"""Base PyTorch Dataset class."""
from typing import Callable, Dict, Optional, Sequence, Tuple, Union
import attr
import torch
from torch import Tensor
from torch.utils.data import Dataset
@attr.s
class BaseDataset(Dataset):
    r"""Base Dataset class that processes data and targets through optional transfroms.
    Args:
        data (Union[Sequence, Tensor]): Torch tensors, numpy arrays, or PIL images.
        targets (Union[Sequence, Tensor]): Torch tensors or numpy arrays.
        tranform (Callable): Function that takes a datum and applies transforms.
        target_transform (Callable): Fucntion that takes a target and applies
            target transforms.
    """
    data: Union[Sequence, Tensor] = attr.ib()
    targets: Union[Sequence, Tensor] = attr.ib()
    transform: Optional[Callable] = attr.ib(default=None)
    target_transform: Optional[Callable] = attr.ib(default=None)
    def __attrs_pre_init__(self) -> None:
        """Pre init constructor."""
        super().__init__()
    def __attrs_post_init__(self) -> None:
        """Post init constructor."""
        if len(self.data) != len(self.targets):
            raise ValueError("Data and targets must be of equal length.")
    def __len__(self) -> int:
        """Return the length of the dataset."""
        return len(self.data)
    def __getitem__(self, index: int) -> Tuple[Tensor, Tensor]:
        """Return a datum and its target, after processing by transforms.
        Args:
            index (int): Index of a datum in the dataset.
        Returns:
            Tuple[Tensor, Tensor]: Datum and target pair.
        """
        datum, target = self.data[index], self.targets[index]
        if self.transform is not None:
            datum = self.transform(datum)
        if self.target_transform is not None:
            target = self.target_transform(target)
        return datum, target
def convert_strings_to_labels(
    strings: Sequence[str], mapping: Dict[str, int], length: int
) -> Tensor:
    r"""Convert a sequence of N strings to (N, length) ndarray.
    Add each string with  and  tokens, and padded wiht the 
token. Args: strings (Sequence[str]): Sequence of strings. mapping (Dict[str, int]): Mapping of characters and digits to integers. length (int): Max lenght of all strings. Returns: Tensor: Target with emnist mapping indices. """ labels = torch.ones((len(strings), length), dtype=torch.long) * mapping["
"]
    for i, string in enumerate(strings):
        tokens = list(string)
        tokens = ["", *tokens, "