"""PyTorch Lightning model for base Transformers.""" from typing import Tuple import attr from torch import Tensor from text_recognizer.models.base import BaseLitModel from text_recognizer.criterions.vqgan_loss import VQGANLoss @attr.s(auto_attribs=True, eq=False) class VQGANLitModel(BaseLitModel): """A PyTorch Lightning model for transformer networks.""" loss_fn: VQGANLoss = attr.ib() latent_loss_weight: float = attr.ib(default=0.25) def forward(self, data: Tensor) -> Tensor: """Forward pass with the transformer network.""" return self.network(data) def training_step( self, batch: Tuple[Tensor, Tensor], batch_idx: int, optimizer_idx: int ) -> Tensor: """Training step.""" data, _ = batch reconstructions, vq_loss = self(data) if optimizer_idx == 0: loss, log = self.loss_fn( data=data, reconstructions=reconstructions, vq_loss=vq_loss, optimizer_idx=optimizer_idx, stage="train", ) self.log( "train/loss", loss, prog_bar=True, ) self.log_dict(log, logger=True, on_step=True, on_epoch=True) return loss if optimizer_idx == 1: loss, log = self.loss_fn( data=data, reconstructions=reconstructions, vq_loss=vq_loss, optimizer_idx=optimizer_idx, stage="train", ) self.log( "train/discriminator_loss", loss, prog_bar=True, ) self.log_dict(log, logger=True, on_step=True, on_epoch=True) return loss def validation_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None: """Validation step.""" data, _ = batch reconstructions, vq_loss = self(data) loss, log = self.loss_fn( data=data, reconstructions=reconstructions, vq_loss=vq_loss, optimizer_idx=0, stage="val", ) self.log( "val/loss", loss, prog_bar=True, ) self.log_dict(log) _, log = self.loss_fn( data=data, reconstructions=reconstructions, vq_loss=vq_loss, optimizer_idx=1, stage="val", ) self.log_dict(log) def test_step(self, batch: Tuple[Tensor, Tensor], batch_idx: int) -> None: """Test step.""" data, _ = batch reconstructions, vq_loss = self(data) _, log = self.loss_fn( data=data, reconstructions=reconstructions, vq_loss=vq_loss, optimizer_idx=0, stage="test", ) self.log_dict(log) _, log = self.loss_fn( data=data, reconstructions=reconstructions, vq_loss=vq_loss, optimizer_idx=1, stage="test", ) self.log_dict(log)