"""Defines the LeNet network.""" from typing import Callable, Optional, Tuple import torch from torch import nn class Flatten(nn.Module): """Flattens a tensor.""" def forward(self, x: int) -> torch.Tensor: """Flattens a tensor for input to a nn.Linear layer.""" return torch.flatten(x, start_dim=1) class LeNet(nn.Module): """LeNet network.""" def __init__( self, channels: Tuple[int, ...], kernel_sizes: Tuple[int, ...], hidden_size: Tuple[int, ...], dropout_rate: float, output_size: int, activation_fn: Optional[Callable] = None, ) -> None: """The LeNet network. Args: channels (Tuple[int, ...]): Channels in the convolutional layers. kernel_sizes (Tuple[int, ...]): Kernel sizes in the convolutional layers. hidden_size (Tuple[int, ...]): Size of the flattend output form the convolutional layers. dropout_rate (float): The dropout rate. output_size (int): Number of classes. activation_fn (Optional[Callable]): The non-linear activation function. Defaults to nn.ReLU(inplace). """ super().__init__() if activation_fn is None: activation_fn = nn.ReLU(inplace=True) self.layers = [ nn.Conv2d( in_channels=channels[0], out_channels=channels[1], kernel_size=kernel_sizes[0], ), activation_fn, nn.Conv2d( in_channels=channels[1], out_channels=channels[2], kernel_size=kernel_sizes[1], ), activation_fn, nn.MaxPool2d(kernel_sizes[2]), nn.Dropout(p=dropout_rate), Flatten(), nn.Linear(in_features=hidden_size[0], out_features=hidden_size[1]), activation_fn, nn.Dropout(p=dropout_rate), nn.Linear(in_features=hidden_size[1], out_features=output_size), ] self.layers = nn.Sequential(*self.layers) def forward(self, x: torch.Tensor) -> torch.Tensor: """The feedforward.""" return self.layers(x) # def test(): # x = torch.randn([1, 1, 28, 28]) # channels = [1, 32, 64] # kernel_sizes = [3, 3, 2] # hidden_size = [9216, 128] # output_size = 10 # dropout_rate = 0.2 # activation_fn = nn.ReLU() # net = LeNet( # channels=channels, # kernel_sizes=kernel_sizes, # dropout_rate=dropout_rate, # hidden_size=hidden_size, # output_size=output_size, # activation_fn=activation_fn, # ) # from torchsummary import summary # # summary(net, (1, 28, 28), device="cpu") # out = net(x)