"""Abstract dataset class.""" from typing import Callable, Dict, Optional, Tuple, Union import torch from torch import Tensor from torch.utils import data from torchvision.transforms import ToTensor from text_recognizer.datasets.util import EmnistMapper class Dataset(data.Dataset): """Abstract class for with common methods for all datasets.""" def __init__( self, train: bool, subsample_fraction: float = None, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, ) -> None: """Initialization of Dataset class. Args: train (bool): If True, loads the training set, otherwise the validation set is loaded. Defaults to False. subsample_fraction (float): Description of parameter `subsample_fraction`. Defaults to None. transform (Optional[Callable]): Transform(s) for input data. Defaults to None. target_transform (Optional[Callable]): Transform(s) for output data. Defaults to None. Raises: ValueError: If subsample_fraction is not None and outside the range (0, 1). """ self.train = train self.split = "train" if self.train else "test" if subsample_fraction is not None: if not 0.0 < subsample_fraction < 1.0: raise ValueError("The subsample fraction must be in (0, 1).") self.subsample_fraction = subsample_fraction self._mapper = EmnistMapper() self._input_shape = self._mapper.input_shape self._output_shape = self._mapper._num_classes self.num_classes = self.mapper.num_classes # Set transforms. self.transform = transform if self.transform is None: self.transform = ToTensor() self.target_transform = target_transform if self.target_transform is None: self.target_transform = torch.tensor self._data = None self._targets = None @property def data(self) -> Tensor: """The input data.""" return self._data @property def targets(self) -> Tensor: """The target data.""" return self._targets @property def input_shape(self) -> Tuple: """Input shape of the data.""" return self._input_shape @property def output_shape(self) -> Tuple: """Output shape of the data.""" return self._output_shape @property def mapper(self) -> EmnistMapper: """Returns the EmnistMapper.""" return self._mapper @property def mapping(self) -> Dict: """Return EMNIST mapping from index to character.""" return self._mapper.mapping @property def inverse_mapping(self) -> Dict: """Returns the inverse mapping from character to index.""" return self.mapper.inverse_mapping def _subsample(self) -> None: """Only this fraction of the data will be loaded.""" if self.subsample_fraction is None: return num_subsample = int(self.data.shape[0] * self.subsample_fraction) self.data = self.data[:num_subsample] self.targets = self.targets[:num_subsample] def __len__(self) -> int: """Returns the length of the dataset.""" return len(self.data) def load_or_generate_data(self) -> None: """Load or generate dataset data.""" raise NotImplementedError def __getitem__(self, index: Union[int, Tensor]) -> Tuple[Tensor, Tensor]: """Fetches samples from the dataset. Args: index (Union[int, torch.Tensor]): The indices of the samples to fetch. Raises: NotImplementedError: If the method is not implemented in child class. """ raise NotImplementedError def __repr__(self) -> str: """Returns information about the dataset.""" raise NotImplementedError