From 7440994bede38a6c6743110ec4215524665733e1 Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Tue, 13 Sep 2022 18:20:15 +0200 Subject: Remove efficientnet --- text_recognizer/networks/efficientnet/__init__.py | 2 - .../networks/efficientnet/efficientnet.py | 124 ---------- text_recognizer/networks/efficientnet/mbconv.py | 267 --------------------- text_recognizer/networks/efficientnet/utils.py | 86 ------- 4 files changed, 479 deletions(-) delete mode 100644 text_recognizer/networks/efficientnet/__init__.py delete mode 100644 text_recognizer/networks/efficientnet/efficientnet.py delete mode 100644 text_recognizer/networks/efficientnet/mbconv.py delete mode 100644 text_recognizer/networks/efficientnet/utils.py (limited to 'text_recognizer') diff --git a/text_recognizer/networks/efficientnet/__init__.py b/text_recognizer/networks/efficientnet/__init__.py deleted file mode 100644 index 4f9c7c7..0000000 --- a/text_recognizer/networks/efficientnet/__init__.py +++ /dev/null @@ -1,2 +0,0 @@ -"""Efficientnet module.""" -from text_recognizer.networks.efficientnet.efficientnet import EfficientNet diff --git a/text_recognizer/networks/efficientnet/efficientnet.py b/text_recognizer/networks/efficientnet/efficientnet.py deleted file mode 100644 index 3481090..0000000 --- a/text_recognizer/networks/efficientnet/efficientnet.py +++ /dev/null @@ -1,124 +0,0 @@ -"""Efficientnet backbone.""" -from typing import Tuple - -from torch import nn, Tensor - -from text_recognizer.networks.efficientnet.mbconv import MBConvBlock -from text_recognizer.networks.efficientnet.utils import ( - block_args, - round_filters, - round_repeats, -) - - -class EfficientNet(nn.Module): - """Efficientnet without classification head.""" - - archs = { - # width, depth, dropout - "b0": (1.0, 1.0, 0.2), - "b1": (1.0, 1.1, 0.2), - "b2": (1.1, 1.2, 0.3), - "b3": (1.2, 1.4, 0.3), - "b4": (1.4, 1.8, 0.4), - "b5": (1.6, 2.2, 0.4), - "b6": (1.8, 2.6, 0.5), - "b7": (2.0, 3.1, 0.5), - "b8": (2.2, 3.6, 0.5), - "l2": (4.3, 5.3, 0.5), - } - - def __init__( - self, - arch: str, - stochastic_dropout_rate: float = 0.2, - bn_momentum: float = 0.99, - bn_eps: float = 1.0e-3, - depth: int = 7, - out_channels: int = 1280, - ) -> None: - super().__init__() - self.params = self._get_arch_params(arch) - self.stochastic_dropout_rate = stochastic_dropout_rate - self.bn_momentum = bn_momentum - self.bn_eps = bn_eps - self.depth = depth - self.out_channels: int = out_channels - self._conv_stem: nn.Sequential - self._blocks: nn.ModuleList - self._conv_head: nn.Sequential - self._build() - - def _get_arch_params(self, value: str) -> Tuple[float, float, float]: - """Validates the efficientnet architecure.""" - if value not in self.archs: - raise ValueError(f"{value} not a valid architecure.") - return self.archs[value] - - def _build(self) -> None: - """Builds the efficientnet backbone.""" - _block_args = block_args()[: self.depth] - in_channels = 1 # BW - out_channels = round_filters(32, self.params) - self._conv_stem = nn.Sequential( - nn.ZeroPad2d((0, 1, 0, 1)), - nn.Conv2d( - in_channels=in_channels, - out_channels=out_channels, - kernel_size=3, - stride=2, - bias=False, - ), - nn.BatchNorm2d( - num_features=out_channels, momentum=self.bn_momentum, eps=self.bn_eps - ), - nn.Mish(inplace=True), - ) - self._blocks = nn.ModuleList([]) - for args in _block_args: - args.in_channels = round_filters(args.in_channels, self.params) - args.out_channels = round_filters(args.out_channels, self.params) - num_repeats = round_repeats(args.num_repeats, self.params) - del args.num_repeats - for _ in range(num_repeats): - self._blocks.append( - MBConvBlock( - **args, - bn_momentum=self.bn_momentum, - bn_eps=self.bn_eps, - ) - ) - args.in_channels = args.out_channels - args.stride = 1 - - in_channels = round_filters(_block_args[-1].out_channels, self.params) - self._conv_head = nn.Sequential( - nn.Conv2d( - in_channels, - self.out_channels, - kernel_size=1, - stride=1, - bias=False, - ), - nn.BatchNorm2d( - num_features=self.out_channels, - momentum=self.bn_momentum, - eps=self.bn_eps, - ), - nn.Dropout(p=self.params[-1]), - ) - - def extract_features(self, x: Tensor) -> Tensor: - """Extracts the final feature map layer.""" - x = self._conv_stem(x) - for i, block in enumerate(self._blocks): - stochastic_dropout_rate = self.stochastic_dropout_rate - if self.stochastic_dropout_rate: - stochastic_dropout_rate *= i / len(self._blocks) - x = block(x, stochastic_dropout_rate=stochastic_dropout_rate) - x = self._conv_head(x) - return x - - def forward(self, x: Tensor) -> Tensor: - """Returns efficientnet image features.""" - return self.extract_features(x) diff --git a/text_recognizer/networks/efficientnet/mbconv.py b/text_recognizer/networks/efficientnet/mbconv.py deleted file mode 100644 index 9c97925..0000000 --- a/text_recognizer/networks/efficientnet/mbconv.py +++ /dev/null @@ -1,267 +0,0 @@ -"""Mobile inverted residual block.""" -from typing import Optional, Tuple, Union - -import torch -from torch import nn, Tensor -import torch.nn.functional as F - -from text_recognizer.networks.efficientnet.utils import stochastic_depth - - -class BaseModule(nn.Module): - """Base sub module class.""" - - def __init__(self, bn_momentum: float, bn_eps: float) -> None: - super().__init__() - - self.bn_momentum = bn_momentum - self.bn_eps = bn_eps - self._build() - - def _build(self) -> None: - pass - - def forward(self, x: Tensor) -> Tensor: - """Forward pass.""" - return self.block(x) - - -class InvertedBottleneck(BaseModule): - """Inverted bottleneck module.""" - - def __init__( - self, - bn_momentum: float, - bn_eps: float, - in_channels: int, - out_channels: int, - ) -> None: - self.in_channels = in_channels - self.out_channels = out_channels - super().__init__(bn_momentum, bn_eps) - - def _build(self) -> None: - self.block = nn.Sequential( - nn.Conv2d( - in_channels=self.in_channels, - out_channels=self.out_channels, - kernel_size=1, - bias=False, - ), - nn.BatchNorm2d( - num_features=self.out_channels, - momentum=self.bn_momentum, - eps=self.bn_eps, - ), - nn.Mish(inplace=True), - ) - - -class Depthwise(BaseModule): - """Depthwise convolution module.""" - - def __init__( - self, - bn_momentum: float, - bn_eps: float, - channels: int, - kernel_size: int, - stride: int, - ) -> None: - self.channels = channels - self.kernel_size = kernel_size - self.stride = stride - super().__init__(bn_momentum, bn_eps) - - def _build(self) -> None: - self.block = nn.Sequential( - nn.Conv2d( - in_channels=self.channels, - out_channels=self.channels, - kernel_size=self.kernel_size, - stride=self.stride, - groups=self.channels, - bias=False, - ), - nn.BatchNorm2d( - num_features=self.channels, momentum=self.bn_momentum, eps=self.bn_eps - ), - nn.Mish(inplace=True), - ) - - -class SqueezeAndExcite(BaseModule): - """Sequeeze and excite module.""" - - def __init__( - self, - bn_momentum: float, - bn_eps: float, - in_channels: int, - channels: int, - se_ratio: float, - ) -> None: - self.in_channels = in_channels - self.channels = channels - self.se_ratio = se_ratio - super().__init__(bn_momentum, bn_eps) - - def _build(self) -> None: - num_squeezed_channels = max(1, int(self.in_channels * self.se_ratio)) - self.block = nn.Sequential( - nn.Conv2d( - in_channels=self.channels, - out_channels=num_squeezed_channels, - kernel_size=1, - ), - nn.Mish(inplace=True), - nn.Conv2d( - in_channels=num_squeezed_channels, - out_channels=self.channels, - kernel_size=1, - ), - ) - - -class Pointwise(BaseModule): - """Pointwise module.""" - - def __init__( - self, - bn_momentum: float, - bn_eps: float, - in_channels: int, - out_channels: int, - ) -> None: - self.in_channels = in_channels - self.out_channels = out_channels - super().__init__(bn_momentum, bn_eps) - - def _build(self) -> None: - self.block = nn.Sequential( - nn.Conv2d( - in_channels=self.in_channels, - out_channels=self.out_channels, - kernel_size=1, - bias=False, - ), - nn.BatchNorm2d( - num_features=self.out_channels, - momentum=self.bn_momentum, - eps=self.bn_eps, - ), - ) - - -class MBConvBlock(nn.Module): - """Mobile Inverted Residual Bottleneck block.""" - - def __init__( - self, - in_channels: int, - out_channels: int, - kernel_size: Tuple[int, int], - stride: Tuple[int, int], - bn_momentum: float, - bn_eps: float, - se_ratio: float, - expand_ratio: int, - ) -> None: - super().__init__() - self.in_channels = in_channels - self.out_channels = out_channels - self.kernel_size = kernel_size - self.stride = stride - self.bn_momentum = bn_momentum - self.bn_eps = bn_eps - self.se_ratio = se_ratio - self.pad = self._configure_padding() - self.expand_ratio = expand_ratio - self._inverted_bottleneck: Optional[InvertedBottleneck] - self._depthwise: nn.Sequential - self._squeeze_excite: nn.Sequential - self._pointwise: nn.Sequential - self._build() - - def _configure_padding(self) -> Tuple[int, int, int, int]: - """Set padding for convolutional layers.""" - if self.stride == (2, 2): - return ( - (self.kernel_size - 1) // 2 - 1, - (self.kernel_size - 1) // 2, - ) * 2 - return ((self.kernel_size - 1) // 2,) * 4 - - def _build(self) -> None: - has_se = self.se_ratio is not None and 0.0 < self.se_ratio < 1.0 - inner_channels = self.in_channels * self.expand_ratio - self._inverted_bottleneck = ( - InvertedBottleneck( - in_channels=self.in_channels, - out_channels=inner_channels, - bn_momentum=self.bn_momentum, - bn_eps=self.bn_eps, - ) - if self.expand_ratio != 1 - else None - ) - - self._depthwise = Depthwise( - channels=inner_channels, - kernel_size=self.kernel_size, - stride=self.stride, - bn_momentum=self.bn_momentum, - bn_eps=self.bn_eps, - ) - - self._squeeze_excite = ( - SqueezeAndExcite( - in_channels=self.in_channels, - channels=inner_channels, - se_ratio=self.se_ratio, - bn_momentum=self.bn_momentum, - bn_eps=self.bn_eps, - ) - if has_se - else None - ) - - self._pointwise = Pointwise( - in_channels=inner_channels, - out_channels=self.out_channels, - bn_momentum=self.bn_momentum, - bn_eps=self.bn_eps, - ) - - def _stochastic_depth( - self, x: Tensor, residual: Tensor, stochastic_dropout_rate: Optional[float] - ) -> Tensor: - if self.stride == (1, 1) and self.in_channels == self.out_channels: - if stochastic_dropout_rate: - x = stochastic_depth( - x, p=stochastic_dropout_rate, training=self.training - ) - x += residual - return x - - def forward( - self, x: Tensor, stochastic_dropout_rate: Optional[float] = None - ) -> Tensor: - """Forward pass.""" - residual = x - if self._inverted_bottleneck is not None: - x = self._inverted_bottleneck(x) - - x = F.pad(x, self.pad) - x = self._depthwise(x) - - if self._squeeze_excite is not None: - x_squeezed = F.adaptive_avg_pool2d(x, 1) - x_squeezed = self._squeeze_excite(x) - x = torch.tanh(F.softplus(x_squeezed)) * x - - x = self._pointwise(x) - - # Stochastic depth - x = self._stochastic_depth(x, residual, stochastic_dropout_rate) - return x diff --git a/text_recognizer/networks/efficientnet/utils.py b/text_recognizer/networks/efficientnet/utils.py deleted file mode 100644 index 5234324..0000000 --- a/text_recognizer/networks/efficientnet/utils.py +++ /dev/null @@ -1,86 +0,0 @@ -"""Util functions for efficient net.""" -import math -from typing import List, Tuple - -from omegaconf import DictConfig, OmegaConf -import torch -from torch import Tensor - - -def stochastic_depth(x: Tensor, p: float, training: bool) -> Tensor: - """Stochastic connection. - - Drops the entire convolution with a given survival probability. - - Args: - x (Tensor): Input tensor. - p (float): Survival probability between 0.0 and 1.0. - training (bool): The running mode. - - Shapes: - - x: :math: `(B, C, W, H)`. - - out: :math: `(B, C, W, H)`. - - where B is the batch size, C is the number of channels, W is the width, and H - is the height. - - Returns: - out (Tensor): Output after drop connection. - """ - assert 0.0 <= p <= 1.0, "p must be in range of [0, 1]" - - if not training: - return x - - bsz = x.shape[0] - survival_prob = 1 - p - - # Generate a binary tensor mask according to probability (p for 0, 1-p for 1) - random_tensor = survival_prob - random_tensor += torch.rand([bsz, 1, 1, 1]).type_as(x) - binary_tensor = torch.floor(random_tensor) - - out = x / survival_prob * binary_tensor - return out - - -def round_filters(filters: int, arch: Tuple[float, float, float]) -> int: - """Returns the number output filters for a block.""" - multiplier = arch[0] - divisor = 8 - filters *= multiplier - new_filters = max(divisor, (filters + divisor // 2) // divisor * divisor) - if new_filters < 0.9 * filters: - new_filters += divisor - return int(new_filters) - - -def round_repeats(repeats: int, arch: Tuple[float, float, float]) -> int: - """Returns how many times a layer should be repeated in a block.""" - return int(math.ceil(arch[1] * repeats)) - - -def block_args() -> List[DictConfig]: - """Returns arguments for each efficientnet block.""" - keys = [ - "num_repeats", - "kernel_size", - "stride", - "expand_ratio", - "in_channels", - "out_channels", - "se_ratio", - ] - args = [ - [1, 3, (1, 1), 1, 32, 16, 0.25], - [2, 3, (2, 2), 6, 16, 24, 0.25], - [2, 5, (2, 2), 6, 24, 40, 0.25], - [3, 3, (2, 2), 6, 40, 80, 0.25], - [3, 5, (1, 1), 6, 80, 112, 0.25], - [4, 5, (2, 2), 6, 112, 192, 0.25], - [1, 3, (1, 1), 6, 192, 320, 0.25], - ] - block_args_ = [] - for row in args: - block_args_.append(OmegaConf.create(dict(zip(keys, row)))) - return block_args_ -- cgit v1.2.3-70-g09d2