"""Creates word pieces from a text file. Most code stolen from: https://github.com/facebookresearch/gtn_applications/blob/master/scripts/make_wordpieces.py """ import io from pathlib import Path from typing import List, Optional, Union import click from loguru import logger import sentencepiece as spm from text_recognizer.datasets.iam_preprocessor import load_metadata def iamdb_pieces( data_dir: Path, text_file: str, num_pieces: int, output_prefix: str ) -> None: """Creates word pieces from the iamdb train text.""" # Load training text. with open(data_dir / text_file, "r") as f: text = [line.strip() for line in f] sp = train_spm_model( iter(text), num_pieces + 1, # To account for user_symbols=["/"], # added so token is in the output set ) vocab = sorted(set(w for t in text for w in t.split("_") if w)) if "move" not in vocab: raise RuntimeError("`MOVE` not in vocab") save_pieces(sp, num_pieces, data_dir, output_prefix, vocab) def train_spm_model( sentences: iter, vocab_size: int, user_symbols: Union[str, List[str]] = "" ) -> spm.SentencePieceProcessor: """Trains the sentence piece model.""" model = io.BytesIO() spm.SentencePieceTrainer.train( sentence_iterator=sentences, model_writer=model, vocab_size=vocab_size, bos_id=-1, eos_id=-1, character_coverage=1.0, user_defined_symbols=user_symbols, ) sp = spm.SentencePieceProcessor(model_proto=model.getvalue()) return sp def save_pieces( sp: spm.SentencePieceProcessor, num_pieces: int, data_dir: Path, output_prefix: str, vocab: set, ) -> None: """Saves word pieces to disk.""" logger.info(f"Generating word piece list of size {num_pieces}.") pieces = [sp.id_to_piece(i) for i in range(1, num_pieces + 1)] logger.info(f"Encoding vocabulary of size {len(vocab)}.") encoded_vocab = [sp.encode_as_pieces(v) for v in vocab] # Save pieces to file. with open(data_dir / f"{output_prefix}_tokens_{num_pieces}.txt", "w") as f: f.write("\n".join(pieces)) # Save lexicon to a file. with open(data_dir / f"{output_prefix}_lex_{num_pieces}.txt", "w") as f: for v, p in zip(vocab, encoded_vocab): f.write(f"{v} {' '.join(p)}\n") @click.command() @click.option("--data_dir", type=str, default=None, help="Path to processed iam dir.") @click.option( "--text_file", type=str, default=None, help="Name of sentence piece training text." ) @click.option( "--output_prefix", type=str, default="word_pieces", help="Prefix name to store tokens and lexicon.", ) @click.option("--num_pieces", type=int, default=1000, help="Number of word pieces.") def cli( data_dir: Optional[str], text_file: Optional[str], output_prefix: Optional[str], num_pieces: Optional[int], ) -> None: """CLI for training the sentence piece model.""" if data_dir is None: data_dir = ( Path(__file__).resolve().parents[2] / "data" / "processed" / "iam_lines" ) logger.debug(f"Using data dir: {data_dir}") if not data_dir.exists(): raise RuntimeError(f"Could not locate iamdb directory at {data_dir}") else: data_dir = Path(data_dir) iamdb_pieces(data_dir, text_file, num_pieces, output_prefix) if __name__ == "__main__": cli()