"""Base PyTorch Dataset class."""
from typing import Any, Callable, Dict, Sequence, Tuple, Union
import attr
import torch
from torch import Tensor
from torch.utils.data import Dataset
@attr.s
class BaseDataset(Dataset):
"""
Base Dataset class that processes data and targets through optional transfroms.
Args:
data (Union[Sequence, Tensor]): Torch tensors, numpy arrays, or PIL images.
targets (Union[Sequence, Tensor]): Torch tensors or numpy arrays.
tranform (Callable): Function that takes a datum and applies transforms.
target_transform (Callable): Fucntion that takes a target and applies
target transforms.
"""
data: Union[Sequence, Tensor] = attr.ib()
targets: Union[Sequence, Tensor] = attr.ib()
transform: Callable = attr.ib()
target_transform: Callable = attr.ib()
def __attrs_pre_init__(self) -> None:
super().__init__()
def __attrs_post_init__(self) -> None:
# TODO: refactor this
if len(self.data) != len(self.targets):
raise ValueError("Data and targets must be of equal length.")
def __len__(self) -> int:
"""Return the length of the dataset."""
return len(self.data)
def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""Return a datum and its target, after processing by transforms.
Args:
index (int): Index of a datum in the dataset.
Returns:
Tuple[Any, Any]: Datum and target pair.
"""
datum, target = self.data[index], self.targets[index]
if self.transform is not None:
datum = self.transform(datum)
if self.target_transform is not None:
target = self.target_transform(target)
return datum, target
def convert_strings_to_labels(
strings: Sequence[str], mapping: Dict[str, int], length: int
) -> Tensor:
"""
Convert a sequence of N strings to (N, length) ndarray, with each string wrapped with and tokens,
and padded wiht the
token. """ labels = torch.ones((len(strings), length), dtype=torch.long) * mapping["
"]
for i, string in enumerate(strings):
tokens = list(string)
tokens = ["", *tokens, "