From 7e8e54e84c63171e748bbf09516fd517e6821ace Mon Sep 17 00:00:00 2001 From: Gustaf Rydholm Date: Sat, 20 Mar 2021 18:09:06 +0100 Subject: Inital commit for refactoring to lightning --- training/trainer/__init__.py | 2 + training/trainer/callbacks/__init__.py | 29 +++ training/trainer/callbacks/base.py | 188 +++++++++++++++ training/trainer/callbacks/checkpoint.py | 95 ++++++++ training/trainer/callbacks/early_stopping.py | 108 +++++++++ training/trainer/callbacks/lr_schedulers.py | 77 ++++++ training/trainer/callbacks/progress_bar.py | 65 ++++++ training/trainer/callbacks/wandb_callbacks.py | 261 +++++++++++++++++++++ training/trainer/train.py | 325 ++++++++++++++++++++++++++ training/trainer/util.py | 28 +++ 10 files changed, 1178 insertions(+) create mode 100644 training/trainer/__init__.py create mode 100644 training/trainer/callbacks/__init__.py create mode 100644 training/trainer/callbacks/base.py create mode 100644 training/trainer/callbacks/checkpoint.py create mode 100644 training/trainer/callbacks/early_stopping.py create mode 100644 training/trainer/callbacks/lr_schedulers.py create mode 100644 training/trainer/callbacks/progress_bar.py create mode 100644 training/trainer/callbacks/wandb_callbacks.py create mode 100644 training/trainer/train.py create mode 100644 training/trainer/util.py (limited to 'training/trainer') diff --git a/training/trainer/__init__.py b/training/trainer/__init__.py new file mode 100644 index 0000000..de41bfb --- /dev/null +++ b/training/trainer/__init__.py @@ -0,0 +1,2 @@ +"""Trainer modules.""" +from .train import Trainer diff --git a/training/trainer/callbacks/__init__.py b/training/trainer/callbacks/__init__.py new file mode 100644 index 0000000..80c4177 --- /dev/null +++ b/training/trainer/callbacks/__init__.py @@ -0,0 +1,29 @@ +"""The callback modules used in the training script.""" +from .base import Callback, CallbackList +from .checkpoint import Checkpoint +from .early_stopping import EarlyStopping +from .lr_schedulers import ( + LRScheduler, + SWA, +) +from .progress_bar import ProgressBar +from .wandb_callbacks import ( + WandbCallback, + WandbImageLogger, + WandbReconstructionLogger, + WandbSegmentationLogger, +) + +__all__ = [ + "Callback", + "CallbackList", + "Checkpoint", + "EarlyStopping", + "LRScheduler", + "WandbCallback", + "WandbImageLogger", + "WandbReconstructionLogger", + "WandbSegmentationLogger", + "ProgressBar", + "SWA", +] diff --git a/training/trainer/callbacks/base.py b/training/trainer/callbacks/base.py new file mode 100644 index 0000000..500b642 --- /dev/null +++ b/training/trainer/callbacks/base.py @@ -0,0 +1,188 @@ +"""Metaclass for callback functions.""" + +from enum import Enum +from typing import Callable, Dict, List, Optional, Type, Union + +from loguru import logger +import numpy as np +import torch + +from text_recognizer.models import Model + + +class ModeKeys: + """Mode keys for CallbackList.""" + + TRAIN = "train" + VALIDATION = "validation" + + +class Callback: + """Metaclass for callbacks used in training.""" + + def __init__(self) -> None: + """Initializes the Callback instance.""" + self.model = None + + def set_model(self, model: Type[Model]) -> None: + """Set the model.""" + self.model = model + + def on_fit_begin(self) -> None: + """Called when fit begins.""" + pass + + def on_fit_end(self) -> None: + """Called when fit ends.""" + pass + + def on_epoch_begin(self, epoch: int, logs: Optional[Dict] = None) -> None: + """Called at the beginning of an epoch. Only used in training mode.""" + pass + + def on_epoch_end(self, epoch: int, logs: Optional[Dict] = None) -> None: + """Called at the end of an epoch. Only used in training mode.""" + pass + + def on_train_batch_begin(self, batch: int, logs: Optional[Dict] = None) -> None: + """Called at the beginning of an epoch.""" + pass + + def on_train_batch_end(self, batch: int, logs: Optional[Dict] = None) -> None: + """Called at the end of an epoch.""" + pass + + def on_validation_batch_begin( + self, batch: int, logs: Optional[Dict] = None + ) -> None: + """Called at the beginning of an epoch.""" + pass + + def on_validation_batch_end(self, batch: int, logs: Optional[Dict] = None) -> None: + """Called at the end of an epoch.""" + pass + + def on_test_begin(self) -> None: + """Called at the beginning of test.""" + pass + + def on_test_end(self) -> None: + """Called at the end of test.""" + pass + + +class CallbackList: + """Container for abstracting away callback calls.""" + + mode_keys = ModeKeys() + + def __init__(self, model: Type[Model], callbacks: List[Callback] = None) -> None: + """Container for `Callback` instances. + + This object wraps a list of `Callback` instances and allows them all to be + called via a single end point. + + Args: + model (Type[Model]): A `Model` instance. + callbacks (List[Callback]): List of `Callback` instances. Defaults to None. + + """ + + self._callbacks = callbacks or [] + if model: + self.set_model(model) + + def set_model(self, model: Type[Model]) -> None: + """Set the model for all callbacks.""" + self.model = model + for callback in self._callbacks: + callback.set_model(model=self.model) + + def append(self, callback: Type[Callback]) -> None: + """Append new callback to callback list.""" + self._callbacks.append(callback) + + def on_fit_begin(self) -> None: + """Called when fit begins.""" + for callback in self._callbacks: + callback.on_fit_begin() + + def on_fit_end(self) -> None: + """Called when fit ends.""" + for callback in self._callbacks: + callback.on_fit_end() + + def on_test_begin(self) -> None: + """Called when test begins.""" + for callback in self._callbacks: + callback.on_test_begin() + + def on_test_end(self) -> None: + """Called when test ends.""" + for callback in self._callbacks: + callback.on_test_end() + + def on_epoch_begin(self, epoch: int, logs: Optional[Dict] = None) -> None: + """Called at the beginning of an epoch.""" + for callback in self._callbacks: + callback.on_epoch_begin(epoch, logs) + + def on_epoch_end(self, epoch: int, logs: Optional[Dict] = None) -> None: + """Called at the end of an epoch.""" + for callback in self._callbacks: + callback.on_epoch_end(epoch, logs) + + def _call_batch_hook( + self, mode: str, hook: str, batch: int, logs: Optional[Dict] = None + ) -> None: + """Helper function for all batch_{begin | end} methods.""" + if hook == "begin": + self._call_batch_begin_hook(mode, batch, logs) + elif hook == "end": + self._call_batch_end_hook(mode, batch, logs) + else: + raise ValueError(f"Unrecognized hook {hook}.") + + def _call_batch_begin_hook( + self, mode: str, batch: int, logs: Optional[Dict] = None + ) -> None: + """Helper function for all `on_*_batch_begin` methods.""" + hook_name = f"on_{mode}_batch_begin" + self._call_batch_hook_helper(hook_name, batch, logs) + + def _call_batch_end_hook( + self, mode: str, batch: int, logs: Optional[Dict] = None + ) -> None: + """Helper function for all `on_*_batch_end` methods.""" + hook_name = f"on_{mode}_batch_end" + self._call_batch_hook_helper(hook_name, batch, logs) + + def _call_batch_hook_helper( + self, hook_name: str, batch: int, logs: Optional[Dict] = None + ) -> None: + """Helper function for `on_*_batch_begin` methods.""" + for callback in self._callbacks: + hook = getattr(callback, hook_name) + hook(batch, logs) + + def on_train_batch_begin(self, batch: int, logs: Optional[Dict] = None) -> None: + """Called at the beginning of an epoch.""" + self._call_batch_hook(self.mode_keys.TRAIN, "begin", batch, logs) + + def on_train_batch_end(self, batch: int, logs: Optional[Dict] = None) -> None: + """Called at the end of an epoch.""" + self._call_batch_hook(self.mode_keys.TRAIN, "end", batch, logs) + + def on_validation_batch_begin( + self, batch: int, logs: Optional[Dict] = None + ) -> None: + """Called at the beginning of an epoch.""" + self._call_batch_hook(self.mode_keys.VALIDATION, "begin", batch, logs) + + def on_validation_batch_end(self, batch: int, logs: Optional[Dict] = None) -> None: + """Called at the end of an epoch.""" + self._call_batch_hook(self.mode_keys.VALIDATION, "end", batch, logs) + + def __iter__(self) -> iter: + """Iter function for callback list.""" + return iter(self._callbacks) diff --git a/training/trainer/callbacks/checkpoint.py b/training/trainer/callbacks/checkpoint.py new file mode 100644 index 0000000..a54e0a9 --- /dev/null +++ b/training/trainer/callbacks/checkpoint.py @@ -0,0 +1,95 @@ +"""Callback checkpoint for training models.""" +from enum import Enum +from pathlib import Path +from typing import Callable, Dict, List, Optional, Type, Union + +from loguru import logger +import numpy as np +import torch +from training.trainer.callbacks import Callback + +from text_recognizer.models import Model + + +class Checkpoint(Callback): + """Saving model parameters at the end of each epoch.""" + + mode_dict = { + "min": torch.lt, + "max": torch.gt, + } + + def __init__( + self, + checkpoint_path: Union[str, Path], + monitor: str = "accuracy", + mode: str = "auto", + min_delta: float = 0.0, + ) -> None: + """Monitors a quantity that will allow us to determine the best model weights. + + Args: + checkpoint_path (Union[str, Path]): Path to the experiment with the checkpoint. + monitor (str): Name of the quantity to monitor. Defaults to "accuracy". + mode (str): Description of parameter `mode`. Defaults to "auto". + min_delta (float): Description of parameter `min_delta`. Defaults to 0.0. + + """ + super().__init__() + self.checkpoint_path = Path(checkpoint_path) + self.monitor = monitor + self.mode = mode + self.min_delta = torch.tensor(min_delta) + + if mode not in ["auto", "min", "max"]: + logger.warning(f"Checkpoint mode {mode} is unkown, fallback to auto mode.") + + self.mode = "auto" + + if self.mode == "auto": + if "accuracy" in self.monitor: + self.mode = "max" + else: + self.mode = "min" + logger.debug( + f"Checkpoint mode set to {self.mode} for monitoring {self.monitor}." + ) + + torch_inf = torch.tensor(np.inf) + self.min_delta *= 1 if self.monitor_op == torch.gt else -1 + self.best_score = torch_inf if self.monitor_op == torch.lt else -torch_inf + + @property + def monitor_op(self) -> float: + """Returns the comparison method.""" + return self.mode_dict[self.mode] + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Saves a checkpoint for the network parameters. + + Args: + epoch (int): The current epoch. + logs (Dict): The log containing the monitored metrics. + + """ + current = self.get_monitor_value(logs) + if current is None: + return + if self.monitor_op(current - self.min_delta, self.best_score): + self.best_score = current + is_best = True + else: + is_best = False + + self.model.save_checkpoint(self.checkpoint_path, is_best, epoch, self.monitor) + + def get_monitor_value(self, logs: Dict) -> Union[float, None]: + """Extracts the monitored value.""" + monitor_value = logs.get(self.monitor) + if monitor_value is None: + logger.warning( + f"Checkpoint is conditioned on metric {self.monitor} which is not available. Available" + + f" metrics are: {','.join(list(logs.keys()))}" + ) + return None + return monitor_value diff --git a/training/trainer/callbacks/early_stopping.py b/training/trainer/callbacks/early_stopping.py new file mode 100644 index 0000000..02b431f --- /dev/null +++ b/training/trainer/callbacks/early_stopping.py @@ -0,0 +1,108 @@ +"""Implements Early stopping for PyTorch model.""" +from typing import Dict, Union + +from loguru import logger +import numpy as np +import torch +from torch import Tensor +from training.trainer.callbacks import Callback + + +class EarlyStopping(Callback): + """Stops training when a monitored metric stops improving.""" + + mode_dict = { + "min": torch.lt, + "max": torch.gt, + } + + def __init__( + self, + monitor: str = "val_loss", + min_delta: float = 0.0, + patience: int = 3, + mode: str = "auto", + ) -> None: + """Initializes the EarlyStopping callback. + + Args: + monitor (str): Description of parameter `monitor`. Defaults to "val_loss". + min_delta (float): Description of parameter `min_delta`. Defaults to 0.0. + patience (int): Description of parameter `patience`. Defaults to 3. + mode (str): Description of parameter `mode`. Defaults to "auto". + + """ + super().__init__() + self.monitor = monitor + self.patience = patience + self.min_delta = torch.tensor(min_delta) + self.mode = mode + self.wait_count = 0 + self.stopped_epoch = 0 + + if mode not in ["auto", "min", "max"]: + logger.warning( + f"EarlyStopping mode {mode} is unkown, fallback to auto mode." + ) + + self.mode = "auto" + + if self.mode == "auto": + if "accuracy" in self.monitor: + self.mode = "max" + else: + self.mode = "min" + logger.debug( + f"EarlyStopping mode set to {self.mode} for monitoring {self.monitor}." + ) + + self.torch_inf = torch.tensor(np.inf) + self.min_delta *= 1 if self.monitor_op == torch.gt else -1 + self.best_score = ( + self.torch_inf if self.monitor_op == torch.lt else -self.torch_inf + ) + + @property + def monitor_op(self) -> float: + """Returns the comparison method.""" + return self.mode_dict[self.mode] + + def on_fit_begin(self) -> Union[torch.lt, torch.gt]: + """Reset the early stopping variables for reuse.""" + self.wait_count = 0 + self.stopped_epoch = 0 + self.best_score = ( + self.torch_inf if self.monitor_op == torch.lt else -self.torch_inf + ) + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Computes the early stop criterion.""" + current = self.get_monitor_value(logs) + if current is None: + return + if self.monitor_op(current - self.min_delta, self.best_score): + self.best_score = current + self.wait_count = 0 + else: + self.wait_count += 1 + if self.wait_count >= self.patience: + self.stopped_epoch = epoch + self.model.stop_training = True + + def on_fit_end(self) -> None: + """Logs if early stopping was used.""" + if self.stopped_epoch > 0: + logger.info( + f"Stopped training at epoch {self.stopped_epoch + 1} with early stopping." + ) + + def get_monitor_value(self, logs: Dict) -> Union[Tensor, None]: + """Extracts the monitor value.""" + monitor_value = logs.get(self.monitor) + if monitor_value is None: + logger.warning( + f"Early stopping is conditioned on metric {self.monitor} which is not available. Available" + + f"metrics are: {','.join(list(logs.keys()))}" + ) + return None + return torch.tensor(monitor_value) diff --git a/training/trainer/callbacks/lr_schedulers.py b/training/trainer/callbacks/lr_schedulers.py new file mode 100644 index 0000000..630c434 --- /dev/null +++ b/training/trainer/callbacks/lr_schedulers.py @@ -0,0 +1,77 @@ +"""Callbacks for learning rate schedulers.""" +from typing import Callable, Dict, List, Optional, Type + +from torch.optim.swa_utils import update_bn +from training.trainer.callbacks import Callback + +from text_recognizer.models import Model + + +class LRScheduler(Callback): + """Generic learning rate scheduler callback.""" + + def __init__(self) -> None: + super().__init__() + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and lr scheduler.""" + self.model = model + self.lr_scheduler = self.model.lr_scheduler["lr_scheduler"] + self.interval = self.model.lr_scheduler["interval"] + + def on_epoch_end(self, epoch: int, logs: Optional[Dict] = None) -> None: + """Takes a step at the end of every epoch.""" + if self.interval == "epoch": + if "ReduceLROnPlateau" in self.lr_scheduler.__class__.__name__: + self.lr_scheduler.step(logs["val_loss"]) + else: + self.lr_scheduler.step() + + def on_train_batch_end(self, batch: int, logs: Optional[Dict] = None) -> None: + """Takes a step at the end of every training batch.""" + if self.interval == "step": + self.lr_scheduler.step() + + +class SWA(Callback): + """Stochastic Weight Averaging callback.""" + + def __init__(self) -> None: + """Initializes the callback.""" + super().__init__() + self.lr_scheduler = None + self.interval = None + self.swa_scheduler = None + self.swa_start = None + self.current_epoch = 1 + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and lr scheduler.""" + self.model = model + self.lr_scheduler = self.model.lr_scheduler["lr_scheduler"] + self.interval = self.model.lr_scheduler["interval"] + self.swa_scheduler = self.model.swa_scheduler["swa_scheduler"] + self.swa_start = self.model.swa_scheduler["swa_start"] + + def on_epoch_end(self, epoch: int, logs: Optional[Dict] = None) -> None: + """Takes a step at the end of every training batch.""" + if epoch > self.swa_start: + self.model.swa_network.update_parameters(self.model.network) + self.swa_scheduler.step() + elif self.interval == "epoch": + self.lr_scheduler.step() + self.current_epoch = epoch + + def on_train_batch_end(self, batch: int, logs: Optional[Dict] = None) -> None: + """Takes a step at the end of every training batch.""" + if self.current_epoch < self.swa_start and self.interval == "step": + self.lr_scheduler.step() + + def on_fit_end(self) -> None: + """Update batch norm statistics for the swa model at the end of training.""" + if self.model.swa_network: + update_bn( + self.model.val_dataloader(), + self.model.swa_network, + device=self.model.device, + ) diff --git a/training/trainer/callbacks/progress_bar.py b/training/trainer/callbacks/progress_bar.py new file mode 100644 index 0000000..6c4305a --- /dev/null +++ b/training/trainer/callbacks/progress_bar.py @@ -0,0 +1,65 @@ +"""Progress bar callback for the training loop.""" +from typing import Dict, Optional + +from tqdm import tqdm +from training.trainer.callbacks import Callback + + +class ProgressBar(Callback): + """A TQDM progress bar for the training loop.""" + + def __init__(self, epochs: int, log_batch_frequency: int = None) -> None: + """Initializes the tqdm callback.""" + self.epochs = epochs + print(epochs, type(epochs)) + self.log_batch_frequency = log_batch_frequency + self.progress_bar = None + self.val_metrics = {} + + def _configure_progress_bar(self) -> None: + """Configures the tqdm progress bar with custom bar format.""" + self.progress_bar = tqdm( + total=len(self.model.train_dataloader()), + leave=False, + unit="steps", + mininterval=self.log_batch_frequency, + bar_format="{desc} |{bar:32}| {n_fmt}/{total_fmt} ETA: {remaining} {rate_fmt}{postfix}", + ) + + def _key_abbreviations(self, logs: Dict) -> Dict: + """Changes the length of keys, so that the progress bar fits better.""" + + def rename(key: str) -> str: + """Renames accuracy to acc.""" + return key.replace("accuracy", "acc") + + return {rename(key): value for key, value in logs.items()} + + # def on_fit_begin(self) -> None: + # """Creates a tqdm progress bar.""" + # self._configure_progress_bar() + + def on_epoch_begin(self, epoch: int, logs: Optional[Dict]) -> None: + """Updates the description with the current epoch.""" + if epoch == 1: + self._configure_progress_bar() + else: + self.progress_bar.reset() + self.progress_bar.set_description(f"Epoch {epoch}/{self.epochs}") + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """At the end of each epoch, the validation metrics are updated to the progress bar.""" + self.val_metrics = logs + self.progress_bar.set_postfix(**self._key_abbreviations(logs)) + self.progress_bar.update() + + def on_train_batch_end(self, batch: int, logs: Dict) -> None: + """Updates the progress bar for each training step.""" + if self.val_metrics: + logs.update(self.val_metrics) + self.progress_bar.set_postfix(**self._key_abbreviations(logs)) + self.progress_bar.update() + + def on_fit_end(self) -> None: + """Closes the tqdm progress bar.""" + self.progress_bar.close() diff --git a/training/trainer/callbacks/wandb_callbacks.py b/training/trainer/callbacks/wandb_callbacks.py new file mode 100644 index 0000000..552a4f4 --- /dev/null +++ b/training/trainer/callbacks/wandb_callbacks.py @@ -0,0 +1,261 @@ +"""Callback for W&B.""" +from typing import Callable, Dict, List, Optional, Type + +import numpy as np +from training.trainer.callbacks import Callback +import wandb + +import text_recognizer.datasets.transforms as transforms +from text_recognizer.models.base import Model + + +class WandbCallback(Callback): + """A custom W&B metric logger for the trainer.""" + + def __init__(self, log_batch_frequency: int = None) -> None: + """Short summary. + + Args: + log_batch_frequency (int): If None, metrics will be logged every epoch. + If set to an integer, callback will log every metrics every log_batch_frequency. + + """ + super().__init__() + self.log_batch_frequency = log_batch_frequency + + def _on_batch_end(self, batch: int, logs: Dict) -> None: + if self.log_batch_frequency and batch % self.log_batch_frequency == 0: + wandb.log(logs, commit=True) + + def on_train_batch_end(self, batch: int, logs: Optional[Dict] = None) -> None: + """Logs training metrics.""" + if logs is not None: + logs["lr"] = self.model.optimizer.param_groups[0]["lr"] + self._on_batch_end(batch, logs) + + def on_validation_batch_end(self, batch: int, logs: Optional[Dict] = None) -> None: + """Logs validation metrics.""" + if logs is not None: + self._on_batch_end(batch, logs) + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Logs at epoch end.""" + wandb.log(logs, commit=True) + + +class WandbImageLogger(Callback): + """Custom W&B callback for image logging.""" + + def __init__( + self, + example_indices: Optional[List] = None, + num_examples: int = 4, + transform: Optional[bool] = None, + ) -> None: + """Initializes the WandbImageLogger with the model to train. + + Args: + example_indices (Optional[List]): Indices for validation images. Defaults to None. + num_examples (int): Number of random samples to take if example_indices are not specified. Defaults to 4. + transform (Optional[Dict]): Use transform on image or not. Defaults to None. + + """ + + super().__init__() + self.caption = None + self.example_indices = example_indices + self.test_sample_indices = None + self.num_examples = num_examples + self.transform = ( + self._configure_transform(transform) if transform is not None else None + ) + + def _configure_transform(self, transform: Dict) -> Callable: + args = transform["args"] or {} + return getattr(transforms, transform["type"])(**args) + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and extracts validation images from the dataset.""" + self.model = model + self.caption = "Validation Examples" + if self.example_indices is None: + self.example_indices = np.random.randint( + 0, len(self.model.val_dataset), self.num_examples + ) + self.images = self.model.val_dataset.dataset.data[self.example_indices] + self.targets = self.model.val_dataset.dataset.targets[self.example_indices] + self.targets = self.targets.tolist() + + def on_test_begin(self) -> None: + """Get samples from test dataset.""" + self.caption = "Test Examples" + if self.test_sample_indices is None: + self.test_sample_indices = np.random.randint( + 0, len(self.model.test_dataset), self.num_examples + ) + self.images = self.model.test_dataset.data[self.test_sample_indices] + self.targets = self.model.test_dataset.targets[self.test_sample_indices] + self.targets = self.targets.tolist() + + def on_test_end(self) -> None: + """Log test images.""" + self.on_epoch_end(0, {}) + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Get network predictions on validation images.""" + images = [] + for i, image in enumerate(self.images): + image = self.transform(image) if self.transform is not None else image + pred, conf = self.model.predict_on_image(image) + if isinstance(self.targets[i], list): + ground_truth = "".join( + [ + self.model.mapper(int(target_index) - 26) + if target_index > 35 + else self.model.mapper(int(target_index)) + for target_index in self.targets[i] + ] + ).rstrip("_") + else: + ground_truth = self.model.mapper(int(self.targets[i])) + caption = f"Prediction: {pred} Confidence: {conf:.3f} Ground Truth: {ground_truth}" + images.append(wandb.Image(image, caption=caption)) + + wandb.log({f"{self.caption}": images}, commit=False) + + +class WandbSegmentationLogger(Callback): + """Custom W&B callback for image logging.""" + + def __init__( + self, + class_labels: Dict, + example_indices: Optional[List] = None, + num_examples: int = 4, + ) -> None: + """Initializes the WandbImageLogger with the model to train. + + Args: + class_labels (Dict): A dict with int as key and class string as value. + example_indices (Optional[List]): Indices for validation images. Defaults to None. + num_examples (int): Number of random samples to take if example_indices are not specified. Defaults to 4. + + """ + + super().__init__() + self.caption = None + self.class_labels = {int(k): v for k, v in class_labels.items()} + self.example_indices = example_indices + self.test_sample_indices = None + self.num_examples = num_examples + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and extracts validation images from the dataset.""" + self.model = model + self.caption = "Validation Segmentation Examples" + if self.example_indices is None: + self.example_indices = np.random.randint( + 0, len(self.model.val_dataset), self.num_examples + ) + self.images = self.model.val_dataset.dataset.data[self.example_indices] + self.targets = self.model.val_dataset.dataset.targets[self.example_indices] + self.targets = self.targets.tolist() + + def on_test_begin(self) -> None: + """Get samples from test dataset.""" + self.caption = "Test Segmentation Examples" + if self.test_sample_indices is None: + self.test_sample_indices = np.random.randint( + 0, len(self.model.test_dataset), self.num_examples + ) + self.images = self.model.test_dataset.data[self.test_sample_indices] + self.targets = self.model.test_dataset.targets[self.test_sample_indices] + self.targets = self.targets.tolist() + + def on_test_end(self) -> None: + """Log test images.""" + self.on_epoch_end(0, {}) + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Get network predictions on validation images.""" + images = [] + for i, image in enumerate(self.images): + pred_mask = ( + self.model.predict_on_image(image).detach().squeeze(0).cpu().numpy() + ) + gt_mask = np.array(self.targets[i]) + images.append( + wandb.Image( + image, + masks={ + "predictions": { + "mask_data": pred_mask, + "class_labels": self.class_labels, + }, + "ground_truth": { + "mask_data": gt_mask, + "class_labels": self.class_labels, + }, + }, + ) + ) + + wandb.log({f"{self.caption}": images}, commit=False) + + +class WandbReconstructionLogger(Callback): + """Custom W&B callback for image reconstructions logging.""" + + def __init__( + self, example_indices: Optional[List] = None, num_examples: int = 4, + ) -> None: + """Initializes the WandbImageLogger with the model to train. + + Args: + example_indices (Optional[List]): Indices for validation images. Defaults to None. + num_examples (int): Number of random samples to take if example_indices are not specified. Defaults to 4. + + """ + + super().__init__() + self.caption = None + self.example_indices = example_indices + self.test_sample_indices = None + self.num_examples = num_examples + + def set_model(self, model: Type[Model]) -> None: + """Sets the model and extracts validation images from the dataset.""" + self.model = model + self.caption = "Validation Reconstructions Examples" + if self.example_indices is None: + self.example_indices = np.random.randint( + 0, len(self.model.val_dataset), self.num_examples + ) + self.images = self.model.val_dataset.dataset.data[self.example_indices] + + def on_test_begin(self) -> None: + """Get samples from test dataset.""" + self.caption = "Test Reconstructions Examples" + if self.test_sample_indices is None: + self.test_sample_indices = np.random.randint( + 0, len(self.model.test_dataset), self.num_examples + ) + self.images = self.model.test_dataset.data[self.test_sample_indices] + + def on_test_end(self) -> None: + """Log test images.""" + self.on_epoch_end(0, {}) + + def on_epoch_end(self, epoch: int, logs: Dict) -> None: + """Get network predictions on validation images.""" + images = [] + for image in self.images: + reconstructed_image = ( + self.model.predict_on_image(image).detach().squeeze(0).cpu().numpy() + ) + images.append(image) + images.append(reconstructed_image) + + wandb.log( + {f"{self.caption}": [wandb.Image(image) for image in images]}, commit=False, + ) diff --git a/training/trainer/train.py b/training/trainer/train.py new file mode 100644 index 0000000..b770c94 --- /dev/null +++ b/training/trainer/train.py @@ -0,0 +1,325 @@ +"""Training script for PyTorch models.""" + +from pathlib import Path +import time +from typing import Dict, List, Optional, Tuple, Type +import warnings + +from einops import rearrange +from loguru import logger +import numpy as np +import torch +from torch import Tensor +from torch.optim.swa_utils import update_bn +from training.trainer.callbacks import Callback, CallbackList, LRScheduler, SWA +from training.trainer.util import log_val_metric +import wandb + +from text_recognizer.models import Model + + +torch.backends.cudnn.benchmark = True +np.random.seed(4711) +torch.manual_seed(4711) +torch.cuda.manual_seed(4711) + + +warnings.filterwarnings("ignore") + + +class Trainer: + """Trainer for training PyTorch models.""" + + def __init__( + self, + max_epochs: int, + callbacks: List[Type[Callback]], + transformer_model: bool = False, + max_norm: float = 0.0, + freeze_backbone: Optional[int] = None, + ) -> None: + """Initialization of the Trainer. + + Args: + max_epochs (int): The maximum number of epochs in the training loop. + callbacks (CallbackList): List of callbacks to be called. + transformer_model (bool): Transformer model flag, modifies the input to the model. Default is False. + max_norm (float): Max norm for gradient cl:ipping. Defaults to 0.0. + freeze_backbone (Optional[int]): How many epochs to freeze the backbone for. Used when training + Transformers. Default is None. + + """ + # Training arguments. + self.start_epoch = 1 + self.max_epochs = max_epochs + self.callbacks = callbacks + self.freeze_backbone = freeze_backbone + + # Flag for setting callbacks. + self.callbacks_configured = False + + self.transformer_model = transformer_model + + self.max_norm = max_norm + + # Model placeholders + self.model = None + + def _configure_callbacks(self) -> None: + """Instantiate the CallbackList.""" + if not self.callbacks_configured: + # If learning rate schedulers are present, they need to be added to the callbacks. + if self.model.swa_scheduler is not None: + self.callbacks.append(SWA()) + elif self.model.lr_scheduler is not None: + self.callbacks.append(LRScheduler()) + + self.callbacks = CallbackList(self.model, self.callbacks) + + def compute_metrics( + self, output: Tensor, targets: Tensor, loss: Tensor, batch_size: int + ) -> Dict: + """Computes metrics for output and target pairs.""" + # Compute metrics. + loss = loss.detach().float().item() + output = output.detach() + targets = targets.detach() + if self.model.metrics is not None: + metrics = {} + for metric in self.model.metrics: + if metric == "cer" or metric == "wer": + metrics[metric] = self.model.metrics[metric]( + output, + targets, + batch_size, + self.model.mapper(self.model.pad_token), + ) + else: + metrics[metric] = self.model.metrics[metric](output, targets) + else: + metrics = {} + metrics["loss"] = loss + + return metrics + + def training_step(self, batch: int, samples: Tuple[Tensor, Tensor],) -> Dict: + """Performs the training step.""" + # Pass the tensor to the device for computation. + data, targets = samples + data, targets = ( + data.to(self.model.device), + targets.to(self.model.device), + ) + + batch_size = data.shape[0] + + # Placeholder for uxiliary loss. + aux_loss = None + + # Forward pass. + # Get the network prediction. + if self.transformer_model: + if self.freeze_backbone is not None and batch < self.freeze_backbone: + with torch.no_grad(): + image_features = self.model.network.extract_image_features(data) + + if isinstance(image_features, Tuple): + image_features, _ = image_features + + output = self.model.network.decode_image_features( + image_features, targets[:, :-1] + ) + else: + output = self.model.network.forward(data, targets[:, :-1]) + if isinstance(output, Tuple): + output, aux_loss = output + output = rearrange(output, "b t v -> (b t) v") + targets = rearrange(targets[:, 1:], "b t -> (b t)").long() + else: + output = self.model.forward(data) + + if isinstance(output, Tuple): + output, aux_loss = output + targets = data + + # Compute the loss. + loss = self.model.criterion(output, targets) + + if aux_loss is not None: + loss += aux_loss + + # Backward pass. + # Clear the previous gradients. + for p in self.model.network.parameters(): + p.grad = None + + # Compute the gradients. + loss.backward() + + if self.max_norm > 0: + torch.nn.utils.clip_grad_norm_( + self.model.network.parameters(), self.max_norm + ) + + # Perform updates using calculated gradients. + self.model.optimizer.step() + + metrics = self.compute_metrics(output, targets, loss, batch_size) + + return metrics + + def train(self) -> None: + """Runs the training loop for one epoch.""" + # Set model to traning mode. + self.model.train() + + for batch, samples in enumerate(self.model.train_dataloader()): + self.callbacks.on_train_batch_begin(batch) + metrics = self.training_step(batch, samples) + self.callbacks.on_train_batch_end(batch, logs=metrics) + + @torch.no_grad() + def validation_step(self, batch: int, samples: Tuple[Tensor, Tensor],) -> Dict: + """Performs the validation step.""" + + # Pass the tensor to the device for computation. + data, targets = samples + data, targets = ( + data.to(self.model.device), + targets.to(self.model.device), + ) + + batch_size = data.shape[0] + + # Placeholder for uxiliary loss. + aux_loss = None + + # Forward pass. + # Get the network prediction. + # Use SWA if available and using test dataset. + if self.transformer_model: + output = self.model.network.forward(data, targets[:, :-1]) + if isinstance(output, Tuple): + output, aux_loss = output + output = rearrange(output, "b t v -> (b t) v") + targets = rearrange(targets[:, 1:], "b t -> (b t)").long() + else: + output = self.model.forward(data) + + if isinstance(output, Tuple): + output, aux_loss = output + targets = data + + # Compute the loss. + loss = self.model.criterion(output, targets) + + if aux_loss is not None: + loss += aux_loss + + # Compute metrics. + metrics = self.compute_metrics(output, targets, loss, batch_size) + + return metrics + + def validate(self) -> Dict: + """Runs the validation loop for one epoch.""" + # Set model to eval mode. + self.model.eval() + + # Summary for the current eval loop. + summary = [] + + for batch, samples in enumerate(self.model.val_dataloader()): + self.callbacks.on_validation_batch_begin(batch) + metrics = self.validation_step(batch, samples) + self.callbacks.on_validation_batch_end(batch, logs=metrics) + summary.append(metrics) + + # Compute mean of all metrics. + metrics_mean = { + "val_" + metric: np.mean([x[metric] for x in summary]) + for metric in summary[0] + } + + return metrics_mean + + def fit(self, model: Type[Model]) -> None: + """Runs the training and evaluation loop.""" + + # Sets model, loads the data, criterion, and optimizers. + self.model = model + self.model.prepare_data() + self.model.configure_model() + + # Configure callbacks. + self._configure_callbacks() + + # Set start time. + t_start = time.time() + + self.callbacks.on_fit_begin() + + # Run the training loop. + for epoch in range(self.start_epoch, self.max_epochs + 1): + self.callbacks.on_epoch_begin(epoch) + + # Perform one training pass over the training set. + self.train() + + # Evaluate the model on the validation set. + val_metrics = self.validate() + log_val_metric(val_metrics, epoch) + + self.callbacks.on_epoch_end(epoch, logs=val_metrics) + + if self.model.stop_training: + break + + # Calculate the total training time. + t_end = time.time() + t_training = t_end - t_start + + self.callbacks.on_fit_end() + + logger.info(f"Training took {t_training:.2f} s.") + + # "Teardown". + self.model = None + + def test(self, model: Type[Model]) -> Dict: + """Run inference on test data.""" + + # Sets model, loads the data, criterion, and optimizers. + self.model = model + self.model.prepare_data() + self.model.configure_model() + + # Configure callbacks. + self._configure_callbacks() + + self.callbacks.on_test_begin() + + self.model.eval() + + # Check if SWA network is available. + self.model.use_swa_model() + + # Summary for the current test loop. + summary = [] + + for batch, samples in enumerate(self.model.test_dataloader()): + metrics = self.validation_step(batch, samples) + summary.append(metrics) + + self.callbacks.on_test_end() + + # Compute mean of all test metrics. + metrics_mean = { + "test_" + metric: np.mean([x[metric] for x in summary]) + for metric in summary[0] + } + + # "Teardown". + self.model = None + + return metrics_mean diff --git a/training/trainer/util.py b/training/trainer/util.py new file mode 100644 index 0000000..7cf1b45 --- /dev/null +++ b/training/trainer/util.py @@ -0,0 +1,28 @@ +"""Utility functions for training neural networks.""" +from typing import Dict, Optional + +from loguru import logger + + +def log_val_metric(metrics_mean: Dict, epoch: Optional[int] = None) -> None: + """Logging of val metrics to file/terminal.""" + log_str = "Validation metrics " + (f"at epoch {epoch} - " if epoch else " - ") + logger.debug(log_str + " - ".join(f"{k}: {v:.4f}" for k, v in metrics_mean.items())) + + +class RunningAverage: + """Maintains a running average.""" + + def __init__(self) -> None: + """Initializes the parameters.""" + self.steps = 0 + self.total = 0 + + def update(self, val: float) -> None: + """Updates the parameters.""" + self.total += val + self.steps += 1 + + def __call__(self) -> float: + """Computes the running average.""" + return self.total / float(self.steps) -- cgit v1.2.3-70-g09d2