"""Defines a Densely Connected Convolutional Networks in PyTorch. Sources: https://arxiv.org/abs/1608.06993 https://github.com/pytorch/vision/blob/master/torchvision/models/densenet.py """ from typing import List, Optional, Union from einops.layers.torch import Rearrange import torch from torch import nn from torch import Tensor from text_recognizer.networks.util import activation_function class _DenseLayer(nn.Module): """A dense layer with pre-batch norm -> activation function -> Conv-layer x 2.""" def __init__( self, in_channels: int, growth_rate: int, bn_size: int, dropout_rate: float, activation: str = "relu", ) -> None: super().__init__() activation_fn = activation_function(activation) self.dense_layer = [ nn.BatchNorm2d(in_channels), activation_fn, nn.Conv2d( in_channels=in_channels, out_channels=bn_size * growth_rate, kernel_size=1, stride=1, bias=False, ), nn.BatchNorm2d(bn_size * growth_rate), activation_fn, nn.Conv2d( in_channels=bn_size * growth_rate, out_channels=growth_rate, kernel_size=3, stride=1, padding=1, bias=False, ), ] if dropout_rate: self.dense_layer.append(nn.Dropout(p=dropout_rate)) self.dense_layer = nn.Sequential(*self.dense_layer) def forward(self, x: Union[Tensor, List[Tensor]]) -> Tensor: if isinstance(x, list): x = torch.cat(x, 1) return self.dense_layer(x) class _DenseBlock(nn.Module): def __init__( self, num_layers: int, in_channels: int, bn_size: int, growth_rate: int, dropout_rate: float, activation: str = "relu", ) -> None: super().__init__() self.dense_block = self._build_dense_blocks( num_layers, in_channels, bn_size, growth_rate, dropout_rate, activation ) def _build_dense_blocks( self, num_layers: int, in_channels: int, bn_size: int, growth_rate: int, dropout_rate: float, activation: str = "relu", ) -> nn.ModuleList: dense_block = [] for i in range(num_layers): dense_block.append( _DenseLayer( in_channels=in_channels + i * growth_rate, growth_rate=growth_rate, bn_size=bn_size, dropout_rate=dropout_rate, activation=activation, ) ) return nn.ModuleList(dense_block) def forward(self, x: Tensor) -> Tensor: feature_maps = [x] for layer in self.dense_block: x = layer(feature_maps) feature_maps.append(x) return torch.cat(feature_maps, 1) class _Transition(nn.Module): def __init__( self, in_channels: int, out_channels: int, activation: str = "relu", ) -> None: super().__init__() activation_fn = activation_function(activation) self.transition = nn.Sequential( nn.BatchNorm2d(in_channels), activation_fn, nn.Conv2d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, bias=False, ), nn.AvgPool2d(kernel_size=2, stride=2), ) def forward(self, x: Tensor) -> Tensor: return self.transition(x) class DenseNet(nn.Module): """Implementation of Densenet, a network archtecture that concats previous layers for maximum infomation flow.""" def __init__( self, growth_rate: int = 32, block_config: List[int] = (6, 12, 24, 16), in_channels: int = 1, base_channels: int = 64, num_classes: int = 80, bn_size: int = 4, dropout_rate: float = 0, classifier: bool = True, activation: str = "relu", ) -> None: super().__init__() self.densenet = self._configure_densenet( in_channels, base_channels, num_classes, growth_rate, block_config, bn_size, dropout_rate, classifier, activation, ) def _configure_densenet( self, in_channels: int, base_channels: int, num_classes: int, growth_rate: int, block_config: List[int], bn_size: int, dropout_rate: float, classifier: bool, activation: str, ) -> nn.Sequential: activation_fn = activation_function(activation) densenet = [ nn.Conv2d( in_channels=in_channels, out_channels=base_channels, kernel_size=3, stride=1, padding=1, bias=False, ), nn.BatchNorm2d(base_channels), activation_fn, ] num_features = base_channels for i, num_layers in enumerate(block_config): densenet.append( _DenseBlock( num_layers=num_layers, in_channels=num_features, bn_size=bn_size, growth_rate=growth_rate, dropout_rate=dropout_rate, activation=activation, ) ) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: densenet.append( _Transition( in_channels=num_features, out_channels=num_features // 2, activation=activation, ) ) num_features = num_features // 2 densenet.append(activation_fn) if classifier: densenet.append(nn.AdaptiveAvgPool2d((1, 1))) densenet.append(Rearrange("b c h w -> b (c h w)")) densenet.append( nn.Linear(in_features=num_features, out_features=num_classes) ) return nn.Sequential(*densenet) def forward(self, x: Tensor) -> Tensor: """Forward pass of Densenet.""" # If batch dimenstion is missing, it needs to be added. if len(x.shape) < 4: x = x[(None,) * (4 - len(x.shape))] return self.densenet(x)