"""Transforms for PyTorch datasets.""" from abc import abstractmethod from pathlib import Path from typing import Any, Optional, Union from loguru import logger import torch from torch import Tensor from text_recognizer.datasets.iam_preprocessor import Preprocessor from text_recognizer.data.emnist import emnist_mapping class ToLower: """Converts target to lower case.""" def __call__(self, target: Tensor) -> Tensor: """Corrects index value in target tensor.""" device = target.device return torch.stack([x - 26 if x > 35 else x for x in target]).to(device) class ToCharcters: """Converts integers to characters.""" def __init__(self) -> None: self.mapping, _, _ = emnist_mapping() def __call__(self, y: Tensor) -> str: """Converts a Tensor to a str.""" return ( "".join([self.mapping(int(i)) for i in y]) .strip("
") .replace(" ", "▁") ) class WordPieces: """Abstract transform for word pieces.""" def __init__( self, num_features: int, data_dir: Optional[Union[str, Path]] = None, tokens: Optional[Union[str, Path]] = None, lexicon: Optional[Union[str, Path]] = None, use_words: bool = False, prepend_wordsep: bool = False, ) -> None: if data_dir is None: data_dir = ( Path(__file__).resolve().parents[3] / "data" / "raw" / "iam" / "iamdb" ) logger.debug(f"Using data dir: {data_dir}") if not data_dir.exists(): raise RuntimeError(f"Could not locate iamdb directory at {data_dir}") else: data_dir = Path(data_dir) processed_path = ( Path(__file__).resolve().parents[3] / "data" / "processed" / "iam_lines" ) tokens_path = processed_path / tokens lexicon_path = processed_path / lexicon self.preprocessor = Preprocessor( data_dir, num_features, tokens_path, lexicon_path, use_words, prepend_wordsep, ) @abstractmethod def __call__(self, *args, **kwargs) -> Any: """Transforms input.""" ... class ToWordPieces(WordPieces): """Transforms str to word pieces.""" def __init__( self, num_features: int, data_dir: Optional[Union[str, Path]] = None, tokens: Optional[Union[str, Path]] = None, lexicon: Optional[Union[str, Path]] = None, use_words: bool = False, prepend_wordsep: bool = False, ) -> None: super().__init__( num_features, data_dir, tokens, lexicon, use_words, prepend_wordsep ) def __call__(self, line: str) -> Tensor: """Transforms str to word pieces.""" return self.preprocessor.to_index(line) class ToText(WordPieces): """Takes word pieces and converts them to text.""" def __init__( self, num_features: int, data_dir: Optional[Union[str, Path]] = None, tokens: Optional[Union[str, Path]] = None, lexicon: Optional[Union[str, Path]] = None, use_words: bool = False, prepend_wordsep: bool = False, ) -> None: super().__init__( num_features, data_dir, tokens, lexicon, use_words, prepend_wordsep ) def __call__(self, x: Tensor) -> str: """Converts tensor to text.""" return self.preprocessor.to_text(x.tolist())