"""PyTorch Lightning model for base Transformers.""" from typing import Set, Tuple import torch from torch import Tensor from text_recognizer.models.base import BaseLitModel from text_recognizer.models.metrics import CharacterErrorRate class TransformerLitModel(BaseLitModel): """A PyTorch Lightning model for transformer networks.""" def __init__( self, max_output_len: int = 451, start_token: str = "", end_token: str = "", pad_token: str = "

", ) -> None: super().__init__() self.max_output_len = max_output_len self.start_token = start_token self.end_token = end_token self.pad_token = pad_token self.start_index = int(self.mapping.get_index(self.start_token)) self.end_index = int(self.mapping.get_index(self.end_token)) self.pad_index = int(self.mapping.get_index(self.pad_token)) self.ignore_indices = set([self.start_index, self.end_index, self.pad_index]) self.val_cer = CharacterErrorRate(self.ignore_indices) self.test_cer = CharacterErrorRate(self.ignore_indices) def forward(self, data: Tensor) -> Tensor: """Forward pass with the transformer network.""" return self.predict(data) def training_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> Tensor: """Training step.""" data, targets = batch logits = self.network(data, targets[:, :-1]) loss = self.loss_fn(logits, targets[:, 1:]) self.log("train/loss", loss) return loss def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None: """Validation step.""" data, targets = batch # Compute the loss. logits = self.network(data, targets[:, :-1]) loss = self.loss_fn(logits, targets[:, 1:]) self.log("val/loss", loss, prog_bar=True) def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None: """Test step.""" data, targets = batch # Compute the text prediction. pred = self(data) self.test_cer(pred, targets) self.log("test/cer", self.test_cer, on_step=False, on_epoch=True, prog_bar=True) self.test_acc(pred, targets) self.log("test/acc", self.test_acc, on_step=False, on_epoch=True) def predict(self, x: Tensor) -> Tensor: """Predicts text in image. Args: x (Tensor): Image(s) to extract text from. Shapes: - x: :math: `(B, H, W)` - output: :math: `(B, S)` Returns: Tensor: A tensor of token indices of the predictions from the model. """ bsz = x.shape[0] # Encode image(s) to latent vectors. z = self.network.encode(x) # Create a placeholder matrix for storing outputs from the network output = torch.ones((bsz, self.max_output_len), dtype=torch.long).to(x.device) output[:, 0] = self.start_index for Sy in range(1, self.max_output_len): context = output[:, :Sy] # (B, Sy) logits = self.network.decode(z, context) # (B, C, Sy) tokens = torch.argmax(logits, dim=1) # (B, Sy) output[:, Sy : Sy + 1] = tokens[:, -1:] # Early stopping of prediction loop if token is end or padding token. if ( (output[:, Sy - 1] == self.end_index) | (output[:, Sy - 1] == self.pad_index) ).all(): break # Set all tokens after end token to pad token. for Sy in range(1, self.max_output_len): idx = (output[:, Sy - 1] == self.end_index) | ( output[:, Sy - 1] == self.pad_index ) output[idx, Sy] = self.pad_index return output