"""Script to run experiments.""" from datetime import datetime from glob import glob import importlib import json import os from pathlib import Path import re from typing import Callable, Dict, Tuple import click from loguru import logger import torch from tqdm import tqdm from training.callbacks import CallbackList from training.gpu_manager import GPUManager from training.train import Trainer import wandb import yaml EXPERIMENTS_DIRNAME = Path(__file__).parents[0].resolve() / "experiments" DEFAULT_TRAIN_ARGS = {"batch_size": 64, "epochs": 16} def get_level(experiment_config: Dict) -> int: """Sets the logger level.""" if experiment_config["verbosity"] == 0: return 40 elif experiment_config["verbosity"] == 1: return 20 else: return 10 def create_experiment_dir(model: Callable, experiment_config: Dict) -> Path: """Create new experiment.""" EXPERIMENTS_DIRNAME.mkdir(parents=True, exist_ok=True) experiment_dir = EXPERIMENTS_DIRNAME / model.__name__ if experiment_config["resume_experiment"] is None: experiment = datetime.now().strftime("%m%d_%H%M%S") logger.debug(f"Creating a new experiment called {experiment}") else: available_experiments = glob(str(experiment_dir) + "/*") available_experiments.sort() if experiment_config["resume_experiment"] == "last": experiment = available_experiments[-1] logger.debug(f"Resuming the latest experiment {experiment}") else: experiment = experiment_config["resume_experiment"] if not str(experiment_dir / experiment) in available_experiments: raise FileNotFoundError("Experiment does not exist.") logger.debug(f"Resuming the experiment {experiment}") experiment_dir = experiment_dir / experiment return experiment_dir def check_args(args: Dict) -> Dict: """Checks that the arguments are not None.""" return args or {} def load_modules_and_arguments(experiment_config: Dict) -> Tuple[Callable, Dict]: """Loads all modules and arguments.""" # Import the data loader arguments. data_loader_args = experiment_config.get("data_loader_args", {}) data_loader_args["dataset"] = experiment_config["dataset"] data_loader_args["dataset_args"] = experiment_config.get("dataset_args", {}) # Import the model module and model arguments. models_module = importlib.import_module("text_recognizer.models") model_class_ = getattr(models_module, experiment_config["model"]) # Import metrics. metric_fns_ = { metric: getattr(models_module, metric) for metric in experiment_config["metrics"] } # Import network module and arguments. network_module = importlib.import_module("text_recognizer.networks") network_fn_ = getattr(network_module, experiment_config["network"]) network_args = experiment_config.get("network_args", {}) # Criterion criterion_ = getattr(torch.nn, experiment_config["criterion"]) criterion_args = experiment_config.get("criterion_args", {}) # Optimizer optimizer_ = getattr(torch.optim, experiment_config["optimizer"]) optimizer_args = experiment_config.get("optimizer_args", {}) # Callbacks callback_modules = importlib.import_module("training.callbacks") callbacks = [ getattr(callback_modules, callback)( **check_args(experiment_config["callback_args"][callback]) ) for callback in experiment_config["callbacks"] ] # Learning rate scheduler if experiment_config["lr_scheduler"] is not None: lr_scheduler_ = getattr( torch.optim.lr_scheduler, experiment_config["lr_scheduler"] ) lr_scheduler_args = experiment_config.get("lr_scheduler_args", {}) else: lr_scheduler_ = None lr_scheduler_args = None model_args = { "data_loader_args": data_loader_args, "metrics": metric_fns_, "network_fn": network_fn_, "network_args": network_args, "criterion": criterion_, "criterion_args": criterion_args, "optimizer": optimizer_, "optimizer_args": optimizer_args, "lr_scheduler": lr_scheduler_, "lr_scheduler_args": lr_scheduler_args, } return model_class_, model_args, callbacks def run_experiment( experiment_config: Dict, save_weights: bool, device: str, use_wandb: bool = False ) -> None: """Runs an experiment.""" # Load the modules and model arguments. model_class_, model_args, callbacks = load_modules_and_arguments(experiment_config) # Initializes the model with experiment config. model = model_class_(**model_args, device=device) # Instantiate a CallbackList. callbacks = CallbackList(model, callbacks) # Create new experiment. experiment_dir = create_experiment_dir(model, experiment_config) # Create log and model directories. log_dir = experiment_dir / "log" model_dir = experiment_dir / "model" # Set the model dir to be able to save checkpoints. model.model_dir = model_dir # Get checkpoint path. checkpoint_path = model_dir / "last.pt" if not checkpoint_path.exists(): checkpoint_path = None # Make sure the log directory exists. log_dir.mkdir(parents=True, exist_ok=True) # Have to remove default logger to get tqdm to work properly. logger.remove() # Fetch verbosity level. level = get_level(experiment_config) logger.add(lambda msg: tqdm.write(msg, end=""), colorize=True, level=level) logger.add( str(log_dir / "train.log"), format="{time:YYYY-MM-DD at HH:mm:ss} | {level} | {message}", ) if "cuda" in device: gpu_index = re.sub("[^0-9]+", "", device) logger.info( f"Running experiment with config {experiment_config} on GPU {gpu_index}" ) else: logger.info(f"Running experiment with config {experiment_config} on CPU") logger.info(f"The class mapping is {model.mapping}") # Initializes Weights & Biases if use_wandb: wandb.init(project="text-recognizer", config=experiment_config) # Lets W&B save the model and track the gradients and optional parameters. wandb.watch(model.network) # PÅ•ints a summary of the network in terminal. model.summary() experiment_config["train_args"] = { **DEFAULT_TRAIN_ARGS, **experiment_config.get("train_args", {}), } experiment_config["experiment_group"] = experiment_config.get( "experiment_group", None ) experiment_config["device"] = device # Save the config used in the experiment folder. config_path = experiment_dir / "config.yml" with open(str(config_path), "w") as f: yaml.dump(experiment_config, f) trainer = Trainer( model=model, model_dir=model_dir, train_args=experiment_config["train_args"], callbacks=callbacks, checkpoint_path=checkpoint_path, ) trainer.fit() logger.info("Loading checkpoint with the best weights.") model.load_checkpoint(model_dir / "best.pt") score = trainer.validate() logger.info(f"Validation set evaluation: {score}") if use_wandb: wandb.log({"validation_metric": score["val_accuracy"]}) if save_weights: model.save_weights(model_dir) @click.command() @click.option( "--experiment_config", type=str, help='Experiment JSON, e.g. \'{"dataloader": "EmnistDataLoader", "model": "CharacterModel", "network": "mlp"}\'', ) @click.option("--gpu", type=int, default=0, help="Provide the index of the GPU to use.") @click.option( "--save", is_flag=True, help="If set, the final weights will be saved to a canonical, version-controlled location.", ) @click.option( "--nowandb", is_flag=False, help="If true, do not use wandb for this run." ) def main(experiment_config: str, gpu: int, save: bool, nowandb: bool) -> None: """Run experiment.""" if gpu < 0: gpu_manager = GPUManager(True) gpu = gpu_manager.get_free_gpu() device = "cuda:" + str(gpu) experiment_config = json.loads(experiment_config) os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu}" run_experiment(experiment_config, save, device, use_wandb=not nowandb) if __name__ == "__main__": main()