"""Defines the CNN-Transformer class.""" from typing import Callable, Dict, List, Optional, Tuple, Type, Union import numpy as np import torch from torch import nn from torch import Tensor from torch.utils.data import Dataset from torchvision.transforms import ToTensor from text_recognizer.datasets import EmnistMapper from text_recognizer.models.base import Model from text_recognizer.networks import greedy_decoder class TransformerModel(Model): """Model for predicting a sequence of characters from an image of a text line with a cnn-transformer.""" def __init__( self, network_fn: str, dataset: str, network_args: Optional[Dict] = None, dataset_args: Optional[Dict] = None, metrics: Optional[Dict] = None, criterion: Optional[Callable] = None, criterion_args: Optional[Dict] = None, optimizer: Optional[Callable] = None, optimizer_args: Optional[Dict] = None, lr_scheduler: Optional[Callable] = None, lr_scheduler_args: Optional[Dict] = None, swa_args: Optional[Dict] = None, device: Optional[str] = None, ) -> None: super().__init__( network_fn, dataset, network_args, dataset_args, metrics, criterion, criterion_args, optimizer, optimizer_args, lr_scheduler, lr_scheduler_args, swa_args, device, ) self.init_token = dataset_args["args"]["init_token"] self.pad_token = dataset_args["args"]["pad_token"] self.eos_token = dataset_args["args"]["eos_token"] self.max_len = 120 if self._mapper is None: self._mapper = EmnistMapper( init_token=self.init_token, pad_token=self.pad_token, eos_token=self.eos_token, ) self.tensor_transform = ToTensor() self.softmax = nn.Softmax(dim=2) @torch.no_grad() def _generate_sentence(self, image: Tensor) -> Tuple[List, float]: src = self.network.extract_image_features(image) memory = self.network.encoder(src) confidence_of_predictions = [] trg_indices = [self.mapper(self.init_token)] for _ in range(self.max_len - 1): trg = torch.tensor(trg_indices, device=self.device)[None, :].long() trg = self.network.target_embedding(trg) logits = self.network.decoder(trg=trg, memory=memory, trg_mask=None) # Convert logits to probabilities. probs = self.softmax(logits) pred_token = probs.argmax(2)[:, -1].item() confidence = probs.max(2).values[:, -1].item() trg_indices.append(pred_token) confidence_of_predictions.append(confidence) if pred_token == self.mapper(self.eos_token): break confidence = np.min(confidence_of_predictions) predicted_characters = "".join([self.mapper(x) for x in trg_indices[1:]]) return predicted_characters, confidence @torch.no_grad() def predict_on_image(self, image: Union[np.ndarray, Tensor]) -> Tuple[str, float]: """Predict on a single input.""" self.eval() if image.dtype == np.uint8: # Converts an image with range [0, 255] with to PyTorch Tensor with range [0, 1]. image = self.tensor_transform(image) # Rescale image between 0 and 1. if image.dtype == torch.uint8: # If the image is an unscaled tensor. image = image.type("torch.FloatTensor") / 255 # Put the image tensor on the device the model weights are on. image = image.to(self.device) (predicted_characters, confidence_of_prediction,) = self._generate_sentence( image ) return predicted_characters, confidence_of_prediction