/text_recognizer/networks/transducer/test.py @@ -0,0 +1,60 @@ +import torch +from torch import nn + +from text_recognizer.networks.transducer import load_transducer_loss, Transducer +import unittest + + +class TestTransducer(unittest.TestCase): + def test_viterbi(self): + T = 5 + N = 4 + B = 2 + + # fmt: off + emissions1 = torch.tensor(( + 0, 4, 0, 1, + 0, 2, 1, 1, + 0, 0, 0, 2, + 0, 0, 0, 2, + 8, 0, 0, 2, + ), + dtype=torch.float, + ).view(T, N) + emissions2 = torch.tensor(( + 0, 2, 1, 7, + 0, 2, 9, 1, + 0, 0, 0, 2, + 0, 0, 5, 2, + 1, 0, 0, 2, + ), + dtype=torch.float, + ).view(T, N) + # fmt: on + + # Test without blank: + labels = [[1, 3, 0], [3, 2, 3, 2, 3]] + transducer = Transducer( + tokens=["a", "b", "c", "d"], + graphemes_to_idx={"a": 0, "b": 1, "c": 2, "d": 3}, + blank="none", + ) + emissions = torch.stack([emissions1, emissions2], dim=0) + predictions = transducer.viterbi(emissions) + self.assertEqual([p.tolist() for p in predictions], labels) + + # Test with blank without repeats: + labels = [[1, 0], [2, 2]] + transducer = Transducer( + tokens=["a", "b", "c"], + graphemes_to_idx={"a": 0, "b": 1, "c": 2}, + blank="optional", + allow_repeats=False, + ) + emissions = torch.stack([emissions1, emissions2], dim=0) + predictions = transducer.viterbi(emissions) + self.assertEqual([p.tolist() for p in predictions], labels) + + +if __name__ == "__main__": + unittest.main() diff --git a/text_recognizer/networks/transducer/transducer.py b/text_recognizer/networks/transducer/transducer.py new file mode 100644 index 0000000..d7e3d08 --- /dev/null +++ b/text_recognizer/networks/transducer/transducer.py @@ -0,0 +1,410 @@ +"""Transducer and the transducer loss function.py + +Stolen from: + https://github.com/facebookresearch/gtn_applications/blob/master/transducer.py + +""" +from pathlib import Path +import itertools +from typing import Dict, List, Optional, Union, Tuple + +from loguru import logger +import gtn +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.datasets.iam_preprocessor import Preprocessor + + +def make_scalar_graph(weight) -> gtn.Graph: + scalar = gtn.Graph() + scalar.add_node(True) + scalar.add_node(False, True) + scalar.add_arc(0, 1, 0, 0, weight) + return scalar + + +def make_chain_graph(sequence) -> gtn.Graph: + graph = gtn.Graph(False) + graph.add_node(True) + for i, s in enumerate(sequence): + graph.add_node(False, i == (len(sequence) - 1)) + graph.add_arc(i, i + 1, s) + return graph + + +def make_transitions_graph( + ngram: int, num_tokens: int, calc_grad: bool = False +) -> gtn.Graph: + transitions = gtn.Graph(calc_grad) + transitions.add_node(True, ngram == 1) + + state_map = {(): 0} + + # First build transitions which include : + for n in range(1, ngram): + for state in itertools.product(range(num_tokens), repeat=n): + in_idx = state_map[state[:-1]] + out_idx = transitions.add_node(False, ngram == 1) + state_map[state] = out_idx + transitions.add_arc(in_idx, out_idx, state[-1]) + + for state in itertools.product(range(num_tokens), repeat=ngram): + state_idx = state_map[state[:-1]] + new_state_idx = state_map[state[1:]] + # p(state[-1] | state[:-1]) + transitions.add_arc(state_idx, new_state_idx, state[-1]) + + if ngram > 1: + # Build transitions which include : + end_idx = transitions.add_node(False, True) + for in_idx in range(end_idx): + transitions.add_arc(in_idx, end_idx, gtn.epsilon) + + return transitions + + +def make_lexicon_graph(word_pieces: List, graphemes_to_idx: Dict) -> gtn.Graph: + """Constructs a graph which transduces letters to word pieces.""" + graph = gtn.Graph(False) + graph.add_node(True, True) + for i, wp in enumerate(word_pieces): + prev = 0 + for l in wp[:-1]: + n = graph.add_node() + graph.add_arc(prev, n, graphemes_to_idx[l], gtn.epsilon) + prev = n + graph.add_arc(prev, 0, graphemes_to_idx[wp[-1]], i) + graph.arc_sort() + return graph + + +def make_token_graph( + token_list: List, blank: str = "none", allow_repeats: bool = True +) -> gtn.Graph: + """Constructs a graph with all the individual token transition models.""" + if not allow_repeats and blank != "optional": + raise ValueError("Must use blank='optional' if disallowing repeats.") + + ntoks = len(token_list) + graph = gtn.Graph(False) + + # Creating nodes + graph.add_node(True, True) + for i in range(ntoks): + # We can consume one or more consecutive word + # pieces for each emission: + # E.g. [ab, ab, ab] transduces to [ab] + graph.add_node(False, blank != "forced") + + if blank != "none": + graph.add_node() + + # Creating arcs + if blank != "none": + # Blank index is assumed to be last (ntoks) + graph.add_arc(0, ntoks + 1, ntoks, gtn.epsilon) + graph.add_arc(ntoks + 1, 0, gtn.epsilon) + + for i in range(ntoks): + graph.add_arc((ntoks + 1) if blank == "forced" else 0, i + 1, i) + graph.add_arc(i + 1, i + 1, i, gtn.epsilon) + + if allow_repeats: + if blank == "forced": + # Allow transitions from token to blank only + graph.add_arc(i + 1, ntoks + 1, ntoks, gtn.epsilon) + else: + # Allow transition from token to blank and all other tokens + graph.add_arc(i + 1, 0, gtn.epsilon) + + else: + # allow transitions to blank and all other tokens except the same token + graph.add_arc(i + 1, ntoks + 1, ntoks, gtn.epsilon) + for j in range(ntoks): + if i != j: + graph.add_arc(i + 1, j + 1, j, j) + + return graph + + +class TransducerLossFunction(torch.autograd.Function): + @staticmethod + def forward( + ctx, + inputs, + targets, + tokens, + lexicon, + transition_params=None, + transitions=None, + reduction="none", + ) -> Tensor: + B, T, C = inputs.shape + + losses = [None] * B + emissions_graphs = [None] * B + + if transitions is not None: + if transition_params is None: + raise ValueError("Specified transitions, but not transition params.") + + cpu_data = transition_params.cpu().contiguous() + transitions.set_weights(cpu_data.data_ptr()) + transitions.calc_grad = transition_params.requires_grad + transitions.zero_grad() + + def process(b: int) -> None: + # Create emission graph: + emissions = gtn.linear_graph(T, C, inputs.requires_grad) + cpu_data = inputs[b].cpu().contiguous() + emissions.set_weights(cpu_data.data_ptr()) + target = make_chain_graph(targets[b]) + target.arc_sort(True) + + # Create token tot grapheme decomposition graph + tokens_target = gtn.remove(gtn.project_output(gtn.compose(target, lexicon))) + tokens_target.arc_sort() + + # Create alignment graph: + aligments = gtn.project_input( + gtn.remove(gtn.compose(tokens, tokens_target)) + ) + aligments.arc_sort() + + # Add transitions scores: + if transitions is not None: + aligments = gtn.intersect(transitions, aligments) + aligments.arc_sort() + + loss = gtn.forward_score(gtn.intersect(emissions, aligments)) + + # Normalize if needed: + if transitions is not None: + norm = gtn.forward_score(gtn.intersect(emissions, transitions)) + loss = gtn.subtract(loss, norm) + + losses[b] = gtn.negate(loss) + + # Save for backward: + if emissions.calc_grad: + emissions_graphs[b] = emissions + + gtn.parallel_for(process, range(B)) + + ctx.graphs = (losses, emissions_graphs, transitions) + ctx.input_shape = inputs.shape + + # Optionally reduce by target length + if reduction == "mean": + scales = [(1 / len(t) if len(t) > 0 else 1.0) for t in targets] + else: + scales = [1.0] * B + + ctx.scales = scales + + loss = torch.tensor([l.item() * s for l, s in zip(losses, scales)]) + return torch.mean(loss.to(inputs.device)) + + @staticmethod + def backward(ctx, grad_output) -> Tuple: + losses, emissions_graphs, transitions = ctx.graphs + scales = ctx.scales + + B, T, C = ctx.input_shape + calc_emissions = ctx.needs_input_grad[0] + input_grad = torch.empty((B, T, C)) if calc_emissions else None + + def process(b: int) -> None: + scale = make_scalar_graph(scales[b]) + gtn.backward(losses[b], scale) + emissions = emissions_graphs[b] + if calc_emissions: + grad = emissions.grad().weights_to_numpy() + input_grad[b] = torch.tensor(grad).view(1, T, C) + + gtn.parallel_for(process, range(B)) + + if calc_emissions: + input_grad = input_grad.to(grad_output.device) + input_grad *= grad_output / B + + if ctx.needs_input_grad[4]: + grad = transitions.grad().weights_to_numpy() + transition_grad = torch.tensor(grad).to(grad_output.device) + transition_grad *= grad_output / B + else: + transition_grad = None + + return ( + input_grad, + None, # target + None, # tokens + None, # lexicon + transition_grad, # transition params + None, # transitions graph + None, + ) + + +TransducerLoss = TransducerLossFunction.apply + + +class Transducer(nn.Module): + def __init__( + self, + tokens: List, + graphemes_to_idx: Dict, + ngram: int = 0, + transitions: str = None, + blank: str = "none", + allow_repeats: bool = True, + reduction: str = "none", + ) -> None: + """A generic transducer loss function. + + Args: + tokens (List) : A list of iterable objects (e.g. strings, tuples, etc) + representing the output tokens of the model (e.g. letters, + word-pieces, words). For example ["a", "b", "ab", "ba", "aba"] + could be a list of sub-word tokens. + graphemes_to_idx (dict) : A dictionary mapping grapheme units (e.g. + "a", "b", ..) to their corresponding integer index. + ngram (int) : Order of the token-level transition model. If `ngram=0` + then no transition model is used. + blank (string) : Specifies the usage of blank token + 'none' - do not use blank token + 'optional' - allow an optional blank inbetween tokens + 'forced' - force a blank inbetween tokens (also referred to as garbage token) + allow_repeats (boolean) : If false, then we don't allow paths with + consecutive tokens in the alignment graph. This keeps the graph + unambiguous in the sense that the same input cannot transduce to + different outputs. + """ + super().__init__() + if blank not in ["optional", "forced", "none"]: + raise ValueError( + "Invalid value specified for blank. Must be in ['optional', 'forced', 'none']" + ) + self.tokens = make_token_graph(tokens, blank=blank, allow_repeats=allow_repeats) + self.lexicon = make_lexicon_graph(tokens, graphemes_to_idx) + self.ngram = ngram + if ngram > 0 and transitions is not None: + raise ValueError("Only one of ngram and transitions may be specified") + + if ngram > 0: + transitions = make_transitions_graph( + ngram, len(tokens) + int(blank != "none"), True + ) + + if transitions is not None: + self.transitions = transitions + self.transitions.arc_sort() + self.transitions_params = nn.Parameter( + torch.zeros(self.transitions.num_arcs()) + ) + else: + self.transitions = None + self.transitions_params = None + self.reduction = reduction + + def forward(self, inputs: Tensor, targets: Tensor) -> TransducerLoss: + TransducerLoss( + inputs, + targets, + self.tokens, + self.lexicon, + self.transitions_params, + self.transitions, + self.reduction, + ) + + def viterbi(self, outputs: Tensor) -> List[Tensor]: + B, T, C = outputs.shape + + if self.transitions is not None: + cpu_data = self.transition_params.cpu().contiguous() + self.transitions.set_weights(cpu_data.data_ptr()) + self.transitions.calc_grad = False + + self.tokens.arc_sort() + + paths = [None] * B + + def process(b: int) -> None: + emissions = gtn.linear_graph(T, C, False) + cpu_data = outputs[b].cpu().contiguous() + emissions.set_weights(cpu_data.data_ptr()) + + if self.transitions is not None: + full_graph = gtn.intersect(emissions, self.transitions) + else: + full_graph = emissions + + # Find the best path and remove back-off arcs: + path = gtn.remove(gtn.viterbi_path(full_graph)) + + # Left compose the viterbi path with the "aligment to token" + # transducer to get the outputs: + path = gtn.compose(path, self.tokens) + + # When there are ambiguous paths (allow_repeats is true), we take + # the shortest: + path = gtn.viterbi_path(path) + path = gtn.remove(gtn.project_output(path)) + paths[b] = path.labels_to_list() + + gtn.parallel_for(process, range(B)) + predictions = [torch.IntTensor(path) for path in paths] + return predictions + + +def load_transducer_loss( + num_features: int, + ngram: int, + tokens: str, + lexicon: str, + transitions: str, + blank: str, + allow_repeats: bool, + prepend_wordsep: bool = False, + use_words: bool = False, + data_dir: Optional[Union[str, Path]] = None, + reduction: str = "mean", +) -> Tuple[Transducer, int]: + if data_dir is None: + data_dir = ( + Path(__file__).resolve().parents[4] / "data" / "raw" / "iam" / "iamdb" + ) + logger.debug(f"Using data dir: {data_dir}") + if not data_dir.exists(): + raise RuntimeError(f"Could not locate iamdb directory at {data_dir}") + else: + data_dir = Path(data_dir) + processed_path = ( + Path(__file__).resolve().parents[4] / "data" / "processed" / "iam_lines" + ) + tokens_path = processed_path / tokens + lexicon_path = processed_path / lexicon + + if transitions is not None: + transitions = gtn.load(str(processed_path / transitions)) + + preprocessor = Preprocessor( + data_dir, num_features, tokens_path, lexicon_path, use_words, prepend_wordsep, + ) + + num_tokens = preprocessor.num_tokens + + criterion = Transducer( + preprocessor.tokens, + preprocessor.graphemes_to_index, + ngram=ngram, + transitions=transitions, + blank=blank, + allow_repeats=allow_repeats, + reduction=reduction, + ) + + return criterion, num_tokens + int(blank != "none") diff --git a/text_recognizer/networks/transformer/__init__.py b/text_recognizer/networks/transformer/__init__.py new file mode 100644 index 0000000..9febc88 --- /dev/null +++ b/text_recognizer/networks/transformer/__init__.py @@ -0,0 +1,3 @@ +"""Transformer modules.""" +from .positional_encoding import PositionalEncoding +from .transformer import Decoder, Encoder, EncoderLayer, Transformer diff --git a/text_recognizer/networks/transformer/attention.py b/text_recognizer/networks/transformer/attention.py new file mode 100644 index 0000000..cce1ecc --- /dev/null +++ b/text_recognizer/networks/transformer/attention.py @@ -0,0 +1,93 @@ +"""Implementes the attention module for the transformer.""" +from typing import Optional, Tuple + +from einops import rearrange +import numpy as np +import torch +from torch import nn +from torch import Tensor + + +class MultiHeadAttention(nn.Module): + """Implementation of multihead attention.""" + + def __init__( + self, hidden_dim: int, num_heads: int = 8, dropout_rate: float = 0.0 + ) -> None: + super().__init__() + self.hidden_dim = hidden_dim + self.num_heads = num_heads + self.fc_q = nn.Linear( + in_features=hidden_dim, out_features=hidden_dim, bias=False + ) + self.fc_k = nn.Linear( + in_features=hidden_dim, out_features=hidden_dim, bias=False + ) + self.fc_v = nn.Linear( + in_features=hidden_dim, out_features=hidden_dim, bias=False + ) + self.fc_out = nn.Linear(in_features=hidden_dim, out_features=hidden_dim) + + self._init_weights() + + self.dropout = nn.Dropout(p=dropout_rate) + + def _init_weights(self) -> None: + nn.init.normal_( + self.fc_q.weight, + mean=0, + std=np.sqrt(self.hidden_dim + int(self.hidden_dim / self.num_heads)), + ) + nn.init.normal_( + self.fc_k.weight, + mean=0, + std=np.sqrt(self.hidden_dim + int(self.hidden_dim / self.num_heads)), + ) + nn.init.normal_( + self.fc_v.weight, + mean=0, + std=np.sqrt(self.hidden_dim + int(self.hidden_dim / self.num_heads)), + ) + nn.init.xavier_normal_(self.fc_out.weight) + + def scaled_dot_product_attention( + self, query: Tensor, key: Tensor, value: Tensor, mask: Optional[Tensor] = None + ) -> Tensor: + """Calculates the scaled dot product attention.""" + + # Compute the energy. + energy = torch.einsum("bhlk,bhtk->bhlt", [query, key]) / np.sqrt( + query.shape[-1] + ) + + # If we have a mask for padding some inputs. + if mask is not None: + energy = energy.masked_fill(mask == 0, -np.inf) + + # Compute the attention from the energy. + attention = torch.softmax(energy, dim=3) + + out = torch.einsum("bhlt,bhtv->bhlv", [attention, value]) + out = rearrange(out, "b head l v -> b l (head v)") + return out, attention + + def forward( + self, query: Tensor, key: Tensor, value: Tensor, mask: Optional[Tensor] = None + ) -> Tuple[Tensor, Tensor]: + """Forward pass for computing the multihead attention.""" + # Get the query, key, and value tensor. + query = rearrange( + self.fc_q(query), "b l (head k) -> b head l k", head=self.num_heads + ) + key = rearrange( + self.fc_k(key), "b t (head k) -> b head t k", head=self.num_heads + ) + value = rearrange( + self.fc_v(value), "b t (head v) -> b head t v", head=self.num_heads + ) + + out, attention = self.scaled_dot_product_attention(query, key, value, mask) + + out = self.fc_out(out) + out = self.dropout(out) + return out, attention diff --git a/text_recognizer/networks/transformer/positional_encoding.py b/text_recognizer/networks/transformer/positional_encoding.py new file mode 100644 index 0000000..1ba5537 --- /dev/null +++ b/text_recognizer/networks/transformer/positional_encoding.py @@ -0,0 +1,32 @@ +"""A positional encoding for the image features, as the transformer has no notation of the order of the sequence.""" +import numpy as np +import torch +from torch import nn +from torch import Tensor + + +class PositionalEncoding(nn.Module): + """Encodes a sense of distance or time for transformer networks.""" + + def __init__( + self, hidden_dim: int, dropout_rate: float, max_len: int = 1000 + ) -> None: + super().__init__() + self.dropout = nn.Dropout(p=dropout_rate) + self.max_len = max_len + + pe = torch.zeros(max_len, hidden_dim) + position = torch.arange(0, max_len).unsqueeze(1) + div_term = torch.exp( + torch.arange(0, hidden_dim, 2) * -(np.log(10000.0) / hidden_dim) + ) + + pe[:, 0::2] = torch.sin(position * div_term) + pe[:, 1::2] = torch.cos(position * div_term) + pe = pe.unsqueeze(0) + self.register_buffer("pe", pe) + + def forward(self, x: Tensor) -> Tensor: + """Encodes the tensor with a postional embedding.""" + x = x + self.pe[:, : x.shape[1]] + return self.dropout(x) diff --git a/text_recognizer/networks/transformer/transformer.py b/text_recognizer/networks/transformer/transformer.py new file mode 100644 index 0000000..dd180c4 --- /dev/null +++ b/text_recognizer/networks/transformer/transformer.py @@ -0,0 +1,264 @@ +"""Transfomer module.""" +import copy +from typing import Dict, Optional, Type, Union + +import numpy as np +import torch +from torch import nn +from torch import Tensor +import torch.nn.functional as F + +from text_recognizer.networks.transformer.attention import MultiHeadAttention +from text_recognizer.networks.util import activation_function + + +class GEGLU(nn.Module): + """GLU activation for improving feedforward activations.""" + + def __init__(self, dim_in: int, dim_out: int) -> None: + super().__init__() + self.proj = nn.Linear(dim_in, dim_out * 2) + + def forward(self, x: Tensor) -> Tensor: + """Forward propagation.""" + x, gate = self.proj(x).chunk(2, dim=-1) + return x * F.gelu(gate) + + +def _get_clones(module: Type[nn.Module], num_layers: int) -> nn.ModuleList: + return nn.ModuleList([copy.deepcopy(module) for _ in range(num_layers)]) + + +class _IntraLayerConnection(nn.Module): + """Preforms the residual connection inside the transfomer blocks and applies layernorm.""" + + def __init__(self, dropout_rate: float, hidden_dim: int) -> None: + super().__init__() + self.norm = nn.LayerNorm(normalized_shape=hidden_dim) + self.dropout = nn.Dropout(p=dropout_rate) + + def forward(self, src: Tensor, residual: Tensor) -> Tensor: + return self.norm(self.dropout(src) + residual) + + +class _ConvolutionalLayer(nn.Module): + def __init__( + self, + hidden_dim: int, + expansion_dim: int, + dropout_rate: float, + activation: str = "relu", + ) -> None: + super().__init__() + + in_projection = ( + nn.Sequential( + nn.Linear(hidden_dim, expansion_dim), activation_function(activation) + ) + if activation != "glu" + else GEGLU(hidden_dim, expansion_dim) + ) + + self.layer = nn.Sequential( + in_projection, + nn.Dropout(p=dropout_rate), + nn.Linear(in_features=expansion_dim, out_features=hidden_dim), + ) + + def forward(self, x: Tensor) -> Tensor: + return self.layer(x) + + +class EncoderLayer(nn.Module): + """Transfomer encoding layer.""" + + def __init__( + self, + hidden_dim: int, + num_heads: int, + expansion_dim: int, + dropout_rate: float, + activation: str = "relu", + ) -> None: + super().__init__() + self.self_attention = MultiHeadAttention(hidden_dim, num_heads, dropout_rate) + self.cnn = _ConvolutionalLayer( + hidden_dim, expansion_dim, dropout_rate, activation + ) + self.block1 = _IntraLayerConnection(dropout_rate, hidden_dim) + self.block2 = _IntraLayerConnection(dropout_rate, hidden_dim) + + def forward(self, src: Tensor, mask: Optional[Tensor] = None) -> Tensor: + """Forward pass through the encoder.""" + # First block. + # Multi head attention. + out, _ = self.self_attention(src, src, src, mask) + + # Add & norm. + out = self.block1(out, src) + + # Second block. + # Apply 1D-convolution. + cnn_out = self.cnn(out) + + # Add & norm. + out = self.block2(cnn_out, out) + + return out + + +class Encoder(nn.Module): + """Transfomer encoder module.""" + + def __init__( + self, + num_layers: int, + encoder_layer: Type[nn.Module], + norm: Optional[Type[nn.Module]] = None, + ) -> None: + super().__init__() + self.layers = _get_clones(encoder_layer, num_layers) + self.norm = norm + + def forward(self, src: Tensor, src_mask: Optional[Tensor] = None) -> Tensor: + """Forward pass through all encoder layers.""" + for layer in self.layers: + src = layer(src, src_mask) + + if self.norm is not None: + src = self.norm(src) + + return src + + +class DecoderLayer(nn.Module): + """Transfomer decoder layer.""" + + def __init__( + self, + hidden_dim: int, + num_heads: int, + expansion_dim: int, + dropout_rate: float = 0.0, + activation: str = "relu", + ) -> None: + super().__init__() + self.hidden_dim = hidden_dim + self.self_attention = MultiHeadAttention(hidden_dim, num_heads, dropout_rate) + self.multihead_attention = MultiHeadAttention( + hidden_dim, num_heads, dropout_rate + ) + self.cnn = _ConvolutionalLayer( + hidden_dim, expansion_dim, dropout_rate, activation + ) + self.block1 = _IntraLayerConnection(dropout_rate, hidden_dim) + self.block2 = _IntraLayerConnection(dropout_rate, hidden_dim) + self.block3 = _IntraLayerConnection(dropout_rate, hidden_dim) + + def forward( + self, + trg: Tensor, + memory: Tensor, + trg_mask: Optional[Tensor] = None, + memory_mask: Optional[Tensor] = None, + ) -> Tensor: + """Forward pass of the layer.""" + out, _ = self.self_attention(trg, trg, trg, trg_mask) + trg = self.block1(out, trg) + + out, _ = self.multihead_attention(trg, memory, memory, memory_mask) + trg = self.block2(out, trg) + + out = self.cnn(trg) + out = self.block3(out, trg) + + return out + + +class Decoder(nn.Module): + """Transfomer decoder module.""" + + def __init__( + self, + decoder_layer: Type[nn.Module], + num_layers: int, + norm: Optional[Type[nn.Module]] = None, + ) -> None: + super().__init__() + self.layers = _get_clones(decoder_layer, num_layers) + self.num_layers = num_layers + self.norm = norm + + def forward( + self, + trg: Tensor, + memory: Tensor, + trg_mask: Optional[Tensor] = None, + memory_mask: Optional[Tensor] = None, + ) -> Tensor: + """Forward pass through the decoder.""" + for layer in self.layers: + trg = layer(trg, memory, trg_mask, memory_mask) + + if self.norm is not None: + trg = self.norm(trg) + + return trg + + +class Transformer(nn.Module): + """Transformer network.""" + + def __init__( + self, + num_encoder_layers: int, + num_decoder_layers: int, + hidden_dim: int, + num_heads: int, + expansion_dim: int, + dropout_rate: float, + activation: str = "relu", + ) -> None: + super().__init__() + + # Configure encoder. + encoder_norm = nn.LayerNorm(hidden_dim) + encoder_layer = EncoderLayer( + hidden_dim, num_heads, expansion_dim, dropout_rate, activation + ) + self.encoder = Encoder(num_encoder_layers, encoder_layer, encoder_norm) + + # Configure decoder. + decoder_norm = nn.LayerNorm(hidden_dim) + decoder_layer = DecoderLayer( + hidden_dim, num_heads, expansion_dim, dropout_rate, activation + ) + self.decoder = Decoder(decoder_layer, num_decoder_layers, decoder_norm) + + self._reset_parameters() + + def _reset_parameters(self) -> None: + for p in self.parameters(): + if p.dim() > 1: + nn.init.xavier_uniform_(p) + + def forward( + self, + src: Tensor, + trg: Tensor, + src_mask: Optional[Tensor] = None, + trg_mask: Optional[Tensor] = None, + memory_mask: Optional[Tensor] = None, + ) -> Tensor: + """Forward pass through the transformer.""" + if src.shape[0] != trg.shape[0]: + print(trg.shape) + raise RuntimeError("The batch size of the src and trg must be the same.") + if src.shape[2] != trg.shape[2]: + raise RuntimeError( + "The number of features for the src and trg must be the same." + ) + + memory = self.encoder(src, src_mask) + output = self.decoder(trg, memory, trg_mask, memory_mask) + return output diff --git a/text_recognizer/networks/unet.py b/text_recognizer/networks/unet.py new file mode 100644 index 0000000..510910f --- /dev/null +++ b/text_recognizer/networks/unet.py @@ -0,0 +1,255 @@ +"""UNet for segmentation.""" +from typing import List, Optional, Tuple, Union + +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.util import activation_function + + +class _ConvBlock(nn.Module): + """Modified UNet convolutional block with dilation.""" + + def __init__( + self, + channels: List[int], + activation: str, + num_groups: int, + dropout_rate: float = 0.1, + kernel_size: int = 3, + dilation: int = 1, + padding: int = 0, + ) -> None: + super().__init__() + self.channels = channels + self.dropout_rate = dropout_rate + self.kernel_size = kernel_size + self.dilation = dilation + self.padding = padding + self.num_groups = num_groups + self.activation = activation_function(activation) + self.block = self._configure_block() + self.residual_conv = nn.Sequential( + nn.Conv2d( + self.channels[0], self.channels[-1], kernel_size=3, stride=1, padding=1 + ), + self.activation, + ) + + def _configure_block(self) -> nn.Sequential: + block = [] + for i in range(len(self.channels) - 1): + block += [ + nn.Dropout(p=self.dropout_rate), + nn.GroupNorm(self.num_groups, self.channels[i]), + self.activation, + nn.Conv2d( + self.channels[i], + self.channels[i + 1], + kernel_size=self.kernel_size, + padding=self.padding, + stride=1, + dilation=self.dilation, + ), + ] + + return nn.Sequential(*block) + + def forward(self, x: Tensor) -> Tensor: + """Apply the convolutional block.""" + residual = self.residual_conv(x) + return self.block(x) + residual + + +class _DownSamplingBlock(nn.Module): + """Basic down sampling block.""" + + def __init__( + self, + channels: List[int], + activation: str, + num_groups: int, + pooling_kernel: Union[int, bool] = 2, + dropout_rate: float = 0.1, + kernel_size: int = 3, + dilation: int = 1, + padding: int = 0, + ) -> None: + super().__init__() + self.conv_block = _ConvBlock( + channels, + activation, + num_groups, + dropout_rate, + kernel_size, + dilation, + padding, + ) + self.down_sampling = nn.MaxPool2d(pooling_kernel) if pooling_kernel else None + + def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: + """Return the convolutional block output and a down sampled tensor.""" + x = self.conv_block(x) + x_down = self.down_sampling(x) if self.down_sampling is not None else x + + return x_down, x + + +class _UpSamplingBlock(nn.Module): + """The upsampling block of the UNet.""" + + def __init__( + self, + channels: List[int], + activation: str, + num_groups: int, + scale_factor: int = 2, + dropout_rate: float = 0.1, + kernel_size: int = 3, + dilation: int = 1, + padding: int = 0, + ) -> None: + super().__init__() + self.conv_block = _ConvBlock( + channels, + activation, + num_groups, + dropout_rate, + kernel_size, + dilation, + padding, + ) + self.up_sampling = nn.Upsample( + scale_factor=scale_factor, mode="bilinear", align_corners=True + ) + + def forward(self, x: Tensor, x_skip: Optional[Tensor] = None) -> Tensor: + """Apply the up sampling and convolutional block.""" + x = self.up_sampling(x) + if x_skip is not None: + x = torch.cat((x, x_skip), dim=1) + return self.conv_block(x) + + +class UNet(nn.Module): + """UNet architecture.""" + + def __init__( + self, + in_channels: int = 1, + base_channels: int = 64, + num_classes: int = 3, + depth: int = 4, + activation: str = "relu", + num_groups: int = 8, + dropout_rate: float = 0.1, + pooling_kernel: int = 2, + scale_factor: int = 2, + kernel_size: Optional[List[int]] = None, + dilation: Optional[List[int]] = None, + padding: Optional[List[int]] = None, + ) -> None: + super().__init__() + self.depth = depth + self.num_groups = num_groups + + if kernel_size is not None and dilation is not None and padding is not None: + if ( + len(kernel_size) != depth + and len(dilation) != depth + and len(padding) != depth + ): + raise RuntimeError( + "Length of convolutional parameters does not match the depth." + ) + self.kernel_size = kernel_size + self.padding = padding + self.dilation = dilation + + else: + self.kernel_size = [3] * depth + self.padding = [1] * depth + self.dilation = [1] * depth + + self.dropout_rate = dropout_rate + self.conv = nn.Conv2d( + in_channels, base_channels, kernel_size=3, stride=1, padding=1 + ) + + channels = [base_channels] + [base_channels * 2 ** i for i in range(depth)] + self.encoder_blocks = self._configure_down_sampling_blocks( + channels, activation, pooling_kernel + ) + self.decoder_blocks = self._configure_up_sampling_blocks( + channels, activation, scale_factor + ) + + self.head = nn.Conv2d(base_channels, num_classes, kernel_size=1) + + def _configure_down_sampling_blocks( + self, channels: List[int], activation: str, pooling_kernel: int + ) -> nn.ModuleList: + blocks = nn.ModuleList([]) + for i in range(len(channels) - 1): + pooling_kernel = pooling_kernel if i < self.depth - 1 else False + dropout_rate = self.dropout_rate if i < 0 else 0 + blocks += [ + _DownSamplingBlock( + [channels[i], channels[i + 1], channels[i + 1]], + activation, + self.num_groups, + pooling_kernel, + dropout_rate, + self.kernel_size[i], + self.dilation[i], + self.padding[i], + ) + ] + + return blocks + + def _configure_up_sampling_blocks( + self, channels: List[int], activation: str, scale_factor: int, + ) -> nn.ModuleList: + channels.reverse() + self.kernel_size.reverse() + self.dilation.reverse() + self.padding.reverse() + return nn.ModuleList( + [ + _UpSamplingBlock( + [channels[i] + channels[i + 1], channels[i + 1], channels[i + 1]], + activation, + self.num_groups, + scale_factor, + self.dropout_rate, + self.kernel_size[i], + self.dilation[i], + self.padding[i], + ) + for i in range(len(channels) - 2) + ] + ) + + def _encode(self, x: Tensor) -> List[Tensor]: + x_skips = [] + for block in self.encoder_blocks: + x, x_skip = block(x) + x_skips.append(x_skip) + return x_skips + + def _decode(self, x_skips: List[Tensor]) -> Tensor: + x = x_skips[-1] + for i, block in enumerate(self.decoder_blocks): + x = block(x, x_skips[-(i + 2)]) + return x + + def forward(self, x: Tensor) -> Tensor: + """Forward pass with the UNet model.""" + if len(x.shape) < 4: + x = x[(None,) * (4 - len(x.shape))] + x = self.conv(x) + x_skips = self._encode(x) + x = self._decode(x_skips) + return self.head(x) diff --git a/text_recognizer/networks/util.py b/text_recognizer/networks/util.py new file mode 100644 index 0000000..131a6b4 --- /dev/null +++ b/text_recognizer/networks/util.py @@ -0,0 +1,89 @@ +"""Miscellaneous neural network functionality.""" +import importlib +from pathlib import Path +from typing import Dict, Tuple, Type + +from einops import rearrange +from loguru import logger +import torch +from torch import nn + + +def sliding_window( + images: torch.Tensor, patch_size: Tuple[int, int], stride: Tuple[int, int] +) -> torch.Tensor: + """Creates patches of an image. + + Args: + images (torch.Tensor): A Torch tensor of a 4D image(s), i.e. (batch, channel, height, width). + patch_size (Tuple[int, int]): The size of the patches to generate, e.g. 28x28 for EMNIST. + stride (Tuple[int, int]): The stride of the sliding window. + + Returns: + torch.Tensor: A tensor with the shape (batch, patches, height, width). + + """ + unfold = nn.Unfold(kernel_size=patch_size, stride=stride) + # Preform the sliding window, unsqueeze as the channel dimesion is lost. + c = images.shape[1] + patches = unfold(images) + patches = rearrange( + patches, "b (c h w) t -> b t c h w", c=c, h=patch_size[0], w=patch_size[1], + ) + return patches + + +def activation_function(activation: str) -> Type[nn.Module]: + """Returns the callable activation function.""" + activation_fns = nn.ModuleDict( + [ + ["elu", nn.ELU(inplace=True)], + ["gelu", nn.GELU()], + ["glu", nn.GLU()], + ["leaky_relu", nn.LeakyReLU(negative_slope=1.0e-2, inplace=True)], + ["none", nn.Identity()], + ["relu", nn.ReLU(inplace=True)], + ["selu", nn.SELU(inplace=True)], + ] + ) + return activation_fns[activation.lower()] + + +def configure_backbone(backbone: str, backbone_args: Dict) -> Type[nn.Module]: + """Loads a backbone network.""" + network_module = importlib.import_module("text_recognizer.networks") + backbone_ = getattr(network_module, backbone) + + if "pretrained" in backbone_args: + logger.info("Loading pretrained backbone.") + checkpoint_file = Path(__file__).resolve().parents[2] / backbone_args.pop( + "pretrained" + ) + + # Loading state directory. + state_dict = torch.load(checkpoint_file) + network_args = state_dict["network_args"] + weights = state_dict["model_state"] + + freeze = False + if "freeze" in backbone_args and backbone_args["freeze"] is True: + backbone_args.pop("freeze") + freeze = True + network_args = backbone_args + + # Initializes the network with trained weights. + backbone = backbone_(**network_args) + backbone.load_state_dict(weights) + if freeze: + for params in backbone.parameters(): + params.requires_grad = False + else: + backbone_ = getattr(network_module, backbone) + backbone = backbone_(**backbone_args) + + if "remove_layers" in backbone_args and backbone_args["remove_layers"] is not None: + backbone = nn.Sequential( + *list(backbone.children())[:][: -backbone_args["remove_layers"]] + ) + + return backbone diff --git a/text_recognizer/networks/vit.py b/text_recognizer/networks/vit.py new file mode 100644 index 0000000..efb3701 --- /dev/null +++ b/text_recognizer/networks/vit.py @@ -0,0 +1,150 @@ +"""A Vision Transformer. + +Inspired by: +https://openreview.net/pdf?id=YicbFdNTTy + +""" +from typing import Optional, Tuple + +from einops import rearrange, repeat +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.transformer import Transformer + + +class ViT(nn.Module): + """Transfomer for image to sequence prediction.""" + + def __init__( + self, + num_encoder_layers: int, + num_decoder_layers: int, + hidden_dim: int, + vocab_size: int, + num_heads: int, + expansion_dim: int, + patch_dim: Tuple[int, int], + image_size: Tuple[int, int], + dropout_rate: float, + trg_pad_index: int, + max_len: int, + activation: str = "gelu", + ) -> None: + super().__init__() + + self.trg_pad_index = trg_pad_index + self.patch_dim = patch_dim + self.num_patches = image_size[-1] // self.patch_dim[1] + + # Encoder + self.patch_to_embedding = nn.Linear( + self.patch_dim[0] * self.patch_dim[1], hidden_dim + ) + self.cls_token = nn.Parameter(torch.randn(1, 1, hidden_dim)) + self.character_embedding = nn.Embedding(vocab_size, hidden_dim) + self.pos_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim)) + self.dropout = nn.Dropout(dropout_rate) + self._init() + + self.transformer = Transformer( + num_encoder_layers, + num_decoder_layers, + hidden_dim, + num_heads, + expansion_dim, + dropout_rate, + activation, + ) + + self.head = nn.Sequential(nn.Linear(hidden_dim, vocab_size),) + + def _init(self) -> None: + nn.init.normal_(self.character_embedding.weight, std=0.02) + # nn.init.normal_(self.pos_embedding.weight, std=0.02) + + def _create_trg_mask(self, trg: Tensor) -> Tensor: + # Move this outside the transformer. + trg_pad_mask = (trg != self.trg_pad_index)[:, None, None] + trg_len = trg.shape[1] + trg_sub_mask = torch.tril( + torch.ones((trg_len, trg_len), device=trg.device) + ).bool() + trg_mask = trg_pad_mask & trg_sub_mask + return trg_mask + + def encoder(self, src: Tensor) -> Tensor: + """Forward pass with the encoder of the transformer.""" + return self.transformer.encoder(src) + + def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor: + """Forward pass with the decoder of the transformer + classification head.""" + return self.head( + self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask) + ) + + def extract_image_features(self, src: Tensor) -> Tensor: + """Extracts image features with a backbone neural network. + + It seem like the winning idea was to swap channels and width dimension and collapse + the height dimension. The transformer is learning like a baby with this implementation!!! :D + Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D + + Args: + src (Tensor): Input tensor. + + Returns: + Tensor: A input src to the transformer. + + """ + # If batch dimension is missing, it needs to be added. + if len(src.shape) < 4: + src = src[(None,) * (4 - len(src.shape))] + + patches = rearrange( + src, + "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", + p1=self.patch_dim[0], + p2=self.patch_dim[1], + ) + + # From patches to encoded sequence. + x = self.patch_to_embedding(patches) + b, n, _ = x.shape + cls_tokens = repeat(self.cls_token, "() n d -> b n d", b=b) + x = torch.cat((cls_tokens, x), dim=1) + x += self.pos_embedding[:, : (n + 1)] + x = self.dropout(x) + + return x + + def target_embedding(self, trg: Tensor) -> Tuple[Tensor, Tensor]: + """Encodes target tensor with embedding and postion. + + Args: + trg (Tensor): Target tensor. + + Returns: + Tuple[Tensor, Tensor]: Encoded target tensor and target mask. + + """ + _, n = trg.shape + trg = self.character_embedding(trg.long()) + trg += self.pos_embedding[:, :n] + return trg + + def decode_image_features(self, h: Tensor, trg: Optional[Tensor] = None) -> Tensor: + """Takes images features from the backbone and decodes them with the transformer.""" + trg_mask = self._create_trg_mask(trg) + trg = self.target_embedding(trg) + out = self.transformer(h, trg, trg_mask=trg_mask) + + logits = self.head(out) + return logits + + def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor: + """Forward pass with CNN transfomer.""" + h = self.extract_image_features(x) + logits = self.decode_image_features(h, trg) + return logits diff --git a/text_recognizer/networks/vq_transformer.py b/text_recognizer/networks/vq_transformer.py new file mode 100644 index 0000000..c673d96 --- /dev/null +++ b/text_recognizer/networks/vq_transformer.py @@ -0,0 +1,150 @@ +"""A VQ-Transformer for image to text recognition.""" +from typing import Dict, Optional, Tuple + +from einops import rearrange, repeat +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.transformer import PositionalEncoding, Transformer +from text_recognizer.networks.util import activation_function +from text_recognizer.networks.util import configure_backbone +from text_recognizer.networks.vqvae.encoder import _ResidualBlock + + +class VQTransformer(nn.Module): + """VQ+Transfomer for image to character sequence prediction.""" + + def __init__( + self, + num_encoder_layers: int, + num_decoder_layers: int, + hidden_dim: int, + vocab_size: int, + num_heads: int, + adaptive_pool_dim: Tuple, + expansion_dim: int, + dropout_rate: float, + trg_pad_index: int, + max_len: int, + backbone: str, + backbone_args: Optional[Dict] = None, + activation: str = "gelu", + ) -> None: + super().__init__() + + # Configure vector quantized backbone. + self.backbone = configure_backbone(backbone, backbone_args) + self.conv = nn.Sequential( + nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=2), + nn.ReLU(inplace=True), + ) + + # Configure embeddings for Transformer network. + self.trg_pad_index = trg_pad_index + self.vocab_size = vocab_size + self.character_embedding = nn.Embedding(self.vocab_size, hidden_dim) + self.src_position_embedding = nn.Parameter(torch.randn(1, max_len, hidden_dim)) + self.trg_position_encoding = PositionalEncoding(hidden_dim, dropout_rate) + nn.init.normal_(self.character_embedding.weight, std=0.02) + + self.adaptive_pool = ( + nn.AdaptiveAvgPool2d((adaptive_pool_dim)) if adaptive_pool_dim else None + ) + + self.transformer = Transformer( + num_encoder_layers, + num_decoder_layers, + hidden_dim, + num_heads, + expansion_dim, + dropout_rate, + activation, + ) + + self.head = nn.Sequential(nn.Linear(hidden_dim, vocab_size),) + + def _create_trg_mask(self, trg: Tensor) -> Tensor: + # Move this outside the transformer. + trg_pad_mask = (trg != self.trg_pad_index)[:, None, None] + trg_len = trg.shape[1] + trg_sub_mask = torch.tril( + torch.ones((trg_len, trg_len), device=trg.device) + ).bool() + trg_mask = trg_pad_mask & trg_sub_mask + return trg_mask + + def encoder(self, src: Tensor) -> Tensor: + """Forward pass with the encoder of the transformer.""" + return self.transformer.encoder(src) + + def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor: + """Forward pass with the decoder of the transformer + classification head.""" + return self.head( + self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask) + ) + + def extract_image_features(self, src: Tensor) -> Tuple[Tensor, Tensor]: + """Extracts image features with a backbone neural network. + + It seem like the winning idea was to swap channels and width dimension and collapse + the height dimension. The transformer is learning like a baby with this implementation!!! :D + Ohhhh, the joy I am experiencing right now!! Bring in the beers! :D :D :D + + Args: + src (Tensor): Input tensor. + + Returns: + Tensor: The input src to the transformer and the vq loss. + + """ + # If batch dimension is missing, it needs to be added. + if len(src.shape) < 4: + src = src[(None,) * (4 - len(src.shape))] + src, vq_loss = self.backbone.encode(src) + # src = self.backbone.decoder.res_block(src) + src = self.conv(src) + + if self.adaptive_pool is not None: + src = rearrange(src, "b c h w -> b w c h") + src = self.adaptive_pool(src) + src = src.squeeze(3) + else: + src = rearrange(src, "b c h w -> b (w h) c") + + b, t, _ = src.shape + + src += self.src_position_embedding[:, :t] + + return src, vq_loss + + def target_embedding(self, trg: Tensor) -> Tensor: + """Encodes target tensor with embedding and postion. + + Args: + trg (Tensor): Target tensor. + + Returns: + Tensor: Encoded target tensor. + + """ + trg = self.character_embedding(trg.long()) + trg = self.trg_position_encoding(trg) + return trg + + def decode_image_features( + self, image_features: Tensor, trg: Optional[Tensor] = None + ) -> Tensor: + """Takes images features from the backbone and decodes them with the transformer.""" + trg_mask = self._create_trg_mask(trg) + trg = self.target_embedding(trg) + out = self.transformer(image_features, trg, trg_mask=trg_mask) + + logits = self.head(out) + return logits + + def forward(self, x: Tensor, trg: Optional[Tensor] = None) -> Tensor: + """Forward pass with CNN transfomer.""" + image_features, vq_loss = self.extract_image_features(x) + logits = self.decode_image_features(image_features, trg) + return logits, vq_loss diff --git a/text_recognizer/networks/vqvae/__init__.py b/text_recognizer/networks/vqvae/__init__.py new file mode 100644 index 0000000..763953c --- /dev/null +++ b/text_recognizer/networks/vqvae/__init__.py @@ -0,0 +1,5 @@ +"""VQ-VAE module.""" +from .decoder import Decoder +from .encoder import Encoder +from .vector_quantizer import VectorQuantizer +from .vqvae import VQVAE diff --git a/text_recognizer/networks/vqvae/decoder.py b/text_recognizer/networks/vqvae/decoder.py new file mode 100644 index 0000000..8847aba --- /dev/null +++ b/text_recognizer/networks/vqvae/decoder.py @@ -0,0 +1,133 @@ +"""CNN decoder for the VQ-VAE.""" + +from typing import List, Optional, Tuple, Type + +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.util import activation_function +from text_recognizer.networks.vqvae.encoder import _ResidualBlock + + +class Decoder(nn.Module): + """A CNN encoder network.""" + + def __init__( + self, + channels: List[int], + kernel_sizes: List[int], + strides: List[int], + num_residual_layers: int, + embedding_dim: int, + upsampling: Optional[List[List[int]]] = None, + activation: str = "leaky_relu", + dropout_rate: float = 0.0, + ) -> None: + super().__init__() + + if dropout_rate: + if activation == "selu": + dropout = nn.AlphaDropout(p=dropout_rate) + else: + dropout = nn.Dropout(p=dropout_rate) + else: + dropout = None + + self.upsampling = upsampling + + self.res_block = nn.ModuleList([]) + self.upsampling_block = nn.ModuleList([]) + + self.embedding_dim = embedding_dim + activation = activation_function(activation) + + # Configure encoder. + self.decoder = self._build_decoder( + channels, kernel_sizes, strides, num_residual_layers, activation, dropout, + ) + + def _build_decompression_block( + self, + in_channels: int, + channels: int, + kernel_sizes: List[int], + strides: List[int], + activation: Type[nn.Module], + dropout: Optional[Type[nn.Module]], + ) -> nn.ModuleList: + modules = nn.ModuleList([]) + configuration = zip(channels, kernel_sizes, strides) + for i, (out_channels, kernel_size, stride) in enumerate(configuration): + modules.append( + nn.Sequential( + nn.ConvTranspose2d( + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=1, + ), + activation, + ) + ) + + if i < len(self.upsampling): + modules.append(nn.Upsample(size=self.upsampling[i]),) + + if dropout is not None: + modules.append(dropout) + + in_channels = out_channels + + modules.extend( + nn.Sequential( + nn.ConvTranspose2d( + in_channels, 1, kernel_size=kernel_size, stride=stride, padding=1 + ), + nn.Tanh(), + ) + ) + + return modules + + def _build_decoder( + self, + channels: int, + kernel_sizes: List[int], + strides: List[int], + num_residual_layers: int, + activation: Type[nn.Module], + dropout: Optional[Type[nn.Module]], + ) -> nn.Sequential: + + self.res_block.append( + nn.Conv2d(self.embedding_dim, channels[0], kernel_size=1, stride=1,) + ) + + # Bottleneck module. + self.res_block.extend( + nn.ModuleList( + [ + _ResidualBlock(channels[0], channels[0], dropout) + for i in range(num_residual_layers) + ] + ) + ) + + # Decompression module + self.upsampling_block.extend( + self._build_decompression_block( + channels[0], channels[1:], kernel_sizes, strides, activation, dropout + ) + ) + + self.res_block = nn.Sequential(*self.res_block) + self.upsampling_block = nn.Sequential(*self.upsampling_block) + + return nn.Sequential(self.res_block, self.upsampling_block) + + def forward(self, z_q: Tensor) -> Tensor: + """Reconstruct input from given codes.""" + x_reconstruction = self.decoder(z_q) + return x_reconstruction diff --git a/text_recognizer/networks/vqvae/encoder.py b/text_recognizer/networks/vqvae/encoder.py new file mode 100644 index 0000000..d3adac5 --- /dev/null +++ b/text_recognizer/networks/vqvae/encoder.py @@ -0,0 +1,147 @@ +"""CNN encoder for the VQ-VAE.""" +from typing import List, Optional, Tuple, Type + +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.util import activation_function +from text_recognizer.networks.vqvae.vector_quantizer import VectorQuantizer + + +class _ResidualBlock(nn.Module): + def __init__( + self, in_channels: int, out_channels: int, dropout: Optional[Type[nn.Module]], + ) -> None: + super().__init__() + self.block = [ + nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1, bias=False), + nn.ReLU(inplace=True), + nn.Conv2d(out_channels, out_channels, kernel_size=1, bias=False), + ] + + if dropout is not None: + self.block.append(dropout) + + self.block = nn.Sequential(*self.block) + + def forward(self, x: Tensor) -> Tensor: + """Apply the residual forward pass.""" + return x + self.block(x) + + +class Encoder(nn.Module): + """A CNN encoder network.""" + + def __init__( + self, + in_channels: int, + channels: List[int], + kernel_sizes: List[int], + strides: List[int], + num_residual_layers: int, + embedding_dim: int, + num_embeddings: int, + beta: float = 0.25, + activation: str = "leaky_relu", + dropout_rate: float = 0.0, + ) -> None: + super().__init__() + + if dropout_rate: + if activation == "selu": + dropout = nn.AlphaDropout(p=dropout_rate) + else: + dropout = nn.Dropout(p=dropout_rate) + else: + dropout = None + + self.embedding_dim = embedding_dim + self.num_embeddings = num_embeddings + self.beta = beta + activation = activation_function(activation) + + # Configure encoder. + self.encoder = self._build_encoder( + in_channels, + channels, + kernel_sizes, + strides, + num_residual_layers, + activation, + dropout, + ) + + # Configure Vector Quantizer. + self.vector_quantizer = VectorQuantizer( + self.num_embeddings, self.embedding_dim, self.beta + ) + + def _build_compression_block( + self, + in_channels: int, + channels: int, + kernel_sizes: List[int], + strides: List[int], + activation: Type[nn.Module], + dropout: Optional[Type[nn.Module]], + ) -> nn.ModuleList: + modules = nn.ModuleList([]) + configuration = zip(channels, kernel_sizes, strides) + for out_channels, kernel_size, stride in configuration: + modules.append( + nn.Sequential( + nn.Conv2d( + in_channels, out_channels, kernel_size, stride=stride, padding=1 + ), + activation, + ) + ) + + if dropout is not None: + modules.append(dropout) + + in_channels = out_channels + + return modules + + def _build_encoder( + self, + in_channels: int, + channels: int, + kernel_sizes: List[int], + strides: List[int], + num_residual_layers: int, + activation: Type[nn.Module], + dropout: Optional[Type[nn.Module]], + ) -> nn.Sequential: + encoder = nn.ModuleList([]) + + # compression module + encoder.extend( + self._build_compression_block( + in_channels, channels, kernel_sizes, strides, activation, dropout + ) + ) + + # Bottleneck module. + encoder.extend( + nn.ModuleList( + [ + _ResidualBlock(channels[-1], channels[-1], dropout) + for i in range(num_residual_layers) + ] + ) + ) + + encoder.append( + nn.Conv2d(channels[-1], self.embedding_dim, kernel_size=1, stride=1,) + ) + + return nn.Sequential(*encoder) + + def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: + """Encodes input into a discrete representation.""" + z_e = self.encoder(x) + z_q, vq_loss = self.vector_quantizer(z_e) + return z_q, vq_loss diff --git a/text_recognizer/networks/vqvae/vector_quantizer.py b/text_recognizer/networks/vqvae/vector_quantizer.py new file mode 100644 index 0000000..f92c7ee --- /dev/null +++ b/text_recognizer/networks/vqvae/vector_quantizer.py @@ -0,0 +1,119 @@ +"""Implementation of a Vector Quantized Variational AutoEncoder. + +Reference: +https://github.com/AntixK/PyTorch-VAE/blob/master/models/vq_vae.py + +""" + +from einops import rearrange +import torch +from torch import nn +from torch import Tensor +from torch.nn import functional as F + + +class VectorQuantizer(nn.Module): + """The codebook that contains quantized vectors.""" + + def __init__( + self, num_embeddings: int, embedding_dim: int, beta: float = 0.25 + ) -> None: + super().__init__() + self.K = num_embeddings + self.D = embedding_dim + self.beta = beta + + self.embedding = nn.Embedding(self.K, self.D) + + # Initialize the codebook. + nn.init.uniform_(self.embedding.weight, -1 / self.K, 1 / self.K) + + def discretization_bottleneck(self, latent: Tensor) -> Tensor: + """Computes the code nearest to the latent representation. + + First we compute the posterior categorical distribution, and then map + the latent representation to the nearest element of the embedding. + + Args: + latent (Tensor): The latent representation. + + Shape: + - latent :math:`(B x H x W, D)` + + Returns: + Tensor: The quantized embedding vector. + + """ + # Store latent shape. + b, h, w, d = latent.shape + + # Flatten the latent representation to 2D. + latent = rearrange(latent, "b h w d -> (b h w) d") + + # Compute the L2 distance between the latents and the embeddings. + l2_distance = ( + torch.sum(latent ** 2, dim=1, keepdim=True) + + torch.sum(self.embedding.weight ** 2, dim=1) + - 2 * latent @ self.embedding.weight.t() + ) # [BHW x K] + + # Find the embedding k nearest to each latent. + encoding_indices = torch.argmin(l2_distance, dim=1).unsqueeze(1) # [BHW, 1] + + # Convert to one-hot encodings, aka discrete bottleneck. + one_hot_encoding = torch.zeros( + encoding_indices.shape[0], self.K, device=latent.device + ) + one_hot_encoding.scatter_(1, encoding_indices, 1) # [BHW x K] + + # Embedding quantization. + quantized_latent = one_hot_encoding @ self.embedding.weight # [BHW, D] + quantized_latent = rearrange( + quantized_latent, "(b h w) d -> b h w d", b=b, h=h, w=w + ) + + return quantized_latent + + def vq_loss(self, latent: Tensor, quantized_latent: Tensor) -> Tensor: + """Vector Quantization loss. + + The vector quantization algorithm allows us to create a codebook. The VQ + algorithm works by moving the embedding vectors towards the encoder outputs. + + The embedding loss moves the embedding vector towards the encoder outputs. The + .detach() works as the stop gradient (sg) described in the paper. + + Because the volume of the embedding space is dimensionless, it can arbitarily + grow if the embeddings are not trained as fast as the encoder parameters. To + mitigate this, a commitment loss is added in the second term which makes sure + that the encoder commits to an embedding and that its output does not grow. + + Args: + latent (Tensor): The encoder output. + quantized_latent (Tensor): The quantized latent. + + Returns: + Tensor: The combinded VQ loss. + + """ + embedding_loss = F.mse_loss(quantized_latent, latent.detach()) + commitment_loss = F.mse_loss(quantized_latent.detach(), latent) + return embedding_loss + self.beta * commitment_loss + + def forward(self, latent: Tensor) -> Tensor: + """Forward pass that returns the quantized vector and the vq loss.""" + # Rearrange latent representation s.t. the hidden dim is at the end. + latent = rearrange(latent, "b d h w -> b h w d") + + # Maps latent to the nearest code in the codebook. + quantized_latent = self.discretization_bottleneck(latent) + + loss = self.vq_loss(latent, quantized_latent) + + # Add residue to the quantized latent. + quantized_latent = latent + (quantized_latent - latent).detach() + + # Rearrange the quantized shape back to the original shape. + quantized_latent = rearrange(quantized_latent, "b h w d -> b d h w") + + return quantized_latent, loss diff --git a/text_recognizer/networks/vqvae/vqvae.py b/text_recognizer/networks/vqvae/vqvae.py new file mode 100644 index 0000000..50448b4 --- /dev/null +++ b/text_recognizer/networks/vqvae/vqvae.py @@ -0,0 +1,74 @@ +"""The VQ-VAE.""" + +from typing import List, Optional, Tuple, Type + +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.vqvae import Decoder, Encoder + + +class VQVAE(nn.Module): + """Vector Quantized Variational AutoEncoder.""" + + def __init__( + self, + in_channels: int, + channels: List[int], + kernel_sizes: List[int], + strides: List[int], + num_residual_layers: int, + embedding_dim: int, + num_embeddings: int, + upsampling: Optional[List[List[int]]] = None, + beta: float = 0.25, + activation: str = "leaky_relu", + dropout_rate: float = 0.0, + ) -> None: + super().__init__() + + # configure encoder. + self.encoder = Encoder( + in_channels, + channels, + kernel_sizes, + strides, + num_residual_layers, + embedding_dim, + num_embeddings, + beta, + activation, + dropout_rate, + ) + + # Configure decoder. + channels.reverse() + kernel_sizes.reverse() + strides.reverse() + self.decoder = Decoder( + channels, + kernel_sizes, + strides, + num_residual_layers, + embedding_dim, + upsampling, + activation, + dropout_rate, + ) + + def encode(self, x: Tensor) -> Tuple[Tensor, Tensor]: + """Encodes input to a latent code.""" + return self.encoder(x) + + def decode(self, z_q: Tensor) -> Tensor: + """Reconstructs input from latent codes.""" + return self.decoder(z_q) + + def forward(self, x: Tensor) -> Tuple[Tensor, Tensor]: + """Compresses and decompresses input.""" + if len(x.shape) < 4: + x = x[(None,) * (4 - len(x.shape))] + z_q, vq_loss = self.encode(x) + x_reconstruction = self.decode(z_q) + return x_reconstruction, vq_loss diff --git a/text_recognizer/networks/wide_resnet.py b/text_recognizer/networks/wide_resnet.py new file mode 100644 index 0000000..b767778 --- /dev/null +++ b/text_recognizer/networks/wide_resnet.py @@ -0,0 +1,221 @@ +"""Wide Residual CNN.""" +from functools import partial +from typing import Callable, Dict, List, Optional, Type, Union + +from einops.layers.torch import Reduce +import numpy as np +import torch +from torch import nn +from torch import Tensor + +from text_recognizer.networks.util import activation_function + + +def conv3x3(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: + """Helper function for a 3x3 2d convolution.""" + return nn.Conv2d( + in_channels=in_planes, + out_channels=out_planes, + kernel_size=3, + stride=stride, + padding=1, + bias=False, + ) + + +def conv_init(module: Type[nn.Module]) -> None: + """Initializes the weights for convolution and batchnorms.""" + classname = module.__class__.__name__ + if classname.find("Conv") != -1: + nn.init.xavier_uniform_(module.weight, gain=np.sqrt(2)) + nn.init.constant_(module.bias, 0) + elif classname.find("BatchNorm") != -1: + nn.init.constant_(module.weight, 1) + nn.init.constant_(module.bias, 0) + + +class WideBlock(nn.Module): + """Block used in WideResNet.""" + + def __init__( + self, + in_planes: int, + out_planes: int, + dropout_rate: float, + stride: int = 1, + activation: str = "relu", + ) -> None: + super().__init__() + self.in_planes = in_planes + self.out_planes = out_planes + self.dropout_rate = dropout_rate + self.stride = stride + self.activation = activation_function(activation) + + # Build blocks. + self.blocks = nn.Sequential( + nn.BatchNorm2d(self.in_planes), + self.activation, + conv3x3(in_planes=self.in_planes, out_planes=self.out_planes), + nn.Dropout(p=self.dropout_rate), + nn.BatchNorm2d(self.out_planes), + self.activation, + conv3x3( + in_planes=self.out_planes, + out_planes=self.out_planes, + stride=self.stride, + ), + ) + + self.shortcut = ( + nn.Sequential( + nn.Conv2d( + in_channels=self.in_planes, + out_channels=self.out_planes, + kernel_size=1, + stride=self.stride, + bias=False, + ), + ) + if self._apply_shortcut + else None + ) + + @property + def _apply_shortcut(self) -> bool: + """If shortcut should be applied or not.""" + return self.stride != 1 or self.in_planes != self.out_planes + + def forward(self, x: Tensor) -> Tensor: + """Forward pass.""" + residual = x + if self._apply_shortcut: + residual = self.shortcut(x) + x = self.blocks(x) + x += residual + return x + + +class WideResidualNetwork(nn.Module): + """WideResNet for character predictions. + + Can be used for classification or encoding of images to a latent vector. + + """ + + def __init__( + self, + in_channels: int = 1, + in_planes: int = 16, + num_classes: int = 80, + depth: int = 16, + width_factor: int = 10, + dropout_rate: float = 0.0, + num_layers: int = 3, + block: Type[nn.Module] = WideBlock, + num_stages: Optional[List[int]] = None, + activation: str = "relu", + use_decoder: bool = True, + ) -> None: + """The initialization of the WideResNet. + + Args: + in_channels (int): Number of input channels. Defaults to 1. + in_planes (int): Number of channels to use in the first output kernel. Defaults to 16. + num_classes (int): Number of classes. Defaults to 80. + depth (int): Set the number of blocks to use. Defaults to 16. + width_factor (int): Factor for scaling the number of channels in the network. Defaults to 10. + dropout_rate (float): The dropout rate. Defaults to 0.0. + num_layers (int): Number of layers of blocks. Defaults to 3. + block (Type[nn.Module]): The default block is WideBlock. Defaults to WideBlock. + num_stages (List[int]): If given, will use these channel values. Defaults to None. + activation (str): Name of the activation to use. Defaults to "relu". + use_decoder (bool): If True, the network output character predictions, if False, the network outputs a + latent vector. Defaults to True. + + Raises: + RuntimeError: If the depth is not of the size `6n+4`. + + """ + + super().__init__() + if (depth - 4) % 6 != 0: + raise RuntimeError("Wide-resnet depth should be 6n+4") + self.in_channels = in_channels + self.in_planes = in_planes + self.num_classes = num_classes + self.num_blocks = (depth - 4) // 6 + self.width_factor = width_factor + self.num_layers = num_layers + self.block = block + self.dropout_rate = dropout_rate + self.activation = activation_function(activation) + + if num_stages is None: + self.num_stages = [self.in_planes] + [ + self.in_planes * 2 ** n * self.width_factor + for n in range(self.num_layers) + ] + else: + self.num_stages = [self.in_planes] + num_stages + + self.num_stages = list(zip(self.num_stages, self.num_stages[1:])) + self.strides = [1] + [2] * (self.num_layers - 1) + + self.encoder = nn.Sequential( + conv3x3(in_planes=self.in_channels, out_planes=self.in_planes), + *[ + self._configure_wide_layer( + in_planes=in_planes, + out_planes=out_planes, + stride=stride, + activation=activation, + ) + for (in_planes, out_planes), stride in zip( + self.num_stages, self.strides + ) + ], + ) + + self.decoder = ( + nn.Sequential( + nn.BatchNorm2d(self.num_stages[-1][-1], momentum=0.8), + self.activation, + Reduce("b c h w -> b c", "mean"), + nn.Linear( + in_features=self.num_stages[-1][-1], out_features=self.num_classes + ), + ) + if use_decoder + else None + ) + + # self.apply(conv_init) + + def _configure_wide_layer( + self, in_planes: int, out_planes: int, stride: int, activation: str + ) -> List: + strides = [stride] + [1] * (self.num_blocks - 1) + planes = [out_planes] * len(strides) + planes = [(in_planes, out_planes)] + list(zip(planes, planes[1:])) + return nn.Sequential( + *[ + self.block( + in_planes=in_planes, + out_planes=out_planes, + dropout_rate=self.dropout_rate, + stride=stride, + activation=activation, + ) + for (in_planes, out_planes), stride in zip(planes, strides) + ] + ) + + def forward(self, x: Tensor) -> Tensor: + """Feedforward pass.""" + if len(x.shape) < 4: + x = x[(None,) * int(4 - len(x.shape))] + x = self.encoder(x) + if self.decoder is not None: + x = self.decoder(x) + return x -- cgit v1.2.3-70-g09d2