experiment_group: Lines Experiments experiments: - train_args: batch_size: 64 max_epochs: &max_epochs 64 dataset: type: IamLinesDataset args: subsample_fraction: null transform: null target_transform: null train_args: num_workers: 8 train_fraction: 0.85 model: LineCTCModel metrics: [cer, wer] network: type: LineRecurrentNetwork args: # backbone: ResidualNetwork # backbone_args: # in_channels: 1 # num_classes: 64 # Embedding # depths: [2,2] # block_sizes: [32, 64] # activation: selu # stn: false backbone: ResidualNetwork backbone_args: pretrained: training/experiments/CharacterModel_EmnistDataset_ResidualNetwork/0920_025816/model/best.pt freeze: false flatten: false input_size: 64 hidden_size: 64 bidirectional: true num_layers: 2 num_classes: 80 patch_size: [28, 18] stride: [1, 4] criterion: type: CTCLoss args: blank: 79 optimizer: type: AdamW args: lr: 1.e-02 betas: [0.9, 0.999] eps: 1.e-08 weight_decay: 5.e-4 amsgrad: false lr_scheduler: type: OneCycleLR args: max_lr: 1.e-02 epochs: *max_epochs anneal_strategy: cos pct_start: 0.475 cycle_momentum: true base_momentum: 0.85 max_momentum: 0.9 div_factor: 10 final_div_factor: 10000 interval: step # lr_scheduler: # type: CosineAnnealingLR # args: # T_max: *max_epochs swa_args: start: 48 lr: 5.e-2 callbacks: [Checkpoint, ProgressBar, WandbCallback, WandbImageLogger, EarlyStopping] callback_args: Checkpoint: monitor: val_loss mode: min ProgressBar: epochs: *max_epochs EarlyStopping: monitor: val_loss min_delta: 0.0 patience: 10 mode: min WandbCallback: log_batch_frequency: 10 WandbImageLogger: num_examples: 6 verbosity: 1 # 0, 1, 2 resume_experiment: null train: true test: true test_metric: test_cer