"""Word piece mapping.""" from pathlib import Path from typing import List, Optional, Union, Set import torch from loguru import logger as log from torch import Tensor from text_recognizer.data.emnist_mapping import EmnistMapping from text_recognizer.data.iam_preprocessor import Preprocessor class WordPieceMapping(EmnistMapping): def __init__( self, data_dir: Optional[Path] = None, num_features: int = 1000, tokens: str = "iamdb_1kwp_tokens_1000.txt", lexicon: str = "iamdb_1kwp_lex_1000.txt", use_words: bool = False, prepend_wordsep: bool = False, special_tokens: Set[str] = {"", "", "

"}, extra_symbols: Set[str] = {"\n",}, ) -> None: super().__init__(extra_symbols=extra_symbols) self.data_dir = ( ( Path(__file__).resolve().parents[2] / "data" / "downloaded" / "iam" / "iamdb" ) if data_dir is None else Path(data_dir) ) log.debug(f"Using data dir: {self.data_dir}") if not self.data_dir.exists(): raise RuntimeError(f"Could not locate iamdb directory at {self.data_dir}") processed_path = ( Path(__file__).resolve().parents[2] / "data" / "processed" / "iam_lines" ) tokens_path = processed_path / tokens lexicon_path = processed_path / lexicon special_tokens = set(special_tokens) if self.extra_symbols is not None: special_tokens = special_tokens | set(extra_symbols) self.wordpiece_processor = Preprocessor( data_dir=self.data_dir, num_features=num_features, tokens_path=tokens_path, lexicon_path=lexicon_path, use_words=use_words, prepend_wordsep=prepend_wordsep, special_tokens=special_tokens, ) def __len__(self) -> int: return len(self.wordpiece_processor.tokens) def get_token(self, index: Union[int, Tensor]) -> str: if (index := int(index)) <= self.wordpiece_processor.num_tokens: return self.wordpiece_processor.tokens[index] raise KeyError(f"Index ({index}) not in mapping.") def get_index(self, token: str) -> Tensor: if token in self.wordpiece_processor.tokens: return torch.LongTensor([self.wordpiece_processor.tokens_to_index[token]]) raise KeyError(f"Token ({token}) not found in inverse mapping.") def get_text(self, indices: Union[List[int], Tensor]) -> str: if isinstance(indices, Tensor): indices = indices.tolist() return self.wordpiece_processor.to_text(indices).replace(" ", "▁") def get_indices(self, text: str) -> Tensor: return self.wordpiece_processor.to_index(text) def emnist_to_wordpiece_indices(self, x: Tensor) -> Tensor: text = "".join([self.mapping[i] for i in x]) text = text.lower().replace(" ", "▁") return torch.LongTensor(self.wordpiece_processor.to_index(text)) def __getitem__(self, x: Union[str, int, List[int], Tensor]) -> Union[str, Tensor]: if isinstance(x, int): x = [x] if isinstance(x, str): return self.get_indices(x) return self.get_text(x)