"""VQGAN loss for PyTorch Lightning.""" from typing import Dict, Optional from click.types import Tuple import torch from torch import nn, Tensor import torch.nn.functional as F from text_recognizer.criterions.n_layer_discriminator import NLayerDiscriminator class VQGANLoss(nn.Module): """VQGAN loss.""" def __init__( self, reconstruction_loss: nn.L1Loss, discriminator: NLayerDiscriminator, vq_loss_weight: float = 1.0, discriminator_weight: float = 1.0, ) -> None: super().__init__() self.reconstruction_loss = reconstruction_loss self.discriminator = discriminator self.vq_loss_weight = vq_loss_weight self.discriminator_weight = discriminator_weight @staticmethod def adversarial_loss(logits_real: Tensor, logits_fake: Tensor) -> Tensor: """Calculates the adversarial loss.""" loss_real = torch.mean(F.relu(1.0 - logits_real)) loss_fake = torch.mean(F.relu(1.0 + logits_fake)) d_loss = (loss_real + loss_fake) / 2.0 return d_loss def forward( self, data: Tensor, reconstructions: Tensor, vq_loss: Tensor, optimizer_idx: int, stage: str, ) -> Optional[Tuple]: """Calculates the VQGAN loss.""" rec_loss: Tensor = self.reconstruction_loss( data.contiguous(), reconstructions.contiguous() ) # GAN part. if optimizer_idx == 0: logits_fake = self.discriminator(reconstructions.contiguous()) g_loss = -torch.mean(logits_fake) loss: Tensor = ( rec_loss + self.discriminator_weight * g_loss + self.vq_loss_weight * vq_loss ) log = { f"{stage}/total_loss": loss, f"{stage}/vq_loss": vq_loss, f"{stage}/rec_loss": rec_loss, f"{stage}/g_loss": g_loss, } return loss, log if optimizer_idx == 1: logits_fake = self.discriminator(reconstructions.contiguous().detach()) logits_real = self.discriminator(data.contiguous().detach()) d_loss = self.discriminator_weight * self.adversarial_loss( logits_real=logits_real, logits_fake=logits_fake ) log = { f"{stage}/d_loss": d_loss, } return d_loss, log