"""Vision transformer for character recognition.""" from typing import Type import attr from torch import nn, Tensor from text_recognizer.networks.transformer.positional_encodings import ( PositionalEncoding, PositionalEncoding2D, ) @attr.s class CnnTransformer(nn.Module): def __attrs_pre_init__(self) -> None: super().__init__() # Parameters, input_dims: Tuple[int, int, int] = attr.ib() hidden_dim: int = attr.ib() dropout_rate: float = attr.ib() max_output_len: int = attr.ib() num_classes: int = attr.ib() # Modules. encoder: Type[nn.Module] = attr.ib() decoder: Type[nn.Module] = attr.ib() embedding: nn.Embedding = attr.ib(init=False, default=None) latent_encoder: nn.Sequential = attr.ib(init=False, default=None) token_embedding: nn.Embedding = attr.ib(init=False, default=None) token_pos_encoder: PositionalEncoding = attr.ib(init=False, default=None) head: nn.Linear = attr.ib(init=False, default=None) def __attrs_post_init__(self) -> None: # Latent projector for down sampling number of filters and 2d # positional encoding. self.latent_encoder = nn.Sequential( nn.Conv2d( in_channels=self.encoder.out_channels, out_channels=self.hidden_dim, kernel_size=1, ), PositionalEncoding2D( hidden_dim=self.hidden_dim, max_h=self.input_dims[1], max_w=self.input_dims[2], ), nn.Flatten(start_dim=2), ) # Token embedding. self.token_embedding = nn.Embedding( num_embeddings=self.num_classes, embedding_dim=self.hidden_dim ) # Positional encoding for decoder tokens. self.token_pos_encoder = PositionalEncoding( hidden_dim=self.hidden_dim, dropout_rate=self.dropout_rate ) # Head self.head = nn.Linear( in_features=self.hidden_dim, out_features=self.num_classes ) # Initalize weights for encoder. self.init_weights() def init_weights(self) -> None: """Initalize weights for decoder network and head.""" bound = 0.1 self.token_embedding.weight.data.uniform_(-bound, bound) self.head.bias.data.zero_() self.head.weight.data.uniform_(-bound, bound) # TODO: Initalize encoder? def encode(self, x: Tensor) -> Tensor: """Encodes an image into a latent feature vector. Args: x (Tensor): Image tensor. Shape: - x: :math: `(B, C, H, W)` - z: :math: `(B, Sx, E)` where Sx is the length of the flattened feature maps projected from the encoder. E latent dimension for each pixel in the projected feature maps. Returns: Tensor: A Latent embedding of the image. """ z = self.encoder(x) z = self.latent_encoder(z) # Permute tensor from [B, E, Ho * Wo] to [Sx, B, E] z = z.permute(2, 0, 1) return z def decode(self, z: Tensor, trg: Tensor) -> Tensor: """Decodes latent images embedding into word pieces. Args: z (Tensor): Latent images embedding. trg (Tensor): Word embeddings. Shapes: - z: :math: `(B, Sx, E)` - out: :math: `(B, Sy, T)` where Sy is the length of the output and T is the number of tokens. Returns: Tensor: Sequence of word piece embeddings. """ pass def forward(self, x: Tensor, trg: Tensor) -> Tensor: """Encodes images into word piece logtis. Args: x (Tensor): Input image(s). trg (Tensor): Target word embeddings. Shapes: - x: :math: `(B, C, H, W)` - trg: :math: `(B, Sy, T)` where B is the batch size, C is the number of input channels, H is the image height and W is the image width. """ z = self.encode(x) y = self.decode(z, trg) return y def predict(self, x: Tensor) -> Tensor: """Predicts text in image.""" pass