"""Wide Residual CNN.""" from functools import partial from typing import Callable, Dict, List, Optional, Type, Union from einops.layers.torch import Reduce import numpy as np import torch from torch import nn from torch import Tensor from text_recognizer.networks.util import activation_function def conv3x3(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d: """Helper function for a 3x3 2d convolution.""" return nn.Conv2d( in_channels=in_planes, out_channels=out_planes, kernel_size=3, stride=stride, padding=1, bias=False, ) def conv_init(module: Type[nn.Module]) -> None: """Initializes the weights for convolution and batchnorms.""" classname = module.__class__.__name__ if classname.find("Conv") != -1: nn.init.xavier_uniform_(module.weight, gain=np.sqrt(2)) nn.init.constant_(module.bias, 0) elif classname.find("BatchNorm") != -1: nn.init.constant_(module.weight, 1) nn.init.constant_(module.bias, 0) class WideBlock(nn.Module): """Block used in WideResNet.""" def __init__( self, in_planes: int, out_planes: int, dropout_rate: float, stride: int = 1, activation: str = "relu", ) -> None: super().__init__() self.in_planes = in_planes self.out_planes = out_planes self.dropout_rate = dropout_rate self.stride = stride self.activation = activation_function(activation) # Build blocks. self.blocks = nn.Sequential( nn.BatchNorm2d(self.in_planes), self.activation, conv3x3(in_planes=self.in_planes, out_planes=self.out_planes), nn.Dropout(p=self.dropout_rate), nn.BatchNorm2d(self.out_planes), self.activation, conv3x3( in_planes=self.out_planes, out_planes=self.out_planes, stride=self.stride, ), ) self.shortcut = ( nn.Sequential( nn.Conv2d( in_channels=self.in_planes, out_channels=self.out_planes, kernel_size=1, stride=self.stride, bias=False, ), ) if self._apply_shortcut else None ) @property def _apply_shortcut(self) -> bool: """If shortcut should be applied or not.""" return self.stride != 1 or self.in_planes != self.out_planes def forward(self, x: Tensor) -> Tensor: """Forward pass.""" residual = x if self._apply_shortcut: residual = self.shortcut(x) x = self.blocks(x) x += residual return x class WideResidualNetwork(nn.Module): """WideResNet for character predictions. Can be used for classification or encoding of images to a latent vector. """ def __init__( self, in_channels: int = 1, in_planes: int = 16, num_classes: int = 80, depth: int = 16, width_factor: int = 10, dropout_rate: float = 0.0, num_layers: int = 3, block: Type[nn.Module] = WideBlock, activation: str = "relu", use_decoder: bool = True, ) -> None: """The initialization of the WideResNet. Args: in_channels (int): Number of input channels. Defaults to 1. in_planes (int): Number of channels to use in the first output kernel. Defaults to 16. num_classes (int): Number of classes. Defaults to 80. depth (int): Set the number of blocks to use. Defaults to 16. width_factor (int): Factor for scaling the number of channels in the network. Defaults to 10. dropout_rate (float): The dropout rate. Defaults to 0.0. num_layers (int): Number of layers of blocks. Defaults to 3. block (Type[nn.Module]): The default block is WideBlock. Defaults to WideBlock. activation (str): Name of the activation to use. Defaults to "relu". use_decoder (bool): If True, the network output character predictions, if False, the network outputs a latent vector. Defaults to True. Raises: RuntimeError: If the depth is not of the size `6n+4`. """ super().__init__() if (depth - 4) % 6 != 0: raise RuntimeError("Wide-resnet depth should be 6n+4") self.in_channels = in_channels self.in_planes = in_planes self.num_classes = num_classes self.num_blocks = (depth - 4) // 6 self.width_factor = width_factor self.num_layers = num_layers self.block = block self.dropout_rate = dropout_rate self.activation = activation_function(activation) self.num_stages = [self.in_planes] + [ self.in_planes * 2 ** n * self.width_factor for n in range(self.num_layers) ] self.num_stages = list(zip(self.num_stages, self.num_stages[1:])) self.strides = [1] + [2] * (self.num_layers - 1) self.encoder = nn.Sequential( conv3x3(in_planes=self.in_channels, out_planes=self.in_planes), *[ self._configure_wide_layer( in_planes=in_planes, out_planes=out_planes, stride=stride, activation=activation, ) for (in_planes, out_planes), stride in zip( self.num_stages, self.strides ) ], ) self.decoder = ( nn.Sequential( nn.BatchNorm2d(self.num_stages[-1][-1], momentum=0.8), self.activation, Reduce("b c h w -> b c", "mean"), nn.Linear( in_features=self.num_stages[-1][-1], out_features=self.num_classes ), ) if use_decoder else None ) # self.apply(conv_init) def _configure_wide_layer( self, in_planes: int, out_planes: int, stride: int, activation: str ) -> List: strides = [stride] + [1] * (self.num_blocks - 1) planes = [out_planes] * len(strides) planes = [(in_planes, out_planes)] + list(zip(planes, planes[1:])) return nn.Sequential( *[ self.block( in_planes=in_planes, out_planes=out_planes, dropout_rate=self.dropout_rate, stride=stride, activation=activation, ) for (in_planes, out_planes), stride in zip(planes, strides) ] ) def forward(self, x: Tensor) -> Tensor: """Feedforward pass.""" if len(x.shape) < 4: x = x[(None,) * int(4 - len(x.shape))] x = self.encoder(x) if self.decoder is not None: x = self.decoder(x) return x