"""A DETR style transfomers but for text recognition.""" from typing import Dict, Optional, Tuple, Type from einops.layers.torch import Rearrange from loguru import logger import torch from torch import nn from torch import Tensor from text_recognizer.networks.transformer import PositionalEncoding, Transformer from text_recognizer.networks.util import configure_backbone class CNNTransformer(nn.Module): """CNN+Transfomer for image to sequence prediction, sort of based on the ideas from DETR.""" def __init__( self, num_encoder_layers: int, num_decoder_layers: int, hidden_dim: int, vocab_size: int, num_heads: int, max_len: int, expansion_dim: int, dropout_rate: float, trg_pad_index: int, backbone: str, backbone_args: Optional[Dict] = None, activation: str = "gelu", ) -> None: super().__init__() self.trg_pad_index = trg_pad_index self.backbone_args = backbone_args self.backbone = configure_backbone(backbone, backbone_args) self.character_embedding = nn.Embedding(vocab_size, hidden_dim) self.position_encoding = PositionalEncoding(hidden_dim, dropout_rate, max_len) self.collapse_spatial_dim = nn.Sequential( Rearrange("b t h w -> b t (h w)"), nn.AdaptiveAvgPool2d((None, hidden_dim)) ) self.transformer = Transformer( num_encoder_layers, num_decoder_layers, hidden_dim, num_heads, expansion_dim, dropout_rate, activation, ) self.head = nn.Linear(hidden_dim, vocab_size) def _create_trg_mask(self, trg: Tensor) -> Tensor: # Move this outside the transformer. trg_pad_mask = (trg != self.trg_pad_index)[:, None, None] trg_len = trg.shape[1] trg_sub_mask = torch.tril( torch.ones((trg_len, trg_len), device=trg.device) ).bool() trg_mask = trg_pad_mask & trg_sub_mask return trg_mask def encoder(self, src: Tensor) -> Tensor: """Forward pass with the encoder of the transformer.""" return self.transformer.encoder(src) def decoder(self, trg: Tensor, memory: Tensor, trg_mask: Tensor) -> Tensor: """Forward pass with the decoder of the transformer + classification head.""" return self.head( self.transformer.decoder(trg=trg, memory=memory, trg_mask=trg_mask) ) def preprocess_input(self, src: Tensor) -> Tensor: """Encodes src with a backbone network and a positional encoding. Args: src (Tensor): Input tensor. Returns: Tensor: A input src to the transformer. """ # If batch dimenstion is missing, it needs to be added. if len(src.shape) < 4: src = src[(None,) * (4 - len(src.shape))] src = self.backbone(src) src = self.collapse_spatial_dim(src) src = self.position_encoding(src) return src def preprocess_target(self, trg: Tensor) -> Tuple[Tensor, Tensor]: """Encodes target tensor with embedding and postion. Args: trg (Tensor): Target tensor. Returns: Tuple[Tensor, Tensor]: Encoded target tensor and target mask. """ trg_mask = self._create_trg_mask(trg) trg = self.character_embedding(trg.long()) trg = self.position_encoding(trg) return trg, trg_mask def forward(self, x: Tensor, trg: Tensor) -> Tensor: """Forward pass with CNN transfomer.""" src = self.preprocess_input(x) trg, trg_mask = self.preprocess_target(trg) out = self.transformer(src, trg, trg_mask=trg_mask) logits = self.head(out) return logits