"""Preprocessor for extracting word letters from the IAM dataset. The code is mostly stolen from: https://github.com/facebookresearch/gtn_applications/blob/master/datasets/iamdb.py """ import collections import itertools from pathlib import Path import re from typing import List, Optional, Union import click from loguru import logger import torch def load_metadata( data_dir: Path, wordsep: str, use_words: bool = False ) -> collections.defaultdict: """Loads IAM metadata and returns it as a dictionary.""" forms = collections.defaultdict(list) filename = "words.txt" if use_words else "lines.txt" with open(data_dir / "ascii" / filename, "r") as f: lines = (line.strip().split() for line in f if line[0] != "#") for line in lines: # Skip word segmentation errors. if use_words and line[1] == "err": continue text = " ".join(line[8:]) # Remove garbage tokens: text = text.replace("#", "") # Swap word sep form | to wordsep text = re.sub(r"\|+|\s", wordsep, text).strip(wordsep) form_key = "-".join(line[0].split("-")[:2]) line_key = "-".join(line[0].split("-")[:3]) box_idx = 4 - use_words box = tuple(int(val) for val in line[box_idx : box_idx + 4]) forms[form_key].append({"key": line_key, "box": box, "text": text}) return forms class Preprocessor: """A preprocessor for the IAM dataset.""" # TODO: add lower case only to when generating... def __init__( self, data_dir: Union[str, Path], num_features: int, tokens_path: Optional[Union[str, Path]] = None, lexicon_path: Optional[Union[str, Path]] = None, use_words: bool = False, prepend_wordsep: bool = False, ) -> None: self.wordsep = "_" self._use_word = use_words self._prepend_wordsep = prepend_wordsep self.data_dir = Path(data_dir) self.forms = load_metadata(self.data_dir, self.wordsep, use_words=use_words) # Load the set of graphemes: graphemes = set() for _, form in self.forms.items(): for line in form: graphemes.update(line["text"].lower()) self.graphemes = sorted(graphemes) # Build the token-to-index and index-to-token maps. if tokens_path is not None: with open(tokens_path, "r") as f: self.tokens = [line.strip() for line in f] else: self.tokens = self.graphemes if lexicon_path is not None: with open(lexicon_path, "r") as f: lexicon = (line.strip().split() for line in f) lexicon = {line[0]: line[1:] for line in lexicon} self.lexicon = lexicon else: self.lexicon = None self.graphemes_to_index = {t: i for i, t in enumerate(self.graphemes)} self.tokens_to_index = {t: i for i, t in enumerate(self.tokens)} self.num_features = num_features self.text = [] @property def num_tokens(self) -> int: """Returns the number or tokens.""" return len(self.tokens) @property def use_words(self) -> bool: """If words are used.""" return self._use_word def extract_train_text(self) -> None: """Extracts training text.""" keys = [] with open(self.data_dir / "task" / "trainset.txt") as f: keys.extend((line.strip() for line in f)) for _, examples in self.forms.items(): for example in examples: if example["key"] not in keys: continue self.text.append(example["text"].lower()) def to_index(self, line: str) -> torch.LongTensor: """Converts text to a tensor of indices.""" token_to_index = self.graphemes_to_index if self.lexicon is not None: if len(line) > 0: # If the word is not found in the lexicon, fall back to letters. line = [ t for w in line.split(self.wordsep) for t in self.lexicon.get(w, self.wordsep + w) ] token_to_index = self.tokens_to_index if self._prepend_wordsep: line = itertools.chain([self.wordsep], line) return torch.LongTensor([token_to_index[t] for t in line]) def to_text(self, indices: List[int]) -> str: """Converts indices to text.""" # Roughly the inverse of `to_index` encoding = self.graphemes if self.lexicon is not None: encoding = self.tokens return self._post_process(encoding[i] for i in indices) def tokens_to_text(self, indices: List[int]) -> str: """Converts tokens to text.""" return self._post_process(self.tokens[i] for i in indices) def _post_process(self, indices: List[int]) -> str: """A list join.""" return "".join(indices).strip(self.wordsep) @click.command() @click.option("--data_dir", type=str, default=None, help="Path to iam dataset") @click.option( "--use_words", is_flag=True, help="Load word segmented dataset instead of lines" ) @click.option( "--save_text", type=str, default=None, help="Path to save parsed train text" ) @click.option("--save_tokens", type=str, default=None, help="Path to save tokens") def cli( data_dir: Optional[str], use_words: bool, save_text: Optional[str], save_tokens: Optional[str], ) -> None: """CLI for extracting text data from the iam dataset.""" if data_dir is None: data_dir = ( Path(__file__).resolve().parents[3] / "data" / "raw" / "iam" / "iamdb" ) logger.debug(f"Using data dir: {data_dir}") if not data_dir.exists(): raise RuntimeError(f"Could not locate iamdb directory at {data_dir}") else: data_dir = Path(data_dir) preprocessor = Preprocessor(data_dir, 64, use_words=use_words) preprocessor.extract_train_text() processed_dir = data_dir.parents[2] / "processed" / "iam_lines" logger.debug(f"Saving processed files at: {processed_dir}") if save_text is not None: logger.info("Saving training text") with open(processed_dir / save_text, "w") as f: f.write("\n".join(t for t in preprocessor.text)) if save_tokens is not None: logger.info("Saving tokens") with open(processed_dir / save_tokens, "w") as f: f.write("\n".join(preprocessor.tokens)) if __name__ == "__main__": cli()